Как держать форму. Массаж. Здоровье. Уход за волосами

Добыча руды. Основные месторождения железных руд

Сегодня трудно представить себе жизнь без стали, из которой изготовлены многие окружающие нас вещи. Основой этого металла является железо, получаемое при плавке руды. Железная руда отличается по происхождению, качеству, способу добычи, что определяет целесообразность ее извлечения. Также железная руда отличается минеральным составом, процентным соотношением металлов и примесей, а также полезностью самых добавок.

Железо как химический элемент входит в состав многих горных пород, однако, не все они считаются сырьем для добычи. Все зависит от процентного состава вещества. Конкретно железной называют минеральные образования, в которых объем полезного металла делает его извлечение экономически целесообразным.

Добывать такое сырье начали еще 3000 лет назад, так как железо позволяло изготавливать более качественные прочные изделия в сравнении с медью и бронзой (см. ). И уже в то время мастера, имевшие плавильни, отличали виды руды.

Сегодня добывают следующие типы сырья для дальнейшей выплавки металла:

  • Титано-магнетитовые;
  • Апатит-магнетитовые;
  • Магнетитовые;
  • Магнетит-гематитовые;
  • Гетит-гидрогетитовые.

Богатой считается железная руда, в составе которой имеется не менее 57% железа. Но, разработки могут считаться целесообразными при 26%.

Железо в составе породы находится чаще в виде оксидов, остальные добавки — это кремнеземы, сера и фосфор.

Все ныне известные типы руд образовались тремя способами:

  • Магматическим . Такие руды образовывались в результате воздействия высокой температуры магмы или древней вулканической деятельности, то есть переплавки и перемешивания других горных пород. Такие полезные ископаемые — это твердые кристаллические минералы с высоким процентным составом железа. Залежи руд магматического происхождения обычно привязаны к старым зонам горообразования, где расплавленное вещество подходило близко поверхности.

Процесс образования магматических пород таков: расплав различных минералов (магма) — это очень текучее вещество, и при образовании трещин в местах разломов, оно их заполняет, остывая и приобретая кристаллическую структуру. Именно так сформировались пласты с застывшей в земной коре магмой.

  • Метаморфическим . Так преобразовываются осадочные типы минералов. Процесс следующий: при перемещениях отдельных участков земной коры, некоторые ее пласты, содержащие необходимые элементы, попадает под залегающие выше породы. На глубине они поддаются воздействию высокой температуры и давлению верхних слоев. В течение миллионов лет такого воздействия здесь происходят химические реакции, преобразующие состав исходного материала, кристаллизация вещества. Потом в процессе очередного перемещения породы оказываются ближе к поверхности.

Обычно железная руда такого происхождения залегает не слишком глубоко и имеет высокий процент состава полезного металла. Например, как яркий образец – магнитный железняк (до 73-75% железа).

  • Осадочным . Главными «работниками» процесса образования руд становятся вода и ветер. Разрушающие пласты породы и перемещающие их в низины, где они накапливаются в виде слоев. Плюс вода, как реагент, может видоизменять исходный материал (выщелачивать). В итоге образуется бурый железняк – рассыпчатая и рыхлая руда, содержащая от 30% до 40% железа, с большим количеством различных примесей.

Сырье благодаря разнообразным путям образования часто перемешано в пластах с глинами, известняками и магматическими породами. Иногда разные по происхождению залежи могут быть перемешаны на одном месторождении. Но чаще всего преобладает один из перечисленных типов породы.

Установив путем геологической разведки приблизительную картину происходящих в конкретной местности процессов, определяют возможные места с залеганием железных руд. Как, например, Курская магнитная аномалия, или Криворожский бассейн, где вследствие магматических и метаморфических воздействий образовались ценные в промышленном значении типы железной руды.

Добыча железных руд в промышленных масштабах

Добывать руду человечество начало очень давно, но чаще всего это было сырье низкого качества со значительными примесями серы (осадочные породы, так называемое «болотное» железо). Масштабы разработки и выплавки постоянно увеличивались. Сегодня выстроена целая классификация различных месторождение железистых руд.

Основные типы промышленных месторождений

Все залежи руды делят на типы зависимо от происхождения породы, что в свою очередь позволяет выделить главные и второстепенные железнорудные районы.

Главные типы промышленных залежей железной руды

К ним относят следующие месторождения:

  • Залежи различных типов железной руды (железистые кварциты, магнитный железняк), образованной метаморфическим способом, что позволяет добывать на них очень богатые по составу руды. Обычно месторождения связаны с древнейшими процессами образования горных пород земной коры и залегают на образованиях называемых щитами.

Кристаллический щит — это формирования в виде большой изогнутой линзы. Состоит из пород, образованных еще на этапе формирования земной коры 4,5 млрд. лет назад.

Наиболее известные месторождения такого типа: Курская магнитная аномалия, Криворожский бассейн, озеро Верхнее (США/Канада), провинция Хамерсли в Австралии, и железнорудный район Минас-Жерайс в Бразилии.

  • Залежи пластовых осадочных пород. Эти месторождения образовались вследствие оседания богатых железом соединений, которые имеются в составе разрушенных ветром и водой минералов. Яркий образец железной руды в таких залежах – бурый железняк.

Наиболее известные и большие месторождения — это Лотарингский бассейн во Франции и Керченский на одноименном полуострове (Россия).

  • Скарновые месторождения. Обычно руда имеет магматическое и метаморфическое происхождение, пласты которой после образования были смещены в момент образования гор. То есть железная руда, располагающаяся слоями на глубине, была смята в складки и перемещена на поверхность во время движения литосферных плит. Такие залежи размещаются чаще в складчатых областях в виде пластов или столбов неправильной формы. Образовались магматическим способом. Представители таких месторождений: Магнитогорское (Урал, Россия), Сарбайское (Казахстан), Айрон-Спрингс (США) и прочие.
  • Титаномагнетитовые залежи руд. Их происхождение магматическое, чаще всего встречаются на выходах древних коренных пород – щитов. К ним относят бассейны и месторождения в Норвегии, Канаде, России (Качканарское, Кусинское).

К второстепенным месторождениям относят: апатит-магнетитовые, магно-магнетитовые, сидеритовые, железомарганцевые залежи, разрабатываемые на территории России, стран Европы, Кубы и прочих.

Запасы железной руды в мире — страны-лидеры

На сегодня по различным оценкам разведано залежей с суммарным объемом в 160 млрд. тонн руды, с которой можно получить около 80 млрд. тонн металла.

Геологическая служба США представляет данные, по которым на Россию и Бразилию приходится около 18% мировых запасов железорудного сырья.

В пересчете на запасы железа, можно выделить следующие страны-лидеры

Картина мировых запасов руды выглядит следующим образом

Большинство этих стран является и крупнейшими экспортерами железной руды. В общем, объем продаваемого сырья составляет около 960 млн. тонн в год. Наибольшими импортерами являются Япония, Китай, Германия, Южная Корея, Тайвань, Франция.

Обычно добычей и продажей сырья занимаются частные компании. К примеру, крупнейшие в нашей стране Металлинвест и Евразхолдинг, производящие в общей сумме около 100 млн. тонн железорудной продукции.

По оценкам той же Геологической службы США, объемы добычи и производства постоянно растут, за год добывается около 2,5-3 млрд. тонн руды, что снижает ее стоимость на мировом рынке.

Наценка на 1 тонну сегодня приблизительно 40 долларов. Рекордная цена была зафиксирована в 2007 году – 180 долл/ тонну.

Как добывают железную руду?

Пласты железной руды залегают на различной глубине, что и определяет ее способы извлечения из недр.

Карьерный способ. Самый распространенный способ карьерной добычи, используется при нахождении залежей на глубине около 200-300 метров. Разработка происходит путем применения мощных экскаваторов и установок для дробления породы. После чего ее грузят для транспортировки на обогатительные комбинаты.

Шахтный метод. Шахтный метод применяют при более глубинном залегании пластов (600-900 метров). Изначально пробивают створ шахты, от которого вдоль пластов разрабатывают штреки. Откуда раздробленная порода подается «на гора» с помощью транспортеров. Руду из шахт также отправляют на обогатительные предприятия.

Скважинная гидродобыча. Прежде всего, для скважинной гидродобычи бурят скважину до пласта породы. После чего в створ заводят трубы, мощным напором воды дробят руду с дальнейшим извлечением. Но такой метод на сегодня имеет очень низкую эффективность и используется довольно редко. Например, таким приемом добывают 3% сырья, а шахтным 70%.

После добычи железорудный материал нужно переработать, чтобы получить основное сырье для выплавки металла.

Так как в составе руд кроме необходимого железа есть множество примесей, то для получения максимального полезного выхода необходимо очистить породу, подготовив материал (концентрат) для выплавки. Весь процесс осуществляется на горно-обогатительных комбинатах. К различным видам руд, применяются свои приемы и методы очистки и удаление ненужных примесей.

Например, технологическая цепочка обогащения маггнитных железняков следующая:

  • Изначально руда проходит стадию дробления на дробильных установках (например, щековых) и подается ленточным транспортером на станции сепарации.
  • Используя электромагнитные сепараторы, отделяют части магнитного железняка от пустой ненужной породы.
  • После чего рудная масса транспортируется на очередное дробление.
  • Измельченные минералы перемещают на очередную станцию очистки, так называемые вибрационные сита, здесь полезная руда просеивается, отделяясь от легкой ненужно породы.
  • Следующий этап – бункер мелкой руды, в котором вибрациями отделяются мелкие частицы примесей.
  • Последующие циклы включают очередное добавление воды измельчение и прохождение рудной массы через шламовые насосы, удаляющие вместе с жидкостью ненужный шлам (пустую породу), и опять дробление.
  • После многократного очищения насосами, руда поступает на так называемый грохот, который гравитационным методом в очередной раз очищает минералы.
  • Многократно очищенная смесь поступает на обезвоживатель, удаляющий воду.
  • Осушенная руда опять попадает на магнитные сепараторы, и уже потом на газожидкостную станцию.

Бурый железняк очищается несколько по другим принципам, но суть от этого не меняется, ведь главная задача обогащения — получить наиболее чистое сырье для производства.

Результатом обогащения становиться железорудный концентрат, использующийся при плавке.

Что делают из железной руды — применение железной руды

Понятно, что железная руда используется для получения металла. Но, еще две тысячи лет назад металлурги поняли, что в чистом виде железо довольно мягкий материал, изделия из которого немного лучше бронзы. Результатом стало открытие сплава железа с углеродом – стали.

Углерод для стали играет роль цемента, упрочняющего материал. Обычно в составе такого сплава имеется от 0,1 до 2,14% углерода, причем свыше 0,6% — это уже высокоуглеродистая сталь.

Сегодня из этого металла изготавливается огромный список изделий, оборудования и машин. Однако, изобретение стали было связано с развитием оружейного дела, мастера в котором пытались получить материал с прочными характеристиками, но в то же время, с отличной гибкостью, ковкостью, и прочими техническими, физическими и химическими характеристиками. Сегодня высококачественный металл имеет и другие добавки, легирующие его, добавляя твердость износоустойчивость.

Вторым материалом, который производится с железной руды, является чугун. Это также сплав железа с углеродом, которого в составе имеется более чем 2,14%.

Длительное время чугун считался бесполезным материалом, который получался либо при нарушении технологии выплавки стали, или как побочный металл, оседающий на дне плавильных печей. В основном его выбрасывали, его невозможно ковать (хрупкий и практически не пластичный).

До появления артиллерии чугун пытались пристроить в хозяйстве различными способами. Например, в строительстве из него изготавливали фундаментные блоки, в Индии производили гробы, а в Китае изначально даже чеканили монеты. Появление пушек позволило использовать чугун для литья ядер.

Сегодня чугун используют во многих отраслях, особенно в машиностроении. Также этот металл используется для получения стали (мартеновские печи и бессмеровский способ).

С ростом производства требуется все больше материалов, что способствует интенсивной разработке месторождений. Но развитые страны считают более целесообразным импортировать относительно недорогое сырье, сокращая объемы собственного производства. Это позволяет основным странам экспортерам наращивать добычу железной руды с дальнейшим ее обогащением и продажей в качестве концентрата.

Мировые разведанные запасы железной руды составляют порядка 160 млрд тонн, содержащих около 80 млрд тонн чистого железа. По данным Геологической службы США, Украина обладает крупнейшими в мире разведанными запасами железной руды, в то время как Россия и Бразилия делят первенство по объему запасов руды в пересчете на содержащееся в ней железо.

Распределение запасов руды по странам:

  • · Украина -- 18 %
  • · Россия -- 16 %
  • · Китай -- 13 %
  • · Бразилия -- 13 %
  • · Австралия -- 11 %
  • · Индия -- 4 %
  • · США -- 4 %
  • · Прочие -- 20 %

Запасы в пересчёте на содержание железа:

  • · Россия -- 18 %
  • · Бразилия -- 18 %
  • · Австралия -- 14 %
  • · Украина -- 11 %
  • · Китай -- 9 %
  • · Индия -- 5 %
  • · США -- 3 %
  • · Прочие -- 22 %

Крупнейшие экспортёры и импортёры железорудного сырья

Экспортёры:

Импортёры:

Добыча железной руды в России

Железорудные ресурсы России представлены бурыми, красными (или гематитовыми рудами), магнитными железняками (или магнетитовыми рудами) и др. Качественная характеристика их различна. Имеются запасы как бедных железных руд, в которых содержание железа колеблется в пределах 25-40%, так и богатых с содержанием железа до 68%.

Железорудные ресурсы неравномерно размещены по территории России. Основная часть запасов железных руд приходится на европейскую часть страны. Наибольшие разведанные запасы сосредоточены в Центрально-Черноземном, Уральском, Западно-Сибирском и Восточно-Сибирском экономических районах.

В европейской части страны наиболее крупным является железорудный бассейн Курской магнитной аномалии (КМА). Он находится на территории Белгородской, Курской и частично Воронежской областей Центрально-Черноземного района, а также Орловской области Центрального района. Бассейн занимает площадь около 180 тыс. км2. Балансовые запасы железных руд составляют около 43,4 млрд т.

Руды КМА состоят преимущественно из железистых кварцитов (содержание железа в среднем - 32%) и богатых гематитовых руд (содержание железа 56-62%). Глубина залегания колеблется от 30 до 500 м.

Промышленная добыча железных руд ведется в Белгородской и Курской областях, где находится основная часть запасов богатых руд (месторождение Яковлевское, Михайловское, Лебединское и Стойленское). Руды КМА характеризуются многокомпонентным составом. Кровля и вскрышные породы представлены минерально-строительным сырьем, вспомогательными материалами для металлургического производства, бокситами и отдельными видами горно-химического сырья. Гидрогеологические условия эксплуатации бассейна сложные, так как руды перекрыты мощной толщей сильно обводненных осадочных пород. Добыча руды осуществляется подземным и открытым способами.

Месторождения Мурманской области и Республики Карелия имеют запасы магнетитовых, титаномагнетитовых руд и железистых кварцитов. Руды при невысоком содержании железа (28-32%) хорошо обогащаются. Наиболее крупные месторождения в Мурманской области - Ковдорское и Оленегорское, в Карелии - Костомукшское.

Месторождения Урала тянутся широкой полосой с севера на юг параллельно Уральскому горному хребту. Они размещены на территории Свердловской, Пермской, Челябинской и Оренбургской областей. Балансовые запасы железных руд на Урале составляют около 14 млрд т.

На Северном Урале залежи железной руды сосредоточены в Северной и Богославской группах месторождений, на Среднем Урале - в Тагило-Кушвинской и Качканарской группах, на Южном Урале - в Байкальской и Орско-Халиловской группах месторождений. Основная часть запасов железных руд Урала (70%) сосредоточена в Качканарской группе в Свердловской области, где залегают титаномагнетитовые руды. Они относятся к бедным, но легкообогатимым, содержат в среднем около 17% железа, а также ванадий и незначительное количество вредных примесей (серы и фосфора). Месторождения разрабатываются открытым способом и являются сырьевой базой металлургических предприятий Среднего Урала.

Железорудные ресурсы Урала к настоящему времени значительно выработались. Так, исчерпаны ресурсы месторождений гор Магнитная и Благодать. Поэтому в настоящее время часть рудного сырья поступает на Урал из других районов страны.

В Западной Сибири важнейшие железорудные месторождения расположены в Горной Шории (Кемеровская область) и Горном Алтае (Алтайский край). Их запасы составляют более 1 млрд т. Руды Горной Шории магнетитовые. Среднее содержание железа в них находится в пределах 40-50%. Основная часть запасов руд Горной Шории сосредоточена в Темиртаусском, Таштагольском, Шалымском и других месторождениях. Руда добывается как открытым, так и подземным способом. Добываемые руды являются сырьевой базой Кузнецкого металлургического комбината и Западно-Сибирского металлургического завода. Месторождения магнетитовых руд в Западной Сибири выявлены и на территории Алтайского края (Инское и Белорецкое месторождения).

Балансовые запасы железных руд Восточной Сибири составляют более 4 млрд т. Их месторождения находятся в Приангарье, Кузнецком Алатау, в Хакасии и в Забайкалье.

В Красноярском крае находится Ангаро-Питский бассейн. Среднее содержание железа в руде достигает 40%. Руды в основном тугоплавкие, сложнообогатимые. Наиболее крупные месторождения бассейна - Нижне-Ангарское и Ишимбинское.

Ангаро-Илимский бассейн в Иркутской области включает два крупных месторождения - Коршуновское и Рудногорское. Руды имеют повышенное содержание окиси магния и окиси кальция, что позволяет относить их к самоплавким и легкообогатимым. Разрабатываются в основном открытым способом.

В Красноярском крае расположены также такие крупные месторождения железных руд, как Абаканское, Тейское, Ирбинское, Краснокаменское. Имеется ряд месторождений в Иркутской и Читинской областях. металлургия железный руда доменной

На Дальнем Востоке месторождения железных руд выявлены на юге Хабаровского края, в Амурской области, Приморском крае, в Республике Саха. Основная их часть (80%) расположена на юге Якутии в Южно-Алданском и Чаро-Токинском железорудных районах. Здесь залегают руды магнетитовые с содержанием железа 41-53% и железистые кварциты легкообогатимые с содержанием железа 28%. Разрабатываются в основном открытом способом.

Железная руда: перспективы цен

Отказ от системы ценообразования на основе годовых (либо квартальных) контрактов, превалировавшей на протяжении примерно 50 лет и обеспечивавшей высокую предсказуемость цен, и переход к привязке цен к ежедневно меняющимся индексам привели к тому, что в последние три года резкие падения спотовых цен на железную руду стали обычным делом.

Начиная с III квартала 2010г. рынок уже пережил три эпизода падения цен на 50-70 долл./т и сейчас переживает четвертое (с середины февраля спотовые цены на железную руду (62% Fe, на условиях поставки CIF Китай) снизились на 50 долл./т, примерно до 110 долл./т). Единственная разница - в этом году оно началось раньше, чем обычно.

Однако главная причина во всех случаях была одной и той же: переход китайских металлургических заводов от покупки сырья к активному расходованию имеющихся запасов, вызванный быстрым снижением цен на сталь и, как следствие, падением операционной рентабельности до отрицательных значений, зачастую одновременно со стремительным ростом производства стали.

Китайские металлурги поняли, что, являясь, по сути, единственными покупателями железной руды на опотовом рынке, они могут легко добиваться значительного снижения цен, прекращая покупки на две-три недели и вынуждая трейдеров и импортеров опускать цены до тех пор, пока они вновь не станут привлекательными для покупателей. Однако здесь есть свои ограничения, накладываемые, во-первых, уровнем запасов, а во-вторых, высокой зависимостью китайских заводов от импорта, за счет которого в настоящее время покрывается около 70% их потребностей в железной руде.

Но как бы то ни было, продавив цены достаточно низко, они могут вновь на время переходить к активным покупкам и, таким образом, поддерживать рентабельность на приемлемом уровне. Однако долго это продолжаться не может, поскольку, как только заводы возобновляют пополнение запасов, цены разворачиваются в сторону роста и обычно восстанавливаются столь же быстро, как до этого падали.

Помимо этого, потенциал дальнейшего сокращения запасов сейчас невелик: запасы в портах близки к трехлетним минимумам, запасы на заводах опустились до 15-20 дней потребления (против нормы в 25-30 дней), запасы на рудниках - до трех дней (треть от нормы). Тем не менее настрой участников и ожидания роста спроса по-прежнему оставляют желать лучшего, и в этой связи главным двигателем рынка остаются инвестиции государства в развитие городов и инфраструктуры.

За последние шесть месяцев обнародование новой программы урбанизации на период до 2020г. откладывалось уже дважды и теперь намечено на конец июня. Крупные госпредприятия также отложили масштабные инфраструктурные проекты до появления ясности в этом вопросе.

Кроме того, смена региональных и муниципальных властей, последовавшая за сменой высшего руководства страны, затянулась, что также не могло не отразиться на планировании и принятии инвестиционных решений. Плюс к этому в марте правительство ужесточило регулирование в области недвижимости. Итогом всего этого стали возросший скептицизм в отношении перспектив роста спроса на сталь и, как следствие, длительный период расходования запасов.

Аналитики по-прежнему позитивно оценивают перспективы роста цен на железную руду и полагают, что наблюдаемое в настоящий момент снижение всего лишь временная коррекция. Согласно их прогнозам, и в этом, и в следующем году на рынке будет наблюдаться дефицит, чему, в частности, должен способствовать устойчивый рост китайского импорта, который должен возобновиться во втором полугодии 2013г. на фоне восполнения запасов металлургическими заводами. Это с лихвой компенсирует рост мощностей в Австралии (в основном у Rio Tinto и Fortescue) в этот период.

Предполагается что, как и в 2012г., рост предложения будет отставать от чрезмерно оптимистичных ожиданий и во втором полугодии 2013г. цены вернутся в диапазон 130-150 долл./т.

Железные руды

Общие сведения

Происхождение железной руды

Месторождения

Исторические сведения о месторождениях Промышленные типы месторождений

Железные руды- это природные минеральные образования, содержащие и его соединения в таком объеме, когда промышленное извлечение железа целесообразно.

Железныеруды - это такие скопления в земной коре соединений железа , из которых в больших размерах и с выгодного можно получать металлическое .

Железные руды - єто значительные по рентабельности добычи скопления соединений .

Общие сведения

Существует три вида железорудной продукции, использующиеся в чёрной металлургии: сепарированная железная руда (с низким содержанием железа), аглоруда (путем термической обработки содержание железа повышено) и окатыши(сырая железосодержащая масса с добавлением известнякаформируется в шарики диаметром около 1 см). Различаются следующие промышленные типы железных руд:

Титано-магнетитовые и ильменит-титаномагнетитовые в базитах и ультрабазитах

Апатит-магнетитовые в карбонатитах

Магнетитовые и магно-магнетитовые в скарнах

Магнетит-гематитовые в железных кварцитах

Мартитовые и мартит-гидрогематитовые (богатые руды, образуются по железным кварцитам)

Гётит-гидрогётитовые в корах выветривания.


Железныеруды разнообразны по минеральному составу, содержанию железа,полезных и вредных примесей, условиям образования и промышленным свойствам. Важнейшими рудными минералами являются: магнетит, магномагнетит, титаномагнетит,гематит, гидрогематит, гётит, гидрогётит, сидерит, железистыехлориты(шамозит, тюрингит и др.). Содержание железав промышленных рудах изменяется в широких пределах - от 16 до 70%. Различают богатые (і 50% Fe), рядовые (50-25% Fe) и бедные (і 25% Fe) железныеруды В зависимости от химическогосостава железныеруды применяются для выплавки чугуна в естественном виде или после обогащения. Железныеруды , содержащие меньше 50% Fe, обогащают (до 60% Fe) главным образом методами магнитнойсепарации или гравитационного обогащения. Рыхлые и сернистые (>0,3% S) богатые руды, а также концентраты обогащения окусковываются путём агломерации; из концентратов производятся также т. н. окатыши. Железныеруды , идущие в доменную шахту, во избежание ухудшения качества стали или условий плавки, не должны содержать более 0,1-0,3% S, Р и Cuи 0,05-0,09% As, Zn, Sn, Pb. Примесь в железнойруде Mn, Cr, Ni, Ti, V, Co, кроме некоторых случаев, полезна. Три первых элемента улучшают качество стали, а Ti, V, Со могут попутно извлекаться при обогащении и металлургическими переделе.

Химический состав железных руд

По химическому составу железные руды представляют собой окиси, гидраты окисей и углекислые солизакиси железа, встречаются в природе в виде разнообразных рудных минералов , из которых главнейшие: магнитный железнякили магнетит, железный блески плотная его разновидность красный железняк, бурый железняк, к которому относятся болотные и озерные руды, наконец, шпатоватый железнякв его разновидность сферосидерит. Обыкновенно каждое скопление названных рудных минералов представляет смесь их, иногда весьма тесную, с другими минералами, не содержащими железа, как, например, с глиной, известняком или даже с составными частями кристаллических изверженных пород. Иногда в одном и том же месторождении встречаются некоторые из этих минералов совместно, хотя в большинстве случаев преобладает какой-нибудь один, а другие связаны с ним генетически.





Магнитный железняк - соединение окиси и закиси железа по формуле Fe 2O4, в чистом виде содержит 72,4% металлического железа, хотя чистая, сплошная руда встречается крайне редко, почти всюду к ней примешиваются серный колчеданили руды других металлов: медный колчедан, свинцовый блеск, цинковая обманка, а также составные части пород, сопровождающих магнитный железняк в его месторождениях: полевой шпат, роговая обманка, хлорити др. Магнитный железняк представляет одну из лучших и наиболее разрабатываемых железных руд; встречается пластами, жилами и гнездами в гнейсах и кристаллических сланцах архейской группы, а также образует иногда целые горы в области развития массивных изверженных горных пород. Железный блеск - безводная окись железа Fe 2O3, является в виде руды как агрегаткристаллических зерен минерала того же имени; содержит до 70% металла и образует сплошные пласты и залежи в кристаллических сланцах и гнейсах; одна из лучших железных руд по чистоте. Окись железа плотного, шестоватого, чешуйчатого или землистого строения носит название красного железняка и также во многих местностях служит источником добычи железа. Под именем бурых железняков соединяют чрезвычайно различные по строению железные руды, в составе которых преобладает водная окисьжелеза 2Fe 2 О 3 +3Н 2 О, что соответствует 59,89% металлического железа. Чистые бурые железняки всюду в значительном количестве содержат разнообразные примеси, часто вредные, как, например, фосфор, марганец, серу. Месторождения бурого железняка весьма многочисленны, но редко достигают значительных размеров. Как продукты выветривания других железных руд, бурые железняки встречаются в большинстве известных месторождений железных руд. К бурым железнякам по химическому составу приближаются болотные и озерные руды, представляющие отчасти химический, отчасти механический осадок водной окиси и кремнекислой закиси железа, песка и глины в виде горошин, лепешек или ноздреватых пористых масс в болотах, озерах и других стоячих водах. Обыкновенно содержат 35-45% железа. Бурые железняки, по удобству добывания и своей легкоплавкости, с самых давних времен служили предметом разработки, но получаемое из них железо обыкновенно невысокого качества. Шпатоватый железняк и его разновидность сферосидерит - по составу углекислая закись железа (49% металлического железа), встречается в виде пластов и залежей в гнейсах, кристаллических сланцах, реже в более новых осадочных образованиях, где весьма часто сопровождается медным колчеданом и свинцовым блеском. Обыкновенно встречается в природе в тесной смеси с глиной, мергелем, углистым веществом, в каком виде они известны под именем глинистых, мергелистых и углистых сферосидеритов. Такие руды встречаются в виде пластов, гнезд или залежей в осадочных породах различного возраста и если не содержат вредных примесей (фосфорнокислая известь, серный колчедан), то представляют ценную руду. Наконец, всюду распространенные бурые охристые глины местами так богаты железом, что могут тоже считаться Ж. рудами и носят в этом случае название глинистых железняков - красных, если железо содержится в них в виде безводной окиси, и бурых, когда рудный имеет состав бурого железняка. Остальные рудные минералы, иногда образующие значительные скопления, как, например, самородное железо и серный колчедан (FeS2), не могут быть названы железными рудами, первое - по своему малому распространению, а второй - по затруднительности отделить заключенное в нем железо от серы.






Происхождение железной руды

Способ и время происхождения железных руд чрезвычайно разнообразны. Одни из рудных минералов, как, например, магнитный железняк и, может быть, отчасти железный блеск, в особенном изобилии залегающие в гнейсах и кристаллических сланцах архейской группы, представляют, по всей вероятности, первичные продукты - результат первоначального отвердевания земной коры. К первичным же минералам, непосредственно выкристаллизовавшимся из расплавленной массы, относится магнитный железняк, зерна и кристаллы которого встречаются во всех без исключения изверженных горных породах от самых древних гранитов до современных базальтовых лав. Как непосредственные продукты первоначальных слоев земной коры - гнейсы и кристаллические сланцы, так и изверженные горные породы , заключающие, помимо рудных, много других минералов, в более или менее значительном количестве содержащих железо, послужили материалом, из которого при дальнейшей химической и механической переработке в природе произошли вторичные скопления железных руд, то выполняющих трещины и пустоты в горных породах, то образующих обширные и мощные пласты среди осадочных образований, то неправильные гнезда и залежи метаморфического происхождения, каковы в особенности месторождения бурых железняков и сферосидеритов. Образование таких вторичных месторождений - результат изменения и разрушения более древних пород деятельностью атмосферных агентов, а главным образом деятельностью наземных и подземных вод и водных растворов, - совершалось во все периоды жизни Земли, происходит весьма энергично и в настоящее время, о чем свидетельствуют, например, образующиеся на наших глазах во многих местностях северной и средней Российской Федерацииболотные и озерные железные руды. Тем не менее большинство железных руд залегает среди наиболее древних геологических образований палеозойской и особенно архейской группы, в которых метаморфическая деятельность проявлялась особенно энергично, вследствие особых условий их образования. Многоразличны и формы залегания железных руд. Они являются как в осадочных, так и в изверженных породах то в виде жил, вкрапленников, гнезд или штоков, пластов, залежей, поверхностных масс, то даже в виде россыпей и рыхлых механических осадков.


По условиям залегания, минеральному составу, а отчасти и происхождению один из наилучших знатоков рудных месторождений (Гроддек) различает следующие главные типы месторождений железных руд, повторяющиеся с незначительными различиями на всем земном шаре:

- Слоистые месторождения

1) Пласты шпатоватых и глинистых железняков, образующие залежи во всех геологических отложениях, содержащих окаменелости. По минералогическому составу руды этого типа представляют плотный сферосидерит, реже тонкокристаллический шпатоватый железняк, с глиной и углистым веществом. Месторождения этого типа по преимуществу в Богемии, Вестфалии, Саксонии, Силезии, но встречаются также в Англии, Франциии Богемии.

2) Пласты или залежи бурых и красных железняков, часто богатые окаменелостями железные руды, состоят из плотного или землистого, чистого или глинистого, известковатого или кремнистого, бурого или красного железняка, очень часто оолитового строения. Месторождения этого типа частью относятся к разряду метаморфических, частью же по слоистому характеру и присутствию окаменелостей причисляются к настоящим осадочным образованьям. Железистые руды этого типа особенно распространены в Северной Америке, Богемии и на Гарце.

3) залежи шпатоватого железняка в связи с известняками. Шпатоватый железняк кристалличен и содержит иногда в виде примеси сернистые руды: серный и медный колчедан, свинцовый, блеск, кобальтовые и никелевые руды. В наибольшем числе месторождения этого типа встречаются в кристаллических сланцах и пластах силурийской системы Каринтии, Штириии Восточных Альп.

4) Железно-слюдковые сланцы - кристаллические сланцы, содержащие железную слюдку (разновидность железного блеска) и другие железные руды, встречаются среди кристаллических сланцев архейской группы Южной Каролины и Бразилии, под именем итабирита - зернистая плотная порода, состоящая из железного блеска, магнитного железняка, железной слюдки и зерен кварца. Пласты итабирита, вместе с катавбиритом , представляющим смесь талькас магнитным железняком, образуют часто сплошные рудные массы и содержат в виде примеси золотои алмазы.

5) залежи сплошного магнитного железняка (франклинита), железного блеска и плотного красного железняка в кристаллических сланцах. Ж. руды находятся в смеси с полевым шпатом, гранатом, роговой обманкой, авгитом и другими минералами; весьма часто содержат значительную примесь медного колчедана. Сюда относится громадная залежь железного блеска на острове Эльба, между тальковыми сланцами и известняками архейской группы, разрабатываемая уже в течение нескольких столетий; залежи железного блеска, переходящего в плотный красный железняк, в слюдяных сланцах Сьерры-Морены в Испании, также некоторые месторождения Буковины, Силезии и Саксонии. В Швеции, Норвегиии Финляндиигромадные штокообразные залежи магнитного железняка среди гнейсов пользуются особым распространением, таковы, например, знаменитые месторождения Даннеморыи Гелливары в Швеции и Арендальские залежи Норвегии . В гнейсах и кристаллических сланцах Северной Америки месторождения этого типа достигают исполинских размеров в окрестностях Верхнего озера, где красные железняки образуют целые горы, как, например, железная гораСмита, Мичигамми и др. массивные месторождения.

6) Включения магнитного железняка, часто титанистого, очень нередко встречаются в массивных горных породах, а местами образуют настолько значительные скопления, что приобретают техническое значение, например в Табергев Швеции и особенно у нас на Урале - знаменитые месторождения гор Высокой, Магнитной и Благодати.

7) Включения железного блеска в массивных породах - единственным примером служит Айрон Монтен в Северной Америке, где коренная порода, порфировидный мелафир, пересечена мощными прожилками железного блеска.

Выполнения пустот.

8) Красный железняк в виде красной стеклянной головы, плотного красного железняка и железной сметаны, в смеси с кварцем, углекислыми и другими соединениями, в жилах, пересекающих массивные горные породы или залегающих на границе последних с осадочными образованиями, встречается очень часто в диабазах Гарца, на границе гранитов и порфиров с кристаллическими сланцами в Саксонии и в др. местностях.

9) Бурый и красный железняки, большей частью смешанные с кварцем и известковым или тяжелым шпатом, проходящие жилами в осадочных породах различных геологических систем, часто встречаются в силурийских, девонских, триасовых и юрских отложениях Германии.

10) Шпатоватый железняк в сплошном виде или в смеси с кварцем и известковым шпатом встречается довольно редко, и классическим примером месторождений этого типа может служить Штальберг, среди девонских образований Рейнского кряжа, где в глинистых сланцах разрабатывается жильный штоп шпатоватого железняка от 16 до 3 0 м толщиной.

11) Жилы магнитного железняка и железного блеска в кристаллических сланцах Рио-Альбано и Терра-Нера.

12) Бурые железняки, содержащие часто марганец, встречаются часто как выполнения пустот или псевдоморфные образования по известняку; кроме Германии, чрезвычайно распространены и у нас в средней Российской Федерации .

13) Бобовыеруды - скопления шаровидного глинистого железняка, как предполагают, осадки минеральных источников, попадаются кое-где в юрских отложениях Западной Европы. У нас им отчасти соответствуют весьма распространенные современные образования на дне болот и озер, известные под именем болотных и озерных железных руд.

Обломочные месторождения.

14) Бурые железняки в виде сплошных или внутри полых обломков и конкреций в глинах и рухляках встречаются часто в пластах новейших геологических систем, но по своим размерам редко имеют техническое значение.

15) Брекчииили конгломераты магнитного или красного железняка с сыпучим глинистым или плотным железистым цементом встречаются иногда в ближайшем соседстве с месторождениями других типов, как механического их разрушения. В Бразилии, в провинции МинасГераес, над итабиритом и кристаллическими сланцами часто находят особое поверхностное образование, толщиной от 1 до 4 м, называемое тапанхоаканга и состоящее из крупных угловатых обломков магнитного железняка, итабирита, железного блеска и бурого железняка, вместе с обломками кварцита, итаколумита и других пород, связанных цементом, в состав которого входят красный и бурый железняк, красная и бурая железная охра.

16) Наконец, известны и рыхлые россыпи железной руды, наичаще титанистого магнитного железняка, на побережьях многих рек, озер и морей, но они редко достигают значительных размеров и не представляют особого значения для промышленности.





Месторождения

Железная руда (Ironstone) - это

Классификация месторождений железных руд по запасам (в млн. тонн)

Уникальные - более 1000

Крупные - до 100

Средние - до 50

Мелкие - до 10

Исторические сведения о месторождениях

В Европейской Российской Федерации железные руды значительно распространены на Урале, в центральной и южной Российской Федерации, в Олонецкой губернии, Финляндии и Привислянских губерниях. Значительные месторождения железных руд известны также на Алтае, в Саянах и Восточной Сибири, но до сих пор остаются еще неисследованными. На Урале, на восточном склоне хребта, многочисленные месторождения магнитного железняка, из которых до сих пор разрабатываются лишь немногие, находятся в связи с развитыми здесь ортоклазовыми породами (сиенитами и порфирами). Месторождения гор Благодати, Высокой и Магнитной (Ула-Утасе-Тау), по громадному запасу руд занимающие выдающееся место на всем земном шаре. Гора Благодать, наиболее северное из названных месторождений, находится в среднем Урале, около Кушвинского завода. К югу от предыдущей, около Нижне-Тагильского завода, находится другая Ж. гора Урала - Высокая. Главная залежь магнитного железняка, в виде гигантского штока, находится на западном склоне горы среди разрушенных в буроватые глины ортоклазовых пород. работается около 150 лет открытым разносом. Руда, вообще весьма высокого качества, состоит из магнитного железняка, часто переходящего в скрытно-кристаллический железный блеск (мартит), дает 63-69% металлического железа, но местами содержит вредную примесь медных руд. Не менее значительные запасы руд заключает наиболее южная Магнитная горана Урале (в Верхнеуральском уезде), имеющая тот же характер, как вышеописанные; до сих пор это месторождение, находящееся в безлесной местности, мало разрабатывается. Красный железняк встречается на Урале только небольшими массами, подчиненными залежам бурого железняка. В последнее время открыто, по-видимому, значительное месторождение этой руды на западном склоне Северного Урала, недалеко от Кутимского завода, около которого находится также недавно открытое наилучшее на Урале месторождение железного блеска в кристаллических сланцах. Напротив, месторождений бурых железняков, иногда крайне значительных, насчитывается на Урале до 3000, принадлежащих к самым разнообразным типам и залегающих пластами, гнездами, залежами как в массивных, так и в слоистых породах, от самых древних до самых новых. В южной Российской Федерации наиболее значительны месторождения железных руд в окрестностях Кривого Рога, на границе Екатеринославской и Херсонской губерний, где многочисленные пласты красного железняка и железного блеска залегают среди кристаллических сланцев, и месторождение Корсак-Могилы, в котором между кварцитами и гнейсами открыты мощные залежи магнитного железняка. В Донецком кряже, по соседству с месторождениями каменного угля находятся многочисленные пластовые залежи бурых железняков, переходящих иногда в шпатоватые, среди осадочных пород каменноугольной системы. По разведкам в одной области Войска Донского, на глубине не более 60 м заключается до 23 миллиардов пудов железной руды, которые могут дать до 10 миллиардов пудов чугуна . В центральной Российской Федерации - подмосковном бассейне - железные руды, по преимуществу бурые железняки и глинистые сферосидериты, известны давно и во многих местностях и служат предметом энергичной эксплуатации. Все рпреимуществу язаны с известняками, доломитами и рухляками девонской, каменноугольной и пермской систем и образуют различных размеров гнезда и пластообразные залежи, образовавшиеся гидрохимическим путем - действием железосодержащих растворов на известковые породы. Первичной рудой должны считаться сферосидериты, из которых путем выветривания произошли бурые железняки. На севере Российской Федерации и в Финляндии известны многочисленные жилы и залежи магнитного железняка и железного блеска среди массивных пород и кристаллических сланцев архейской группы, в Финляндии служащие предметом эксплуатации. Что касается Олонецкой и Новгородской губерний, то здесь предметом разработки служат исключительно болотные и озерные руды, хотя и содержащие много вредных примесей, но по удобству добычи и обработки представляющие немалое экономическое значение. Запасы озерных руд настолько значительны, что на заводах Олонецкого округа в 1891г. добыча этих руд достигла 535000 пудов, из которых выплавлено 189500 пудов чугуна . Наконец, в Привислянском крае, в южных его частях, имеются многочисленные месторождения бурых железняков и сферосидеритов.





Железныеруды по происхождению разделяются на 3 группы - магматогенные, экзогенные и метаморфогенные. Среди магматогенных различаются: магматические - дайкообразные, неправильные и пластообразные залежи титаномагнетитов,связанные с габбро-пироксенитовыми породами (Кусинское и Качканарское месторождения на Урале в СССР, местооождения Бушвельдского комплекса в ЮАР, Лиганга в Танзании), и апатито-магнетитовые залежи, связанные с сиенитами и сиенитдиоритами (Лебяжинское на Урале в СССР, Кируна и Елливарс в Швеции); контактово-метасоматические, или скарновые, возникают на контактах или вблизи интрузивных массивов; под воздействием высокотемпературных растворов вмещающие карбонатные и др. породы превращаются в скарны, а также пироксен-альбитовые и скаполитовые породы, в которых обособляются сложные по форме залежи сплошных и вкрапленных магнетитовых руд (в СССР - Соколовское, Сарбайское в Северо-Западном Казахстане, Магнитогорское,Высокогорское и др. на Урале, ряд месторождений в Горной Шории; Айрон-Спрингс в США и др.); гидротермальные образуются при участии горячих минерализованных растворов, путём отложения Железныеруды по трещинам и зонам смятия, а также при метасоматическом замещении боковых пород; к этому типу относятся Коршуновское и Рудногорское магномагнетитовые месторождения Восточной Сибири, гидрогётит-сидеритовое Абаильское в Средней Азии, сидеритовые месторождения Бильбао в Испании и др.

К экзогенным месторождениям относятся: осадочные - химическиеи механические осадки морских и озерных бассейнов, реже в долинах и дельтах рек, возникающие при местном обогащении вод бассейна соединениями железаи при сносе в них железистыхпродуктов прилегающей суши; слагают пласты или линзы среди осадочных, иногда - вулканогенно-осадочных пород; к этому типу относятся месторождения бурых железняков,частью сидеритов, силикатных руд (в СССР - Керченское в Крыму, Аятское - Казахская ССР; в ФРГ - Лан-Диль и др.); месторождения коры выветривания образуются в результате выветривания горных пород с железосодержащимипородообразующими минералами; различают остаточные, или элювиальные, месторождения, когда продукты выветривания, обогащенные железом (вследствие выноса из породы др. составных частей), остаются на месте (тела богатых гематито-мартитовых руд Кривого Рога, Курской магнитной аномалии, района оз. Верхнего в США и др.), и инфильтрационные (цементационные), когда железо вынесено из выветривающихся пород и переотложено в нижележащих горизонтах (Алапаевское месторождение на Урале и др.).

Метаморфогенные (метаморфизованные) месторождения - преобразованные в условиях высоких давлений и температур ранее существовавшие, преимущественно осадочные, месторождения. Гидроокислы железа и сидериты переходят при этом обычно в гематит и магнетит. Метаморфические процессы иногда дополняются гидротермально-метасоматическим образованием магнетитовых руд. К этому типу относятся месторождения железистых кварцитов Кривого Рога, Курской магнитной аномалии, месторождения Кольского полуострова, железорудной провинции Хамерсли (), полуострова Лабрадор (), Минас-Жерайс (), штат Майсур () и пр. Основные промышленные типы железной руды классифицируются по преобладающему рудному минералу. Бурые железняки. Рудные минералы представлены гидроокислами железа,больше всего гидрогетитом. Такие руды обычны в осадочных месторождениях и месторождениях коры выветривания. Сложение плотное или рыхлое; осадочные руды часто имеют оолитовую текстуру. Содержание Feколеблется от 55 до 30% и менее. Обычно требуют обогащения. Т. н. самоплавкие бурые железняки,в которых близко к единице, идут в плавку при содержании Feдо 30% (Лотарингия). В бурых железнякахнекоторых месторождений находится до 1-1,5% и более Mn(Бильбао в Испании , Бакальское в СССР). Важное значение имеют комплексные хромо-никелевыебурые железняки;при наличии 32-48% Feв них нередко содержится также до 1% Ni, до 2% Cr, сотые доли процента Со, иногда V. Из таких руд могут без добавок выплавляться хромо-никелевые чугуны и низколегированная . Красные железняки, или гематитовые руды. Основным рудным минералом является гематит. Представлены главным образом в коре выветривания (зона окисления) железистыхкварцитов и скарновых магнетитовых руд. Такие руды часто называют мартитовыми (мартит - псевдоморфозы гематита по магнетиту). Среднее содержание Feот 51 до 60%, иногда выше, с незначительными примесями Sи Р. Известны месторождения гематитовых руд с присутствием в них до 15-18% Mn. Менее развиты гидротермальные месторождения гематитовых руд. Магнитныежелезняки,или магнетитовые руды. Рудный минерал - магнетит (иногда магнезиальный), нередко мартитизированный. Наиболее характерны для месторождений контактово-метасоматического типа, связанных с известковыми и магнезиальными скарнами. Наряду с богатыми массивными рудами (50-60% Fe) распространены вкрапленные руды, содержащие менее 50% Fe. Известны месторождения руд с присутствием ценных примесей, в частности Со, Mn. Вредные примеси - сульфидная сера , Р, иногда Zn, As. Особую разновидность магнетитовых руд представляют титаномагнетитовыеруды, являющиеся комплексными железо-титано-ванадиевыми. Важное промышленное значение приобретают вкрапленные титаномагнетитовыеруды, являющиеся по существу основными интрузивными породами с повышенным содержанием породообразующего титаномагнетита.В них обычно присутствует 16-18% Fe, но они легко обогащаются магнитнойсепарацией (Качканарское месторождение на Урале и др.). Сидеритовые руды (шпатовые железняки)разделяются на кристаллическиесидеритовые руды и глинистые шпатовые железняки.Среднее содержание Fe30-35%. После обжига, в результате удаления CO2, сидеритовые руды превращаются в промышленные ценные тонкопористые железо-окисные(обычно содержат до 1-2% Mn, иногда до 10%). В зоне окисления сидеритовые руды превращаются в бурые железняки.Силикатные железныеруды. Рудными минералами в них являются железистыехлориты,обычно сопровождающиеся гидроокислами железа,иногда сидеритом (Fe25-40%). Примесь Sнезначительна, Р до 0,9-1%. Силикатные руды слагают пласты и линзы в рыхлых осадочных породах. Часто обладают оолитовой текстурой. В коре выветривания превращаются в бурые, частью красные железняки.Железистыекварциты (джеспилиты, железистыероговики) - бедные и средние (12-36% Fe) докембрийские метаморфизованные железные руды , сложенные тонкими чередующимися кварцевыми, магнетитовыми, гематитовыми, магнетит-гематитовыми прослоями, местами с примесью силикатов и карбонатов. В железистыхкварцитах мало примесей S, Р. Залежи железистыхкварцитов обычно обладают крупными запасами металла . Их обогащение, в особенности магнетитовых разностей, даёт вполне рентабельный концентрат с содержанием 62-68% Fe. В коре выветривания кварц из железистыхкварцитов выносится, и возникают крупные залежи богатых гематито-мартитовых руд. Большая часть железной руды используется для выплавки чугунов, сталей, а также ферросплавов. В относительно небольших количествах служат природными красками (охры) и утяжелителями буровых глинистых растворов. Требования промышленности к качеству и свойствам железной руды разнообразны. Так, для выплавки некоторых литейных чугунов применяются железныеруды с большой примесью Р (до 0,3-0,4%). Для плавки мартеновских чугунов (главного товара доменного производства), при плавке на коксе содержание Sв руде, вводимой в домну, не должно превышать 0,15%. Для производства чугунов, идущих в мартеновский передел кислым способом, железныеруды должны быть особо малосернистыми и малофосфористыми; для передела основным способом в качающихся мартенах допускается несколько более повышенная примесь в руде Р, но не выше 1,0-1,5% (в зависимости от содержания Fe). Томасовские чугуны плавятся из фосфористыхжелезных руды с повышенным количеством Fe. При выплавке чугунов любого типа содержание Znв железной руде не должно превышать 0,05%. Руда, используемая в домне без предварительного спекания, должна быть механически достаточно прочной. Т. н. мартеновские руды, вводимые в шихту, должны быть кусковыми и иметь высокое содержание Feпри отсутствии примесей Sи Р. Обычно таким требованиям удовлетворяют плотные богатые мартитовые руды. Магнетитовые руды с содержанием до 0,3-0,5% Cuиспользуются для получения сталей с повышенной устойчивостью против коррозии.

В мировой добыче и переработке железныеруды различных промышленных типов отчётливо проявляется тенденция значительного увеличения добычи бедных, но хорошо обогащающихся руд, в особенности магнетитовых железистыхкварцитов, в меньшей мере вкрапленных титано-магнетитовыхруд. Рентабельность использования таких руд достигается крупными масштабами горно-обогатительных предприятий, совершенствованием техники обогащения и окускования получаемых концентратов, в частности получения т. н. окатышей. Вместе с тем сохраняет актуальность задачи увеличения ресурсов железной руды , не требующих обогащения.

Месторождения железных руд в мире

Высокое содержание железа в земной коре, многообразие геологических обстановок и условий его концентрации обусловили многочисленность типов месторождений железных руд, отличающихся также широким спектром объёмов их запасов. В целом минерально-сырьевую базу железных руд мира характеризуют четыре главные геолого-промышленные типа месторождений, обладающих наибольшими ресурсами и запасами, из которых добывается почти весь объём товарных руд:

1 - месторождения магнетитовых руд в железистых кварцитах и сланцах кристаллических щитов, локализованные в крупных железорудных бассейнах. Запасы месторождений такого типа составляют 71,3% мировых. Наиболее крупные из них расположены в России, Украине, Индии, Габоне, Гвинее, ЮАР, Бразилии, Китае, Венесуэле, Канаде, США и Австралии .

2 - осадочные и вулканогенно-осадочные месторождения, залегающие в осадочных прибрежно-морских или вулканогенно-осадочных толщах. Месторождения этого типа составляют 11,4% мировых запасов. Они разведаны на территории России, Украины, Казахстана, Китая, США, Австралии и некоторых стран Европы и Северной Африки.

3 - месторождения магнетитовых руд в складчатых зонах древних платформ и в осадочном покрове платформ (7,3% мировых запасов). Наиболее крупные залежи этого типа расположены в России, Вьетнаме, Казахстане, Иране, Турции, США, Перуанская республика и Чили.

4 - магматогенные и титаномагнетитовые руды составляют 6,5% мировых запасов. Месторождения такого типа находятся в России, Швеции, Танзании, Уганде, ЮАР, Турции, Иране, США и на территории некоторых других государств Европы и Африки.

Второстепенные типы месторождений в целом составляют всего 3,5% мировых запасов. Они представлены железистыми корами выветривания (Албания, Филиппины, Куба и страны тропической Африки) и современными прибрежно-морскими россыпными месторождениями (Индонезия, Новая Зеландия, ЮАР, и Бразилия).

Промышленные типы месторождений

Главные промышленные типы железорудных месторождений:

Месторождения железистых кварцитов и богатых руд, образовавшихся по ним

Имеют метаморфогенное происхождение. Руда представлена железистыми кварцитами, или джеспилитами, магнетитовыми, гематит-магнетитовыми и гематит-мартитовыми (в зоне окисления). бассейны КМАи Криворожский(СССР), район оз. Верхнего (США и Канада), железорудная провинция Хамерсли (), район Минас-Жерайс (Бразилия)

Пластовые осадочные месторождения

Имеют хемогенное происхождение, образовались за счет выпадения железа из коллоидных растворов. Это оолитовые, или бобовые, железные руды, представленные преимущественно гетитоми гидрогетитом. Лотарингский бассейн (), Керченский бассейн, Лисаковское и др.(СССР)

Скарновые железорудные месторождения

Сарбайское, Соколовское, Качарское, Гора Благодать, Магнитогорское, Таштагольское (СССР)

Комплексные титаномагнетитовые месторождения

Происхождение магматическое, месторождения приурочены к крупным докембрийским интрузивам. Рудные минералы - магнетит, титаномагнетит. Качканарское, Кусинское (СССР), месторождения Канады, Норвегии


Второстепенные промышленные типы железорудных месторождений:

Комплексные карбопатитовые апатит-магнетитовые месторождения

Ковдорское, СССР

Железорудные магно-магнетитовые месторождения

Коршуновское, Рудногорское, Нерюндинское в СССР

Железорудные сидеритовые месторождения

Бакальское, СССР; Зигерлянд, ФРГ и др.

Железорудные и железомарганцевые оксидные пластовые месторождения в вулканогенно-осадочных толщах

Каражальское, СССР

Железорудные пластообразные латеритныеместорождения

Южный Урал; Куба и др.

Мировые разведанные запасы железной руды составляют порядка 160 млрд тонн, содержащих около 80 млрд тонн чистого железа. По данным Геологической службы США, Украинаобладает крупнейшими в мире разведанными запасами железной руды, в то время как Россияи Бразилияделят первенство по объему запасов руды в пересчете на содержащееся в ней железо.

Для промышленного обогащения используются руды с содержанием железа не ниже 14-25%. При этом учитывается размер месторождения, условия залегания железосодержащей породы, качество и комплексность руды. Вредными примесями в руде являются сера и фосфор. Богатыми считаются руды с содержанием железа не ниже 57%, кремнезёма - 8-10%, а серы и фосфора - до 0,15%. Наиболее качественные руды обычно содержат более 68% железа, менее 2% кремнезема, 0,01% серы и фосфора и до 3,3% других примесей. По объемам запасов железных руд их месторождения условно подразделяются на уникальные, крупные, средние и мелкие. Уникальных в мире насчитывается десятки, крупных и средних - сотни, а мелких - тысячи.

Разнообразные ресурсы железных руд имеются в почти 100 странах мира. Прогнозные и выявленные их ресурсы достигают 664,3 млрд. тонн. В десятку обладателей крупнейших залежей железа входят: , США, Бразилия, Австралия, Украина, Канада, Казахстан, Индия и Швеция. В каждой из этих стран запасы сырья для чёрной металлургии превышают 10 млрд. тонн. В целом эти залежи оцениваются в 555,8 млрд. тонн или 83,7% мировых выявленных запасов.

Распределение прогнозных и выявленных запасов железных руд по материкам

(в млрд. тонн):

Европа 55,3

Добыча железных руд в 2005 г. велась в 52 странах мира открытым и подземным способами. Производство товарных руд составило около 1100 млн. тонн.

Товарных железных руд в 2003 г. в мире составил 486,3 млн. тонн, а в 1993 г. - 383,1, т.е. и этот показатель заметно возрастает. Главными импортерами и потребителями важнейшего для чёрной металлургии сырья являются: Япония, Китай, Южная Корея, Франция, США, Тайвань, Польша, Бельгия и Люксембург.

Распределение запасов руды по странам:

Украина— 18 %

Россия— 16 %

Китай— 13 %

Бразилия— 13 %

Австралия— 11 %

Индия— 4 %

Прочие — 20 %

Запасы в пересчёте на содержание железа:

Россия— 18 %

Бразилия— 18 %

Австралия— 14 %

Украина— 11 %

Китай— 9 %

Индия— 5 %

Прочие — 22 %

Крупнейшие экспортёры и импортёры железно-рудного сырья

Экспортёры:

Австралия— 186,1 млн тонн.

Бразилия— 184,4 млн тонн.

Индия— 55 млн тонн.

Канада— 27,1 млн тонн.

ЮАР— 24,1 млн тонн.

Украина— 20,2 млн тонн.

Россия— 16,2 млн тонн.

Швеция— 16,1 млн тонн.

Казахстан— 10,8 млн тонн.

Всего экспорт 580 млн тонн.

Импортёры:

Китай— 148,1 млн тонн.

Япония— 132,1 млн тонн.

Южная Корея— 41,3 млн тонн.

Германия— 33,9 млн тонн.

Франция— 19,0 млн тонн.

Великобритания— 16,1 млн тонн.

Тайвань— 15,6 млн тонн.

Италия— 15,2 млн тонн.

Нидерланды— 14,7 млн тонн.

США— 12,5 млн тонн.

Особенности производства железорудного сырья в Российской Федерации

Железную руду, извлеченную из недр, в горном деле принято называть «сырой рудой». Под термином «товарная руда» в горном деле понимают «руду, подготовленную к металлургическому переделу». В Российской Федерации добывают два типа железной руды: богатая и бедная. Богатая железная руда - это , первичное происхождение которой осадочное с последующей частичной дезинтеграцией под действием процессов выветривания. Основными породообразующими минералами богатой железной руды являются гематит Fe2O3 (содержание 40-55%) и кварц (содержание до 20%). Бедная руда представлена неокисленными железистыми кварцитами, которые состоят в основном из кварца, магнетита, гематита (не всегда) и имеют характерное тонкослоистое строение.

Количество стадий рудоподготовки богатой руды на пути от «сырой руды» к «товарной руде» минимальное: дробление и клас­сификация по крупности на грохотах.

Технологическое превращение неокисленных железистых кварцитов как «сырой руды» в товарную руду (концентрат) значительно более сложно и включает процессы дробления, измельчения, классификации по крупности и по плотности, дешламации, магнитной сепарации, обезвоживания. В этой совокупности процессов первичной обработки неокисленных железистых кварцитов они приобретают свойства нового товара , но не свойства товарного товара. Товарным товаром они становятся только тогда, когда их свойства удовлетворяют требованиям приобретателя (металлургических заводов), т. е. определенным стандартным требованиям, нормируемым техническими требованиями заказчиков. Такими свойствами на горных (горно-обогатительных) предприятиях Российской Федерации, добывающих и перерабатывающих железные руды, обладают аглоруда, доменная руда, кондиционный железорудный концентрат, железорудные окатыши и брикеты.

Добыча и обогащение руд сосредоточены в нескольких районах. В Центральном ФО - в Курской и Белгородской областях с Лебединским, Михайловским, Стойленским ГОКами и комбинатом КМА-Руда. Качество магнетитовых концентратов для месторождений КМА: крупность - 0,1-0 мм, влажность - 10,5%, содержание железа - не менее 64%.

На Северо-западе Российской Федерации руду добывают Карельский окатыш, Оленегорский и Ковдорский ГОКи. Наиболее крупными уральскими ГОКами являются Качканарский, Высокогорский, Бакальские рудники, Богословское рудоуправление. В Сибири крупных комбинатов нет за исключением расположенного в Иркутской области Коршуновского ГОКа. На Урале, в Сибири и на Дальнем Востоке расположены также несколько средних и мелких добывающих и перерабатывающих предприятий.

Обогащение магнетитовых кварцитов осуществляют магнитным методом в слабом магнитном поле в 2-5 стадий с применением барабанных магнитных сепараторов различных типов, а в ряде переделов — промывкой, отсадкой, флотацией. Весьма эффективной является сухая магнитная сепарация крупнокускового материала (6-10 мм) При содержании в исходной руде около 35 %железа получают конечный концентрат и хвосты, содержащие 65-68 и менее 12 % железа соответственно. Извлечение железа в концентраты составляет более 81 %.

Обогащение гематит-магнетитовых, гематитовых, бурожелезняковых и сидеритовых руд осуществляют по комбинированным магнитно-гравитационным, магнитно-флотационно-гравитационным схемам. Так, апатит-магнетитовые руды Ковдорского месторождения обогащают по комбинированной магнитно-флотационно-гравитационной технологии с получением же­лезорудного, бадделеитового и апатитового концентратов.

Разработаны оригинальные комбинированные технологии (магнитно-гравитационные, магнитно-флотационные и пирометаллургические) для переработки высокотитанистых титаномагнетитовых руд Южного Урала, Сибири и Кольского полуострова.

Доля балансовых запасов, разрабатываемых открытым способом, составляет 92,5%, из них на 8 крупнейших горно-обогатительных комбинатов приходится 85% всей добычи железных руд. Из 30 действующих карьеров 5 наиболее крупных (Лебединский, Михайловский, Стойленский, Костомукшский, Северный Качканарского ГОКа) обеспечивают 69% общероссийской добычи открытым способом и 3 карьера (Ковдорский, Главный и Западный Качканарского ГОКа) - 16% добычи, Коршуновский карьер - 2,5%.

Массовая добыча и переработка бедных железистых кварцитов вызвала значительное увеличение затраты электричества на подготовку металлургического сырья. Средний удельный затрата электричества на железорудных горных предприятиях Российской Федерации составляет 44-45 кВт-ч на 1 т добытой и переработанной руды и 125-126 кВт-ч на 1 т полученного концентрата. На ГОКах, где конечным товаром являются железорудные окатыши, энергоемкость добычи и переработки 1 т железной руды составляет 61-62 кВт-ч, а на ГОКах, где товарным товаром является железорудный концентрат, — 38-45 кВт-ч.

Источники

ru.wikipedia.org - ВикиПедия - свободная энциклопедия

wikiznanie.ru - ВикиЗнание - свободная энциклопедия

bse.sci-lib.com - Большая Советская Энциклопедия

dic.academic.ru -Словари и энциклопедии на Академике


Энциклопедия инвестора . 2013 .

  • - geležies rūda statusas T sritis chemija apibrėžtis Mineralų, kurių sudėtyje yra padidintas Fe kiekis, sankaupa. atitikmenys: angl. iron ore rus. железная руда; железняк … Chemijos terminų aiškinamasis žodynas
  • железная руда сложного вещественного состава - Железная руда, представленная несколькими железосодержащими и другими минералами. [ГОСТ 26475 85] Тематики продукция железорудная и марганцеворудная EN iron ore of a complex mineral composition … Справочник технического переводчика

    гематитовая железная руда - Железная руда, представленная в основном гематитом. [ГОСТ 26475 85] Тематики продукция железорудная и марганцеворудная EN hematite iron ore … Справочник технического переводчика, Султанова Марина. Для ребёнка мир, который его окружает, полон тайн и чудес. Он хочет их раскрыть и тщательно изучить, поэтому задаёт бесчисленное множество вопросов. Особенно маленького исследователя…


Железорудное сырье (ЖРС) - основной вид металлургического сырья, которое используется в черной металлургии для производства чугуна, железа прямого восстановления (ЖПВ, англ. DRI) и горячебрикетированного железа (ГБЖ, англ. HBI).

Человек начал изготавливать и использовать изделия из железа в период «железного» века –примерно четыре тысячи лет назад. Сегодня железные руды –одно из наиболее распространенных полезных ископаемых. Пожалуй только угли и строительные материалы извлекаются из недр в больших объемах. Более 90% железных руд используются в черной металлургии для производства чугуна и стали.

Чугун - сплав железа с углеродом (2-4%), как правило, хрупок и содержит примеси кремния, марганца, серы, фосфора, а иногда легирующих элементов - хрома, никеля, ванадия, алюминия и др. Чугун получают из железных руд в доменных печах. Основная масса чугуна (свыше 85%) перерабатывается в сталь (предельный чугун), меньшая часть применяется для изготовления фасонного литья (литейный чугун).

Сталь – ковкий сплав железа с углеродом (и легирующие добавки), основной конечный продукт переработки железных руд. Сталь обладает высокой прочностью, вязкостью, способностью легко изменять форму при горячей и холодной обработке давлением, приобретать в зависимости от химического состава и способа термической обработки нужные свойства: жаропрочность, сопротивление истиранию, коррозионную стойкость. Благодаря этому сталь является важнейшим конструкционным материалом.

Продукция черной металлургии применяется во всех сферах промышленного производства, но в основном в машиностроении и капитальном строительстве.

Железная руда является сырьем для производства черных металлов. Железную руду, извлеченную из недр, в горном деле принято называть «сырой рудой».

Железорудное сырье (ЖРС) – вид металлургического сырья, которое используется в черной металлургии для производства чугуна и металлизированного продукта (DRI и HBI), а также в незначительном количестве в выплавке стали. Железорудное сырье подразделяется на два вида – подготовленное (агломерированное) и неподготовленное (неагломерированное) сырье. Подготовленное ЖРС – это сырье готовое для использования в доменных печах для производства чугуна. Неподготовленное ЖРС является сырьем для производства агломерированного сырья. Неподготовленное ЖРС – это концентрат, доменная и аглоруда. Концентрат производится, в основном, в результате магнитной сепарации измельченной железной руды с низким содержанием железа. Извлечение железа в концентрат составляет в среднем около 80%, содержание железа в концентрате 60-65%.

Аглоруда (железорудная мелочь) вырабатывается из богатой руды с высоким содержанием железа в результате дробления, грохочения, дешламации, крупность -10 мм.

Доменная (крупнокусковая руда) также вырабатывается из богатой руды, крупность куска -70+10 мм. Железорудное сырье для доменного процесса подвергается агломерации и окускованию. Агломерат получают из аглоруды и концентрата, а для производства окатышей применяются только концентраты.

Окатыши производятся из железорудного концентрата с добавлением известняка в результате окомкования смеси (гранулы диаметром 1 см) и последующего обжига.

Горячебрикетированное железо не являются ЖРС, т.к. фактически это уже продукты металлургического передела. В качестве сырья для производства агломерата используются смесь из аглоруды, сидерита, известняка и железосодержащих отходов производства с высоким содержанием железа (окалина и др.). Смесь также подвергается окомкованию и спеканию.

Металлургическая ценность железных руд и концентратов определяется содержанием в них полезного компонента (Fe), а также полезных (Mn, Ni, Cr, V, Ti), вредных (S, P, As, Zn, Pb, Cu, K, Na) и шлакообразующих (Si, Ca, Mg, Al) примесей. Полезные примеси являются естественными легирующими элементами стали, улучшающими ее свойства. Вредные примеси или ухудшают свойства металла (сера и медь придают металлу красноломкость, фосфор - хладоломкость, мышьяк и медь понижают свариваемость), или усложняют процесс выплавки чугуна (цинк разрушает огнеупорную кладку печи, свинец – лещадь, калий и натрий вызывают образование настылей в газоходах).

Содержание серы в товарной руде не должно превышать 0,15%. В рудах и концентратах, используемых для производства агломерата и окатышей, допустимое содержание серы может быть до 0,6%, так как при агломерации и обжиге окатышей степень удаления серы достигает 60- 90%. Предельное содержание фосфора в руде, агломерате и окатышах 0,07-0,15%. При выплавке обычных передельных чугунов допускается наличие в железорудной части доменной шихты (не более) As 0,05-0,1%, Zn 0,1-0,2%, Cu до 0,2%. Шлакообразующие примеси разделяются на основные (Ca, Mg) и кислые (Si, Al). Предпочтительны руды и концентраты с более высоким отношением основных окислов к кислым, так как сокращается ввод сырых флюсов при последующем металлургическом переделе.

Природные минеральные образования, содержащие железо и его соединения в таком объеме, когда промышленное извлечение железа целесообразно. Хотя железо входит в большем или меньшем количестве в состав всех горных пород, но под названием железных руд понимают только такие скопления железистых соединений, из которых в больших размерах и с выгодой в экономическом отношении может быть получаемо металлическое железо.


Различаются следующие промышленные типы железных руд:

  • Титано-магнетитовые и ильменит-титаномагнетитовые в базитах и ультрабазитах;
  • Апатит-магнетитовые в карбонатитах;
  • Магнетитовые и магно-магнетитовые в скарнах;
  • Магнетит-гематитовые в железных кварцитах;
  • Мартитовые и мартит-гидрогематитовые (богатые руды, образуются по железным кварцитам);
  • Гётит-гидрогётитовые в корах выветривания.

Существует три вида железорудной продукции, использующиеся в чёрной металлургии: сепарированная железная руда (обогащённая методом сепарации рассыпчатая руда), аглоруда (спечённая, окускованная путем термической обработки) и окатыши (сырая железосодержащая масса с добавлением флюсов (обычно, известняка); формуется в шарики диаметром около 1-2 см).

Х имический состав

По химическому составу железные руды представляют собой окиси, гидраты окисей и углекислые соли закиси железа, встречаются в природе в виде разнообразных рудных минералов, из которых главнейшие: магнетит, или магнитный железняк; гётит, или железный блеск (красный железняк); лимонит, или бурый железняк, к которому относятся болотные и озерные руды; наконец, сидерит, или шпатоватый железняк (железный шпат), и его разновидность сферосидерит. Обыкновенно каждое скопление названных рудных минералов представляет смесь их, иногда весьма тесную, с другими минералами, не содержащими железа, как, например, с глиной, известняком или даже с составными частями кристаллических изверженных пород. Иногда в одном и том же месторождении встречаются некоторые из этих минералов совместно, хотя в большинстве случаев преобладает какой-нибудь один, а другие связаны с ним генетически.

Богатая железная руда

Богатая железная руда имеет содержание железа свыше 57 %, а кремнезёма менее 8…10 %, серы и фосфора менее 0,15 %. Представляет собой продукт природного обогащения железистых кварцитов, созданных за счёт выщелачивания кварца и разложения силикатов при процессах длительного выветривания или метаморфоза. Бедные железные руды могут содержать минимум 26% железа.

Выделяют два главных морфологических типа залежей богатой железной руды: плоскоподобные и линейные. Плоскоподобные залегают на вершинах крутопадающих пластов железистых кварцитов в виде значительных по площади с карманоподобной подошвой и относятся к типовым корам выветривания. Линейные залежи представляют падающие в глубину клиноподобные рудные тела богатых руд в зонах разломов, трещинуватостей, дробления, изгибов в процессе метаморфоза. Руды характеризуются высоким содержанием железа (54…69 %) и низким содержанием серы и фосфора. Наиболее характерным примером метаморфозных месторождений богатых руд могут быть Первомайское и Жёлтоводское месторождения в северной части Кривбасса. Богатые железные руды идут на выплавку стали в мартеновском, конвертерном производстве или для прямого восстановления железа(горячебрикетированное железо).

Запасы

Мировые разведанные запасы железной руды составляют порядка 160 млрд тонн, в которых содержится около 80 млрд тонн чистого железа. По данным Геологической службы США, на долю месторождений железной руды России и Бразилии приходится по 18% мировых запасов железа. Мировые ресурсы и запасы железных руд по состоянию на 01.01.2010:

КАТЕГОРИЯ Млн. тн
Россия Запасы категорий А+В+С 55291
Запасы категорий С 43564
Австралия Proved + probable reserves 10800
Measured + indicated resources 25900
Inferred resources 28900
Алжир Исторические ресурсы 3000
Боливия Исторические ресурсы 40000
Бразилия Reserva lavravel 11830
70637
Венесуэла Reserves 4000
Вьетнам Исторические ресурсы 1250
Габон Исторические ресурсы ресурсы 2000
Индия Reserves 7000
Resources 25249
Иран Reserves 2500
Resources 4526,30
Казахстан Reserves 8300
Канада Reserves 1700
Китай Ensured reserves 22364
Мавритания Reserves 700
Resources 2400
Мексика Reserves 700
Пакистан Historical resources 903,40
Перу Исторические ресурсы 5000
США Reserves 6900
Турция Proved + probable reserves 113,25
Украина Запасы категорий А + В + С 24650
Запасы категорий С 7195,93
Чили Исторические ресурсы 1800
ЮАР Reserves 1000
Швеция Proved + probable reserves 1020
Measured + indicated + inferred resources 511
Весь мир Reserves 1 58 000
Крупнейшие производители железорудного сырья в 2010 году

По данным U.S. Geological Survey, мировая добыча железной руды в 2009 году составила 2,3 млрд тонн (рост на 3,6 % по сравнению с 2008 годом).

КРАТКИЕ ИСТОРИЧЕСКИЕ СВЕДЕНИЯ. Первые упоминания о железе встречаются в египетских папирусах, сделанных примерно 4000 лет до н. э. По-видимому, оно было известно лишь в метеоритах. Изделия из железа появились во втором тысячелетии до н. э. в Египте, Ассирии и несколько позже в Индии и Китае. Широкое использование человеком железа для изготовления оружия, орудий труда и других предметов определило смену бронзового века железным (примерно IX–VIII вв. до н. э.). С развитием металлургии мелкие печи, в которых плавились бурые железняки на древесном угле, сменились домнами, выплавляющими чугун из разнообразных железных руд на каменноугольном коксе. Особенно большое развитие черная металлургия получила в XX веке, когда для изготовления специальных сталей начали широко использовать легирующие добавки (Co, Cr, Ni, Mo, W), а затем редкие металлы (Nb, Ta, Zr, Se, Te, V), редкие земли (Ce, La и др.).

Железо, чугун и сталь различаются между собой по содержанию углерода: железо содержит его 0,04–0,2 %, сталь 0,2–1,5 %, чугун 2,5–4 % и более. Содержание S и P в рудах не должно превышать 0,3 %, As 0,07 %, Sn 0,08 %, Zn и Pb 0,01 %, Cu 0,2 %, SiО 2 15 %, MgO 12,5 %. Полезными примесями в рудах железа являются Mn, Ti, Ni, Cr, Mo и V.

ГЕОХИМИЯ. Железо является одним из наиболее широко распространенных элементов в земной коре. Его кларк равен 4,65 %. Повышенные концентрации (до двух кларков) наблюдаются в ультраосновных, основных и средних, а также метаморфических породах. В этих породах оно связано с пироксенами, оливином, амфиболом или биотитом. Известно четыре изотопа железа – 54 Fe, 56 Fe, 57 Fe и 58 Fe. Оно обладает двумя устойчивыми валентностями; соединения Fe 2+ связаны преимущественно с эндогенными процессами, а Fe 3+ – с экзогенными. Коэффициент концентрации железа, представляющий отношения среднего содержания металла в промышленных рудах к его кларку, невысокий и равен 10. Имея много общего в строении атома, в химических и геохимических свойствах, железо вместе с Ti, V, Mn, Cr, Ni, и Co образует одно геохимическое семейство. В гипогенных условиях оно обычно ассоциирует с Ti и V в основных и с Cr, Ni, Co в ультраосновных изверженных породах. В зоне гипергенеза типична ассоциация железа с Al, Mn, реже с Cr, Ni, Co и V. Самородное железо в природе встречается редко. Железо является в основном литофильным и халькофильным элементом, но проявляет также сидерофильные тенденции. Трехвалентное железо устойчиво в растворе лишь при низком pH. При повышении pH резко возрастает гидролиз солей с образованием нерастворимого осадка Fe(OH) 3. В случае наличия в растворе электролитов (солей Ca, Mg, щелочных металлов) Fe 3+ быстро осаждается. Коллоиды SiO 2 и гумусовых веществ предохраняют Fe 3+ от коагуляции. Двухвалентное железо менее чувствительно к электролитам, но устойчиво также только в кислой или нейтральной среде.

МИНЕРАЛОГИЯ. Известно около 300 минералов, содержащих железо. Среди них много породообразующих. Промышленное значение имеет относительно небольшая группа минералов. Магнетит Fe 3 O 4 (содержание Fe 72,4 %). Минерал группы ферришпинелей. Образует изоморфный ряд с магнезиоферритом MgFe 2 O 4 и непрерывные ряды с другими шпинелидами. Кристаллизуется в кубической сингонии, кристаллы октаэдрические, реже ромбододекаэдрические и кубические. Характерны агрегаты зернистые, друзы, радиальнолучистые, почковидные, оолитовые, сажистые и др. Сильно магнитен. Черный, иногда с синеватой побежалостью. Черта черная. Блеск полуметаллический до металлического. Твердость 5,5–5,6, удельльная масса 4,8–5,3 г/см 3 . Магнетит с примесью TiO 2 называется титаномагнетитом , а с примесью V 2 O 5 – кульсонитом . Гематит Fe 2 O 3 (Fe 70 %) кристаллизуется в тригональной сингонии. Кристаллы пластинчатые, ромбоэдрические, редко призматические и скаленоэдрические. Агрегаты листоватые (железная слюдка , железная роза ), чешуйчатые и жирные на ощупь (железная сметана ), плотные, скрытокристаллические (красный железняк ), натёчные, почковидные (красная стеклянная голова , крововик ), землистые, оолитовые и др. Цвет минерала черный, стально-серый. Черта вишнево-красная, блеск полуметаллический, алмазный. Твердость 5–6, удельная масса 5,26 г/ см 3 . Мартит Fe 2 O 3 (Fe 70 %) – псевдоморфозы гематита по магнетиту. Образуется на месторождениях латеритного выветривания и в железных шляпах. Бурый железняк : природные гидрооксиды железа – гётит (FeOOH) и гидрогётит (FeOOHnH 2 О) в смеси с гидрооксидами кремнезема и глинистым веществом (Fe 48–63 %). Сидерит FeCO 3 (Fe 48,3 %). Существуют изомофные ряды FeCO 3 – MgCO 3 и FeCO 3 – MnCO 3 . Разновидности марганецсодержащих минералов – манганосидерит , олигонит , магнийсодержащих минералов – сидероплезит , кальцийсодержащих – сидеродот и кобальтсодержащих – кобальтолигонит и кобальтферосидерит . Силикаты железа – шамозит и тюрингит (Fe 27 – 38 %).

Сернистые и мышьяковистые соединения железа (пирит , арсенопирит и др.), несмотря на высокое содержание Fe, не могут являться минералами, представляющими промышленный интерес в качестве руд железа, так как S и As являются вредными компонентами в составе железных руд.

ПРИМЕНЕНИЕ В ПРОМЫШЛЕННОСТИ. Железные руды являются природным сырьем для получения чугуна в доменных печах, железа – внедоменным способом и стали – в бессемеровских конверторах или мартеновских печах. В нефтяной промышленности применяется магнетит в качестве утяжелителя глинистых растворов при бурении глубоких скважин.

Железные руды, пригодные для металлургии, должны иметь определенный минеральный и химический состав, а также физические свойства. Минимальное содержание железа в сырых рудах, пригодных для эксплуатации, допускается в количестве 25–30 %. Титаномагнетитовые руды могут разрабатываться при среднем содержании железа 15–17 % в связи с попутным извлечением из них титана и ванадия.

Минимальное содержание железа в рудах, используемых для плавки в домнах, изменяется в определенных пределах и зависит от минерального типа руд. Для магнетитовых и гематитовых руд содержание железа должно быть не менее 46–50 %; для бурожелезняковых – 37–45 %; для сидеритовых – 30–36 %. Руды с более низким содержанием железа подвергаются обогащению путем рудоразборки, промывки, магнитный и электромагнитной сепарации и других процессов. Из физических свойств железной руды основное значение имеют следующие: плотность, твердость, кусковатость, пористость, газопроницаемость, а также структура и текстура.

РЕСУРСЫ И ЗАПАСЫ. Ресурсы железных руд известны более чем в 130 странах. По данным ГНПП «Аэрогеология» Министерства природных ресурсов РФ по состоянию на начало 1997 г. они оценивались в 1456 млрд т. В недрах Америки сосредоточено 33,3 %, Европы – 29,6 %, Азии – 15,8 %, Австралии и Океании – 12 % и Африки – 9,3 %. Наибольшими ресурсами железных руд обладают Россия – 256 млрд т (включая прогнозные ресурсы категорий P 1 , P 2 , и P 3), Бразилия – 200 млрд т, Австралия – 165 млрд т и США – 150 млрд т.

Общие запасы железных руд известны в 107 странах. Они составляют 381,3 млрд т, в том числе подтвержденные – 214,3 млрд т. По количеству общих и подтвержденных запасов лидирует Россия: 26,4 % и 26,7 % мировых, соответственно (табл. 1).

Таблица 1

Запасы железных руд (млн т) в некоторых странах

Часть света,

подтверж-денные

Великобритания

Германия

Казахстан

Кот-д"Ивуар

Мадагаскар

Бразилия

Венесуэла

АВСТРАЛИЯ

По разведанным (подтвержденным) запасам месторождения железных руд разделяют на весьма крупные (более 1 млрд т), крупные (300 млн–1 млрд т), средние (50–300 млн т) и мелкие (менее 50 млн т).

ДОБЫЧА И ПРОИЗВОДСТВО. Добыча железных руд на рубеже XX–XXI вв. осуществлялась более чем в 40 странах. Основное количество железорудного сырья добывалось на месторождениях магнетит-гематитовых руд в железистых кварцитах и сланцах. Превалирующее большинство месторождений этого типа разрабатывается открытым способом. Второе место по объемам разработки занимают месторождения осадочных гидрогётит-шамозит-сидеритовых руд.

Мировое производство товарных железных руд составляет около 1 млрд т. На 12 стран-продуцентов приходится 92,1 % суммарного производства железных руд: Китай – 24,2 %, Бразилия – 17,5 %, Австралия – 14,3 %, Россия – 7 %, Индия – 6,5 %, США – 6,1 %, Украина – 4,6 %, Канада – 3,6 %, ЮАР – 3 %, Венесуэла – 2 %, Швеция – 2 %, Казахстан – 1,3 %.

В Китае разрабатывается около 100 крупных месторождений, запасы которых превышают 100 млн т (содержание железа в рудах в среднем 33 %). Действуют 17 горнодобывающих компаний. В Австралии почти вся горнодобывающая промышленность страны сосредоточено в железорудной провинции Пилбара (Западная Австралия). На этот регион приходится 97 % всех добытых в стране руд. Самым крупным продуцентом железорудного сырья является компания « Rio Tinto " s Hamersley Iron » .

В России наиболее крупные месторождения сосредоточены в Центрально-Черноземном регионе. Эксплуатация железорудных месторождений здесь ведется тремя горно-обогатительными комбинатами (Лебединским, Михайловским и Стойленским). Месторождения железных руд разрабатываются также в Северном (Ковдорское, Костомукшское и Оленегорское месторождения), Уральском, Западно-Сибирском и Восточно-Сибирском регионах.

МЕТАЛЛОГЕНИЯ И ЭПОХИ РУДООБРАЗАВАНИЯ. Железорудные месторождения образовывались во все эпохи: начиная с позднего архея и раннего протерозоя до миоцена и плиоцена включительно. На геосинклинальном этапе основная концентрация железа происходит на ранней стадии и тесно связана с базальтовым магматизмом, когда формируются магматические и скарновые месторождения железных руд. Средняя и поздняя стадии геосинклинального цикла для железа мало продуктивны.

Экзогенные железорудные месторождения начали формироваться в раннем протерозое, когда существовали специфические условия переноса железа, поступавшего с континентов в водные бассейны. Железо, по-видимому, переносилось в виде бикарбонатов в глубинные области океана, где осаждалось в виде гидрооксидов и частично карбонатов совместно с кремнистыми образованиями. Последующий метаморфизм таких образований мог привести к формированию железистых кварцитов, с которыми связаны огромные запасы железорудного сырья. Осадочные месторождения железа, возникшие в более поздние эпохи, формировались в основном в зоне шельфа за счет соединений железа, поступавших с суши, предварительно испытавших интенсивное латеритное выветривание. Перенос железа осуществлялся в виде коллоидных растворов, предохраненных гумусовыми кислотами от коагуляции. В зависимости от изменения окислительно-восстановительного потенциала в области накопления осадков возникали бурожелезняковые либо силикатные железные руды.

Докембрийская эпоха была исключительно благоприятной для формирования крупных и уникальных месторождений железорудного сырья. К ним относятся месторождения железистых кварцитов и образованным по ним богатых мартит-гематитовых руд Кривого Рога (Украина), КМА (Россия), Западной Австралии (месторождение Хамерсли), района Лабрадора (Канада), озера Верхнего (США, Канада), штатов Бихар и Орисса (Индия), Минас-Жерайс (Бразилия) и др.

Раннепалеозойская эпоха по сравнению с докембрийской характеризуется менее значительным железооруденением, связанным с каледонским тектогенезом. Месторождения железных руд встречаются во многих странах мира, но удельный вес их в мировых запасах и добыче относительно невелик. Наиболее крупные месторождения этого возраста известны в Северной Америке – Уобана (провинция Ньюфаундленд в Канаде) и месторождения Бирмингенского района штата Алабама в США.

В позднепалеозойскую эпоху образовался ряд месторождений в СНГ. Большая часть их представлена контактово-метасоматическими магнетитовыми рудами, генетически связанными с гранитоидами. К ним относятся месторождения Тагило-Кушвинской группы на Урале (Высокогорское, Горноблагодатское и др.); в Кузнецком Алатау (Тейская группа), Горном Алтае (Инское, Белорецкое и другие месторождения). В Казахстане месторождения этого возраста известны в Кустанайском рудном районе (Качарское, Сарбайское, Соколовское и др.), а также в Центральном Казахстане (Атасуйская группа, в которой наиболее крупным является месторождение Западный Караджал). Многочисленные, но относительно небольшие месторождения имеются в Западной Европе – в Австрии, Бельгии, Франции. Издавна разрабатываются сидеритовые месторождения Австрии в Восточных Альпах, в районе развития девонских отложений, представленных граувакками, известняками, филлитами, кварцитами и песчаниками. Из них наиболее крупным является месторождение Эрцберг. Месторождения этого возраста выявлены также в Алжире, Ливии и других странах Северной Африки.

В мезозойскую эпоху были образованы многочисленные осадочные морские и континентальные (речные и озерные) железорудные месторождения на молодых эпигерцинских платформах и плитах. Накопление железных руд происходило в больших масштабах. Одной из крупнейших в мире является Западно-Европейская провинция, где образовались оолитовые железные руды, состоящие из лимонита и гематита и в меньшей степени из сидерита и шамозита. Большая часть этой провинции находится на территории Франции. Крупные месторождения железных руд юрского возраста сосредоточены в Великобритании – в Линкошире (месторождение Фродингем), Йоркшире (месторождение Кливленд), Оксфоршире (месторождение Банбери) и др. В Германии наиболее значительные месторождения расположены в районе Зальцгиттера. Здесь рудоносен базальный конгломерат нижнего мела мощностью 5–100 м. С ним связаны оолитовые бурые железняки. Содержание железа в рудах 25–33 %, SiO 2 17–30 %, CaO 4– 9 %, P менее 0,9 %.

В Северной Африке в мезозойскую эпоху сформировалась многочисленная группа железорудных месторождений (тип Бильбао). Они отличаются небольшими запасами (от 1 до 20–30 млн т), реже до 100 млн т, но характеризуются высоким качеством руд (среднее содержание железа около 52 %). К этой группе принадлежат месторождения замещения в известняках юры и мела: в Алжире месторождения Уэнза, Бу-Кхарда, Бени-Суэйф; в Марокко – Уиксон; в Тунисе – Джерисса, Дуария и др. В Азии мезозойские месторождения железных руд известны в Китае и Малайзии. В Китае они представлены несколькими типами. В провинции Хубэй разведана группа месторождений Дае. Рудные залежи расположены на контакте известняков триаса с интрузиями диорита и сиенита. Они представлены в основном гематитом, местами магнетитом, реже лимонитом. Содержание железа 57,6–60,5 %, P 0,03–0,1 %, S 0,06–0,32 %, SiO 2 5,9–9,4 %.

На территории России Н. М. Страхов выделил Северо-Евразийскую металлогеническую провинцию, в пределах которой расположены: Липецкий и Тульский бассейны сидерит-гидрогётитовых руд; месторождения сидерит-гидрогётитовых руд Горьковской и Вятской областей; месторождения инфильтрационного типа Алапаевской группы восточного склона Урала; Хоперский железорудный район; Аятский бассейн морских руд (K 2) в Восточном Зауралье; Западно-Сибирский бассейн морских оолитовых руд в среднем течении р. Обь. Многочисленные месторождения железных руд известны в пределах Сибирской платформы в области развития траппов пермо-триаса, тяготеющих к краевым частям Тунгусской синеклизы.

Кайнозойская эпоха характеризовалась исключительно широким проявлением процессов формирования железных руд, которые привели к образованию: 1) многочисленных месторождений латеритного типа в Америке, Азии, Океании и Африке; 2) осадочных (морских и континентальных) месторождений на территории СНГ, Западной Европы, Северной Америки и Африки; 3) скарновых месторождений в Румынии, Индонезии, Мексике и других странах. Для этой эпохи характерны крупные ресурсы железа, заключенные в месторождениях латеритных руд, которые часто содержат промышленные концентрации Ni и Co. На территории СНГ крупнейшим по запасам руд является Керченский бассейн, включающий Северное Причерноморье, восточную часть степного Крыма, Керченский и Таманский полуострова. Месторождения осадочных руд третичного возраста известны в ряде стран Западной Европы – Дании, Германии (Кессенберг, Грюнтен), Бельгии (Герольд), Швейцарии (Делемон).

ГЕНЕТИЧЕСКИЕ ТИПЫ ПРОМЫШЛЕННЫХ МЕСТОРОЖДЕНИЙ . Железорудные месторождения промышленного значения весьма разнообразны. Среди них выделяются: 1) магматические, 2) карбонатитовые, 3) скарновые, 4) вулканогенные гидротермальные, 5) вулканогенно-осадочные, 6) кор выветривания, 7) осадочные и 8) метаморфогенные. Основные запасы железных руд в земной коре связаны с метаморфогенными и осадочными месторождениями.

Магматические месторождения. В группе собственно магматических месторождений железных руд выделяются два класса, связанные: 1) с кислыми изверженными породами и 2) с основными и ультраосновными породами. Типичным представителем первого класса является месторождение Кирунавара , расположенное в Северной Швеции. Разработка его началась в XIX веке после внедрения в производство томасовского способа плавки стали, когда стало возможным промышленное использование фосфористых руд. Месторождение представлено плитообразным рудным телом субмеридионального простирания с падением на восток под углом 50–60, залегающим по контакту сиенит-порфиров в лежачем боку и кварцевых порфиров в висячем. Протяженность этого тела достигает 4,75 км, средняя мощность 100 м. Оно сложено магнетитом в тесной ассоциации с апатитом. Жильные минералы представлены авгитом, роговой обманкой, биотитом и турмалином. Руды массивные, плотные, реже с флюидальной и брекчиевидной текстурой. Рудное тело пересечено дайками аплитов, сиенит-порфиров и гранитов. Содержание Fe составляет 55–70 %, P – 3,5–6 % и более. В апатитах присутствуют редкие земли и иттрий в пределах 0,15–0,65 %. Запасы магнетитовых руд месторождения Кируновара оцениваются в 1,8 млрд т. Месторождение интенсивно разрабатывается. Руда поступает на металлургические предприятия Швеции, Германии и Великобритании. Удельный вес месторождений данного типа превышает 5 % и в основном приходится на Швецию.

Магматические месторождения, связанные с основными и ультраосновными породами, представляют собой зоны концентрированной вкрапленности с шлировыми и жило-линзовидными обособлениями титаномагнетита. Основным рудным минералом месторождений этого класса является титаномагнетит со структурой распада твердого раствора, представляющего собой магнетит, содержащий тонкопластинчатые вростки ильменита. В подчиненном количестве отмечаются зерна магнетита, ильменита и шпинели. Руды характеризуются промышленными концентрациями Fe, V, иногда Ti и низким содержанием S и P. Месторождения этого класса широко известны на Урале (Качканарское, Кусинское и др.), в Горном Алтае (Харловское), в США (Тегавус), ЮАР и других странах.

Карбонатитовые месторождения. С карбонатитовыми массивами нередко связаны железорудные месторождения. Они приурочены, как правило, к щелочно-ультраосновным интрузивам центрального типа. Характерны перовскит-титаномагнетитовые и апатит-магнетитовые руды. Такие месторождения известны в России на Балтийском щите (Ковдор, Африканда), Сибирской платформе (Гулинский массив), на Африканской платформе (Сукулу в Уганде, Дорова в Зимбабве, Люлекоп в ЮАР и др.).

Типичным примером может служить Ковдорское месторождение. Оно расположено в Кировском районе Мурманской области и приурочено к одноименному массиву ультраосновных-щелочных пород и карбонатитов площадью 40 км 2 . Массив представляет многофазный интрузив центрального типа, сложенный последовательно внедрившимися оливинитами, мельтейгитами, ийолитами, нефелиновыми сиенитами, а также сложным комплексом силикатных метасоматитов и карбонатитов. Магнетитовые руды и магнетитсодержащие породы слагают вытянутое в субмеридиональном направлении рудное тело длиной 0,3 км и шириной 0,1–0,8 км. Месторождение разведано до глубины 600–700 м. Преобладают руды с небольшим содержанием кальцита: апатит-форстерит-магнетитовые, форстерит-магнетитовые и флогопит-апатит-форстерит-магнетитовые. Во всех разновидностях руд наблюдается тонкая вкрапленность пирохлора и бадделеита. Содержание основных компонентов в рудах составляет (%): Fe 20–55 (в среднем 29), MgO 15–17, CaO 11–12, P 2,9, S 1,2, MnO и TiO 2 – десятые доли процента. Месторождение разрабатывается АО «Ковдор» .

Скарновые (контактово-метасоматические) месторождения связаны с умеренно кислыми интрузивами (гранодиоритами, кварцевыми диоритами), контактирующими обычно с карбонатными толщами. Они широко распространены на Урале (Высокогорское, Гороблагодатское и др.), в Казахстане в Кустанайской области (Соколовское, Сарбайское, Качарское и др.), Горной Шории и Хакассии (Тейское, Тельбес, Таштагол, Абаканское и др.), США (Айрон-Спрингс, Адирондак), Марокко (Риф), Румынии (Банат) и других странах.

Месторождения представлены пластообразными залежами, линзами, гнездами сплошных руд и вкрапленностью магнетитов в скарнах. Состав скарнов разнообразен: встречаются гранатовые, гранат-эпидотовые, пироксен-гранатовые, актинолитовые и эпидот-хлоритовые. Содержание железа в рудах варьирует от 20 до 70 %. Нередко присутствует сера (до 3 %), связанная с вкрапленностью в рудах пирита и халькопирита.

Соколовское месторождение. Оно расположено в 40 км от г. Кустаная в Тургайском прогибе и приурочено к зоне гранат-пироксен-скаполитовых скарнов, развивавшихся вдоль зоны разлома по контакту палеозойских известняков с диоритами и порфиритами. В скарновой зоне, вытянутой в субмеридиональном направлении на 7,3 км, залегает магнетитовое рудное тело, падающее на запад под углом 70–80. Наиболее высокие концентрации магнетита наблюдаются в южной части рудного тела. Здесь на верхних горизонтах мощность рудного тела достигает 250–270 м. На остальной площади месторождения мощность его не превышает 100–110 м. Оруденение развито в пачке известняковых туффитов (мощность 120–140 м), залегающих под толщей порфиритов. Субширотные и диагональные разломы делят месторождение на ряд отрезков протяженностью 800–1400 м. Руды магнетитовые, массивные, реже вкрапленные. На верхних горизонтах месторождения до глубины 70–75 м магнетиты мартитизированы. Содержание Fe в богатых рудах составляет 57–58 %, S 1,35–2,57 %, P 0,07–0,09 %. Среди вкрапленных руд, требующих обогащения, различают два сорта: с содержанием Fe 30–50 и 20–30 %. Руды характеризуются высокими концентрациями Ca и Mg, что улучшает технологический процесс их плавки. Месторождение разрабатывается «Соколовско-Сарбайской ассоциацией» . Добытая руда поступает на Соколовско-Сарбайский ГОК.

Вулканогенные гидротермальные месторождения парагенетически тесно связаны с траппами. Они широко распространены на Сибирской платформе, где образуют ряд железорудных районов: Ангаро-Катский, Ангаро-Илимский, Среднеангарский, Канско-Тасеевский, Тунгусский, Бахтинский и Илимпейский. Месторождения залегают в палеозойских отложениях платформенного чехла. Область их распространения контролируется развитием интрузивных траппов, ниже которых в разрезе залегают галогенные отложения. С ними связывают образование хлоридов железа, которые мигрировали в вышележащие комплексы пород. Путями интенсивной миграции этих растворов являлись тектонические разрывы, а также, возможно и трубка взрывов. В результате их воздействия происходили метасоматические изменения пород и оруденение. Рудные тела жилообразной, линзообразной и часто неправильной формы. Наиболее богатые рудные зоны сложены как телами сплошных, так и брекчиево-вкрапленных и вкрапленных руд. Содержание железа в рудах варьирует от 25 до 60 %. Рудообразующий магнетит всегда содержит изоморфную примесь магния и относится к разности магномагнетита.

Наиболее крупным и типичным представителем этой группы является Коршуновское месторождение. Оно находится в районе г. Же- лезногорска Иркутской области вблизи железнодорожной магистрали Тайшет–Лена. Месторождение локализовано в отложениях платформенного чехла, представленных аргиллитами, известняками, мергелями, алевролитами и песчаниками кембро-ордовика. Места пересечения осадочных пород крутопадающими тектоническими нарушениями выполнены туфобрекчиями и обломками вмещающих пород, подвергшимися метасоматическим изменениям. Форма рудных тел – штоко-, линзо- и столбообразная. Основное рудное тело вытянуто с юго-запада на северо-восток на 2,5 км при ширине 0,4–0,6 км. На глубину рудное тело суживается и прослежено до 1100 м. Доминируют брекчиевые и вкрапленные руды, которые связаны постепенными взаимопереходами. Главный рудный минерал магномагнетит, содержащий до 6 % MgO. Второстепенный рудный минерал гематит. Разведанные запасы месторождения превышают 400 млн т; среднее содержание Fe 34,4 %, S 0,02 % и P 0,2 %. Эксплуатация месторождения ведется Коршуновским ГОК.

Вулканогенно-осадочные месторождения встречаются относительно редко. К ним относится Западный Караджал в Казахстане, Терсинская группа в Кузнецком Алатау, в Алжире Гара Джебилет и Мишери Абделазис, в Германии месторождения Лан и Дилль. Они пространственно связаны, как правило, с синклинальными зонами эвгеосинклинальных формаций. Рудные пласты обычно деформированы вместе с вмещающими их толщами. Руды сложены гематитом, магнетитом и сидеритом. В них встречаются сульфиды – пирит, халькопирит, арсенопирит, сфалерит, галенит, а среди нерудных (жильных) минералов – серицит, хлорит, кварц, опал, халцедон, доломит, анкерит, апатит и др. Промышленное значение месторождений этой группы невелико.

Типичным представителем этой группы является месторождение Западный Караджал. Оно находится в Карагандинской области Казахстана примерно в 110 км к юго-западу от ст. Жана Арка. В разведке этого месторождения принимали участие выпускники 1957–1958 гг. геолого-географического факультета Белорусского государственного университета (В. П. Ерошин, Д. М. Ерошина). В районе месторождения развиты свита эффузивных и туфогенных пород нижнего–среднего девона (мощность до 1,5 км) и такой же мощности свиты осадочных пород верхнего девона – нижнего карбона. Породы, слагающие эти свиты, сильно дислоцированы, смяты в складки, разбиты разломами и прорваны дайками диоритов и диоритовых порфиров. До глубины 600 м породы залегают под углом 45–50, формируя сложную по строению синклиналь. Рудная залежь образует пластообразное тело, прослеживающееся по простиранию на 6,5 км и по падению на 0,8 км. Мощность этого тела 20–40 м. В нижней части рудной залежи развиты гематитовые руды, в средней – преимущественно магнетитовые, а верхней – бедные гематитовые и марганцевые руды. Второстепенные минералы – сидерит, барит пирит, галенит, сфалерит. Разведанные запасы месторождения превышают 300 млн т руды, со средним содержанием Fe 55,6 %, SiO 2 12,4 %, S 0,6 % и P 0,03 %.

Месторождения выветривания. Они чаще всего представлены: 1) латеритами и 2) железными шляпами. Месторождения железистых латеритов образуются при выветривании массивов основных и ультраосновных пород в условиях влажного тропического климата. В этих обстановках происходит разложение силикатов, содержащих двухвалентное железо с образованием лимонитовых руд обогащенных Ni, Co, Cr, и Mr, т. е. возникают природно-легированные руды. Крупнейшие месторождения, связанные с корой латеритного выветривания, находятся на Кубе. Латеритный покров мощностью от 5 до 30 м развит на площади 150 км 2 и прослеживается с перерывами на несколько десятков километров. Руды сложены землистым элювием, содержащим гидрооксиды железа, гематит, остатки серпентинита с примесью зерен хромшпинелидов, силикатов никеля. Руды содержат (%): Fe 40–50, Cr 2 O 3 1,5–1,8 (до 4), Ni 0,7–0,8 (до 2,5), Mn 0,5–3, P сотые доли, S до 0,2, SiO 2 18–30 и Al 2 O 3 10–12. Возраст месторождений третичный, общие запасы их 15 млрд т. Наиболее крупными являются месторождения Моа и Майари.

Месторождения железных шляп образуются при окислении сульфидных или сидеритовых руд. Руды чаще всего сложены гидрооксидами железа. Они имеют пористое, ячеистое, кавернозное или колломорфное строение. В рудах железных шляп сохраняются некоторые ценные элементы – Au, Ag, Pb, Ni и др.

Осадочные месторождения. Распространены весьма широко и имеют важное экономическое значение, занимая второе место среди других генетических типов железных руд. По условиям образования они разделяются на морские и континентальные.

Осадочные морские месторождения образуются в результате переноса железа речными подземными водами в виде тонких и грубых взвесей, коллоидных растворов и коагуляции их при встрече с солеными водами морских бассейнов. Рудоотложение часто происходит при трансгрессии моря, что способствует формированию руд с оолитовыми структурами. Среди них выделяются оксидные руды, состоящие из гидрооксидов железа, силикатные руды, представленные главным образом железистыми хлоритами, и карбонатные – существенно сидеритовые руды. Морские осадочные месторождения встречаются среди отложений различного возраста – от протерозойских (Нижнеангарское месторождение) до третичных включительно (Керченский железорудный бассейн, месторождения в Нигере и Бенине и др.). В рудах морских осадочных месторождений содержание Fe колеблется в пределах 20–50 %, чаще составляет 30–40 %.

Среди осадочных морских железорудных месторождений различают геосинклинальные и платформенные. Первые представлены сидеритовыми пластовыми месторождениями в морских терригенно-карбонатных отложениях (Бакальская группа месторождений Западного склона Южного Урала) и морскими гематитовыми месторождениями в терригенно-карбонатных отложениях (Нижнеангарское, Клинтон в США). Платформенные морские месторождения сложены сидерит-лептохлорит-гидрогематитовыми рудами (Аятский, Керченский, Западно-Сибирский, Лотарингский бассейны).

Характерным представителем осадочных морских бассейнов платформенного типа является Керченский железорудный бассейн. Бассейн был открыт еще в 1830-х годах. Руды стали осваиваться в 1955–1970-х годах. Он охватывает восточную и северную окраины Керченского полуострова и прослеживается на Таманский полуостров. Площадь его составляет 150 км 2 . Территория бассейна сложена верхнетретичными отложениями, смятыми в пологие складки с осями, вытянутыми в широтном и северо-восточном направлениях. Выделяются два типа месторождений осадочных железных руд. Первый тип приурочен к крупным тектоническим брахисинклинальным структурам – мульдам, второй – связан с ложнотектоническими структурами – компенсационными прогибами в зоне развития грязевого вулканизма.

Верхнетретичные отложения, слагающие мульды, включают ряд пластов глин, переслаивающихся с песками, а в нижней части с известняками. Рудный пласт подстилается известняками понтического яруса (нижний плиоцен). В центральных частях мульд он залегает горизонтально, а на крыльях наклонен под углом 10–15. Мощность пласта колеблется от 2–3 м на крыльях до 25–30 м в осевых частях мульд. Рудный пласт сложен в основном оолитовыми рудами. Размер оолитов варьирует от долей миллиметра до 5–10 мм. Они сцементированы керченитом, вивианитом, баритом, псиломеланом, пиролюзитом, карбонатами железа и марганца. Главными типами руд являются «табачные» и «коричневые». Первые формировались в окислительно-восстановительной зоне, вторые за счет первых в окислительной зоне. Второстепенными являются марганцево-железистые «икряные» руды, отличающиеся от «коричневых» повышенным содержанием марганца. Наиболее высококачественные «коричневые» руды, главными минералами которых являются гидрогётит и ферримонтмориллонит, а второстепенными – псиломелан, пиролюзит, гипс, арагонит, кальцит, пирит, керченит, кварц, полевой шпат и глауконит. В «коричневых» рудах содержится (%): Fe 37,7; MnO 3;V 2 O 5 1,20; P 1,0; S 0,06; As 0,13.

Осадочные континентальные месторождения представлены преимущественно бурожелезняковыми рудами озерного и болотного генезиса. Такие руды широко распространены на Восточно-Европейской платформе и известны в Тульской и Липецкой областях. Они характеризуются низким содержанием железа (до 30–40 %). Наиболее крупное месторождение этого типа – Лисаковское было открыто в 1960-х годах в Кустанайской области (Казахстан). Рудные залежи здесь вытянуты на десятки километров вдоль палеорусел рек. Содержание Fe в рудах 30–35 % и P около 0,5 %.

Метаморфогенные месторождения имеют исключительно важное экономическое значение. На их долю приходится основная масса мировых запасов и около 60 % мировой добычи железных руд. По запасам это, как правило, уникальные и крупные месторождения. Они известны на Канадском, Бразильском, Индийском, Южно-Африканском, Балтийском и Украинском щитах, а также на Китайской и Австралийской платформах, Курско-Воронежском массиве и в других провинциях, сложенными докембрийскими образованиями.

К этой серии относятся: 1) залежи железистых кварцитов и 2) богатых железных руд в древних метаморфических формациях. Железистые кварциты присущи только докембрийским складчатым областям. Они представляют собой сравнительно бедные руды с содержанием железа 20–40 % (чаще 32–37 %) и характеризуются крайне низкими концентрациями P и S. Все крупнейшие месторождения железистых кварцитов с запасами руды в миллиарды и десятки миллиардов тонн относятся к нижнепротерозойским эвгеосинклинальным образованиям, претерпевшим метаморфизм фации зеленых сланцев. Главными минералами железистых кварцитов этой формации являются кварц, магнетит, гематит, куммингтонит, биотит, хлорит, реже сидерит, пироксены и щелочные амфиболы. Более глубоко измененные месторождения амфиболитовой фации метаморфизма представлены менее крупными (сотни миллионов тонн) месторождениями.

С толщами железистых кварцитов связаны залежи богатых железных руд. Они представляют собой продукт природного обогащения железистых кварцитов, образующихся в результате выщелачивания кварца и разложения силикатов при процессах древнего выветривания или метаморфизма. Существуют два основных морфологических типа залежей богатых руд – плащеобразные и линейные. Первые залегают на головах крутопадающих пластов железистых кварцитов, вторые – представляют собой уходящие на глубину, протяженные по простиранию и значительной мощности клинообразные рудные тела богатых железных руд среди железистых кварцитов. Минеральный состав богатых руд: мартит и мартитизированный магнетит, гематит, гётит, гидрогётит, глинистые минералы, вторичные карбонаты и пирит. Руды имеют высокое содержание Fe (54–69 %).

Крупнейшими железорудными бассейнами этого типа являются в СНГ: Курская магнитная аномалия (Лебединское, Михайловское, Коробковское, Салтыковское и др. месторождения), Криворожский железорудный бассейн, в дальнем зарубежье – железорудный пояс Лабродора (Канада), группа месторождений в районе озера Верхнего (США), в штате Минас Жерайс (Бразилия), в штатах Бихар и Орисса (Индия), бассейн Хамерсли (Западная Австралия) и т. д.

Типичный представитель этой группы – Криворожский (Криворожско-Кременчугский) железорудный бассейн. Расположен на правобережье Днепра в пределах Украины. Продуктивной является криворожская серия железистых пород протерозойского возраста, простирающаяся в виде узкой полосы север-северо-восточного простирания на 100 км. Ширина ее в районе Кривого Рога достигают 5–6 км. Криворожская серия залегает трансгрессивно с резким угловым несогласием на породах архея. В разрезе ее выделяют три отдела: нижний – аркозово-филлитовый (подрудный); средний – рудоносный, представленный железистыми кварцитами и роговиками, и верхний – глинисто-сланцевый (надрудный). Геологическая структура бассейна очень сложная (рис. 1). Криворожская серия образует сложный синклинорий, состоящий из синклинальных и антиклинальных складок с падением крыльев под углами 45–80. Шарниры синклиналей погружаются под углом до 40 в северном направлении. В бассейне выделяется ряд рудоносных структур (с юга на север): Ингулецкая (Южное рудное поле), Саксаганская (Главное, или Саксаганское рудное поле), Первомайская, Анновская, Желтореченская (Северное рудное поле), Попельнонастовская.

Среди железистых кварцитов различают магнетитовые, магнетит-гематитовые, гематитовые типы и оксидные их разности. Богатые руды, состоящие в основном из оксидов и гидрооксидов железа, слагают пласто-, столбо-, штоко- и линзообразные залежи среди железистых кварцитов. Они характеризуются высоким содержанием Fe (54–64 %) и низкими концентрациями вредных примесей (S 0,03–0,15 %, P 0,04–0,26 %). Запасы богатых руд составляют 1,5 млрд т (среднее содержание Fe 57,6 %), железистых кварцитов-18 млрд т (среднее содержание Fe 35,9 %).

МЕСТОРОЖДЕНИЯ И РУДОПРОЯВЛЕНИЯ В БЕЛАРУСИ. Железные руды выявлены в породах кристаллического фундамента и осадочном чехле (болотные руды, сидерит). В кристаллическом фундаменте известны 2 месторождения и 10 рудопроявлений. Наиболее крупным месторождением является Околовское , расположенное в Столбцовском районе Минской области. Железистые кварциты связаны со стратифицированными образованиями околовской серии (возраст около 2 млрд лет). Они находятся в тесной парагенетической ассоциации с вмещающими плагиогнейсами и амфиболитами. Залегание железистой толщи осложнено тектоническими нарушениями субширотного, субмеридионального и северо-западного простирания. На месторождении выявлены три горизонта железистых кварцитов мощностью от 20–80 до 125–259 м, имеющих пластообразную форму, моноклинальное залегание с падением на юго-восток под углом 60–80. В горизонтах выделяется до 5–6 рудных пластов. Развиты два основных типа руд: силикатно-магнетитовые кварциты и магнетитовые амфиболиты. Главный рудный минерал-магнетит, изредка встречаются пирит, пирротин, халькопирит, ильменит, а в слабо развитой зоне окисления – мартит, гематит и лимонит. Среднее содержание железа в продуктивных пластах 27 %. Руды хорошо обогащаются. По данным предварительной разведки запасы железных руд категории С 1 до глубины 700 м составляют 340 млн т.

Новоселковское месторождение ильменит-магнетитовых руд находится в Кореличском районе Гродненской области. Оно контролируется небольшой (1,50,5 км) интрузией габбро, испытавшей метаморфизм в условиях амфиболитовой фации. Месторождение разбито тектоническими нарушениями (типа сбросов) северо-западного простирания на три блока с амплитудой смещения около 100 м. При бортовом содержании Fe общ. 15 % в каждом из них выделяется от трех до пяти рудных тел пластообразной, линзообразной формы мощностью от 4 до 128 м, протяженностью по простиранию от 110 до 411 м и по падению – от 110 до 640 м. Главными рудными минералами являются магнетит (до 60 %) и ильменит (до 30 %), второстепенными – пирит и пирротин. Среднее содержание основных компонентов в рудах колеблется в пределах (%): Fe общ. 23,5–35,7; TiO 2 4,2–6,0; V 2 O 5 0,15–0,24; P 2 O 5 0,48–0,51; S 0,8–1,04.