Как держать форму. Массаж. Здоровье. Уход за волосами

Где разрабатывают месторождения железной руды. Месторождения Казахской ССР

Железная руда – это одно из минеральных образований. Среди составляющих его элементов присутствует железо и различные соединения. Если в составе руды большая доля приходится на железо, то она классифицируется, как железная. Основная добыча железной руды приходится на магнитный железняк. В нем соединения железа занимают порядка 70%.

Запасы железной руды в мире

В рамках российского производственного комплекса основная доля приходится на добычу руды. В целом страна привносит в мировую добычу не более 6%. В общей сложности на сегодняшний день на планете находится около 160 миллиардов тонн этого ископаемого. С учетом доли железа в ней, запасы конкретно этого вещества оцениваются в 80 миллиардов тонн.

Запасы железной руды в различных странах мира таковы:

  • РФ и Бразилия – по 18%.
  • Австралия – 14%.
  • Украина – 10%.
  • КНР – 9%.
  • Канада – 8%.
  • США – около 7%.

Оставшиеся 15%, в различных долях распределены между прочими странами мира.

Специалисты подразделяют железорудную продукцию на несколько категорий, а именно:

  • с повышенным содержанием железа (более 50% состава);
  • рядовые (25–49%);
  • бедные (менее 25%).

Наибольшим содержанием железа характеризуется магнитный железняк. На российской территории его запасы располагаются преимущественно в районе Уральских гор. Еще эта руда массово залегает на территории Швеции, в некоторых из штатов США.

Актуальные запасы различной руды в России сегодня составляют порядка 50 миллиардов тон. По ее запасам страна занимает третье место в мире, уступая лишь Австралии и Бразилии.

Способы добычи руды

Сейчас существует несколько основных методик добычи руды. Для каждого случая выбор делается индивидуально. Специалисты в ходе принятия решения оценивают ряд факторов, в том числе экономическую целесообразность эксплуатации определенных машин и агрегатов, особенности расположения железной руды и некоторые другие.

Карьерный способ

Основная масса мест добычи железной руды разрабатывается по карьерной методике. Она предполагает на начальном этапе работы подготовку карьера определенной глубины (в среднем 300 метров). Далее, в работу включается прочее оборудование. Рудная масса вывозится из него посредством крупных самосвалов.

Обычно горная порода сразу же переправляется на специализированные предприятия для дальнейшего изготовления из него железорудной продукции, в том числе стали.

При подготовке карьера при данном способе добычи применяются наиболее крупные и массивные экскаваторы. Как только процесс достигнет своего завершения и техника достигнет нижних слоев рудной массы, осуществляется анализ полученных образцов непосредственно перед началом добычи железной руды. По его результатам определяется конкретная доля железа в его составе.

Решение о начале разработок и добыче железной руды принимается в том случае, если анализ показывает присутствие железа в количестве более 57%. Данный вариант будет выгодным в экономическом плане. В противном случае специальная комиссия решает необходимость добычи такого материала наряду с возможными вариантами улучшения качества производства.

Имеет массу преимуществ. Основной ее недостаток состоит в том, что разработки и извлечение рудных тел могут проводиться на небольших глубинах.

Шахтный способ

На практике руда часто залегает довольно глубоко. Это обуславливает необходимость обустройства шахт. Их глубина достигает нескольких сотен метров – вплоть до километра. Изначально организуется ее ствол, который имеет внешнее сходство с колодцем.

Специализированные коридоры отходят от шахтного ствола. Их именуют штреками. Это один из самых эффективных способов добычи руды. При этом он наиболее затратен в финансовом плане и опасен.

Скважинная гидродобыча

СГД – это гидромеханический способ. В этом случае добыча предполагает организацию глубокой скважины, куда входят снабженные гидромонитором трубы. Далее, посредством струи воды горная порода откалывается и перемещается наверх.

Такой вариант характеризуется небольшой эффективностью при высокой безопасности. На практике его применяют в 3% случаев.

Методы обогащения горной породы

Процедуре обогащения в любом случае предшествует измельчение сырья. На следующем этапе проводится непосредственно обогащение по одной из методик:

  • гравитационная сепарация;
  • магнитная сепарация;
  • флотация;
  • комплексная методика.

Наибольшее практическое применение получил вариант гравитационной сепарации. Он отличается минимальной себестоимостью. Для реализации требуются такие машины, как центробежная машина, виброплощадка, спираль.

Благодаря наличию у веществ магнитных свойств, работает вариант магнитной сепарации. Она актуальна в случаях, когда остальные оказываются неэффективными.

На практике чаще требуется комплексное воздействие на руду посредством сразу нескольких способов обогащения.

Видео: Железные руды Урала


Отрасль черной металлургии - железорудная промышленность - занимается добычей и переработкой железной руды, чтобы затем это полезное ископаемое превратилось в чугун и сталь. Так как железо является довольно распространенным элементом, получают его только из тех горных пород, в которых его больше.

Это минеральное образование человечество научилось добывать и обрабатывать позднее всего, видимо потому, что железная руда мало похожа на металл. Сейчас же без железа и стали сложно представить себе современный мир: транспортная, строительная отрасль, сельское хозяйство и многие другие сферы не могут обойтись без металла. О том, как и во что превращается железная руда в процессе несложных химических процессов, пойдет речь далее.

Виды железных руд.

Железная руда различается по количеству содержащего в ней железа. Она бывает богатой, в которой его больше 57%, и бедной - от 26%. Бедные руды используются в промышленности только после их обогащения.

По происхождению руду делят на:

  • Магматогенную - руда, получившаяся в результате действия высоких температур.
  • Экзогенную - осадок в морских бассейнах.
  • Метаморфогенную - образовавшуюся в результате действия высокого давления.

Железные руды также разделяют на:

  • красный железняк, который является наиболее распространенной и в то же время наиболее богатой на железо рудой;
  • бурый железняк;
  • магнитный;
  • шпатовый железняк;
  • титаномагнетит;
  • железистый кварцит.

Этапы металлургического производства.

Ответ на главный вопрос статьи «железная руда: что из нее делают» очень прост:из железных руд добывают сталь, чугун, сталистые чугуны и железо.

При этом металлургическое производство начинается с добычи основных компонентов для производства металлов: каменного угля, железной руды, флюсов. Затем на горно-обогатительных комбинатах добытую железную руду обогащают, избавляясь от пустых пород. На специальных заводах занимаются подготовкой коксующихся углей. В доменных цехах руда превращается в чугун, из которого затем производят сталь. А сталь, в свою очередь, превращается в готовый продукт: трубы, листовую сталь, прокат и прочее.

Производство черных металлов условно делят на две стадии, в первой из них получают чугун, во второй чугун преобразовывают в сталь.

Процесс производства чугуна.

Чугун - это сплав углерода и железа, в который также входят марганец, сера, кремний, фосфор.

Чугун производят в доменных печах, в которых железная руда восстанавливается из оксидов железа при больших температурах, при этом отделяется пустая порода. Флюсы используют для уменьшения температуры плавления пустой породы. В доменную печь загружают руду, флюсы и кокс слоями.

В нижнюю часть печи подается нагретый воздух, поддерживающий горение. Так происходит череда химических процессов, в результате которых получают расплавленный чугун и шлак.

Полученный чугун бывает разных видов:

  • передельный, используемый в производстве стали;
  • ферросплав, который применяют также в качестве добавок при производстве стали;
  • литейный.

Производство стали.

Практически 90% всего добываемого чугуна является передельным, то есть он используется в производстве стали, которую получают в мартеновских или электрических печах, в конвекторах. При этом появляются новые методы получения стали:

  • электроннолучевая плавка, которая используется для получения особо чистых металлов;
  • вакуумирование стали;
  • электрошлаковый переплав;
  • рафинирование стали.

В стали, если сравнивать его с чугуном, меньше кремния, фосфора и серы, то есть при получении стали нужно уменьшить их количество с помощью окислительной плавки, производимой в мартеновских печах.

Мартен представляет собой печь, в которой над плавильным пространством сгорает газ, создавая необходимую температуру от 1700 до 1800°C. Раскисление проводят с помощью ферромарганца и ферросилиция, затем на заключительном этапе - при помощи ферросилиция и алюминия в сталеразливочном ковше.

Сталь более высокого качества производят в индукционных и дуговых электропечах, в которых температура выше, поэтому на выходе получают тугоплавкую сталь. На первом этапе производства стали происходит окислительный процесс с помощью воздуха, кислорода и оксида шихты, на втором - восстановительный, заключающийся в раскислении стали и удалении серы.

Продукция черной металлургии.

Подводя итог в теме "железная руда: что из нее делают", нужно перечислить четыре основных продукта черной металлургии:

  • передельный чугун, который от стали отличается лишь повышенным содержанием углерода (свыше 2%);
  • литейный чугун;
  • стальные слитки, которые подвергают обработке давлением для получения проката, используемого, например, в железобетонных конструкциях, прокат становится трубами и другими изделиями;
  • ферросплавы, которые применяются в производстве стали.

Стойленский ГОК в Белгородской области - один из ведущих производителей железорудного сырья: на его долю приходится более 15% производства товарной руды в России. Съемки проводились в течение пяти лет и в сумме заняли более 25 дней. Большой фоторепортаж.

1. Железные руды - это природные минеральные образования, содержащие железо и его соединения в таком объёме, когда промышленное извлечение железа из этих образований целесообразно. Сырье СГОК берет из Стойленского месторождения Курской магнитной аномалии. Со стороны подобные объекты выглядят как большинство производств - какие-то цеха, элеваторы и трубы.

2. Редко, когда на краю чаши карьера делают общественные смотровые площадки. В Стойленском ГОКе подойти к этой огромной воронке, диаметром по поверхности более 3 км и глубиной около 380 метров, можно только по пропускам и согласованиям. Со стороны и не скажешь, что в этой ямке спокойно поместятся небоскребы Москва-сити, и даже торчать не будут) Кликабельно:

3. Добычу ведут открытым способом. Для того, чтобы добраться до богатой руды и кварцитов горняки снимают и вывозят в отвалы десятки миллионов кубометров земли, глины, мела, и песка.

4. Рыхлые породы разрабатывают экскаваторами с «обратной лопатой» и драглайнами. «Обратные лопаты» выглядят как привычные ковши, только в карьере СГОКа они большие – 8 куб. м.

5. В таком ковше свободно разместятся 5-6 человек или 7-8 китайских человек.

6. Рыхлые породы, которые горняки называют вскрышей, перевозятся на отвалы железнодорожными составами. Еженедельно горизонты, на которых производится работа, изменяют свою форму. Из-за этого постоянно приходится перекладывать железнодорожные пути, сеть, переносить железнодорожные переезды и т.д.

7. Драглайн. Ковш на 40-метровой стреле выбрасывается вперед, затем канаты тянут его к экскаватору.

8. Под собственным весом ковш загребает в себя около десяти кубометров грунта за один бросок.

9. Машзал.

10. Машинисту нужна очень большая сноровка, чтобы выгрузить такой ковш в вагон, не повредив борта и не задев высоковольтную линию контактной сети локомотива.

11. Стрела экскаватора.

12. Железнодорожный состав с вагонами думпкарами (это самоопрокидывающиеся вагоны) вывозит вскрышу на отвалы.

14. На отвалах происходит обратная работа - вкрыша из вагонов складируется экскаватором в аккуратные холмы. При этому рыхлые породы не просто сваливают в кучу, а складируют по-отдельности. На языке горняков такие склады называются техногенными месторождениями. Из них берут мел для производства цемента, глину - для производства керамзита, песок - для строительства, чернозем - для рекультивации земель.

15. Горы меловых отложений. Все это не что иное, как отложения доисторических морских обитателей - моллюсков, белемнитов, трилобитов и аммонитов. Около 80 – 100 миллионов лет назад на этом месте плескалось мелководное древнее море.

16. Одна из главных достопримечательностей Стойленского ГОКа - горно-вскрышной комплекс (ГВК) с ключевым агрегатом - шагающим роторным экскаватором KU-800. ГВК изготовили в Чехословакии, два года собирали в карьере СГОКа и запустили в работу в 1973 году.

17. С тех пор роторный экскаватор шагает вдоль бортов карьера и 11-метровым колесом срезает меловые отложения.

18. Высота экскаватора 54 метра, масса - 3 тысячи 350 тонн. Это сравнимо с весом 100 вагонов метро. Из такого количества металла можно было бы сделать 70 танков Т-90. Кликабельно:

19. Экскаватор опирается на поворотную платформу и передвигается с помощью «лыж», которые приводятся в действие гидроцилиндрами. Для работы этого монстра необходимо напряжение в 35 тысяч вольт.

20. Механик Иван Толмачев из тех людей, кто участвовал в пуске KU-800. Больше 40 лет назад, в 1972 году, сразу после окончания Губкинского горного техникума, Ивана Дмитриевича приняли помощником машиниста роторного экскаватора. Вот уж когда пришлось молодому специалисту побегать по лестничным галереям! Дело в том, что электрическая часть экскаватора оказалась далёкой от совершенства, поэтому не одну сотню ступеней нужно было преодолеть, пока найдешь причину отказа того или иного узла. Плюс к этому документы перевели с чешского не полностью. Чтобы вникнуть в схемы, над бумагами приходилось просиживать ночами, ведь к утру нужно было придумать, как устранить ту или иную неисправность.

21. Секрет долголетия KU-800 в его особом режиме работы. Дело в том, что, кроме плановых ремонтов в рабочем сезоне, зимой весь комплекс становится на капитальный ремонт и выполнение перестроек конвейерных линий. Три месяца ГВК готовят к новому сезону. За это время успевают привести в порядок все узлы и агрегаты.

22. Алексей Мартианов в кабине с видом на ротор экскаватора. Вращающееся трехэтажное колесо впечатляет. Вообще от путешествия по галереям KU-800 захватывает дух.

У вас эти впечатления, наверное, уже немного притупились?
- Да, есть такое, конечно. Ведь с 1971 года работаю здесь.
- Так ведь в те годы этого экскаватора еще и не было?
- Была площадка, на которой его только монтировать начинали. Шел он сюда узлами, около трех лет собирали его шеф-монтажники чехи.
- По тем временам это невиданная техника была?
- Да, это четвертая машина, вышедшая с конвейера чехословацкого завода-изготовителя. Газетчики нас тогда прямо-таки атаковали. Даже в журнале «Наука и жизнь» про наш экскаватор писали.

23. Висящие залы электрооборудованием и распредустройства служат противовесом стреле.

Я, конечно, понимаю, что это шагающий экскаватор. Но до сих пор не могу представить, как такая «махина» может ходить фактически?
- Она очень хорошо ходит, хорошо разворачивается. Шаг в два с половиной метра занимает всего полторы минуты. Вот, под рукой, пульт управления шагами: лыжи, база, стоп, поворот экскаватора. Через неделю мы готовимся поменять место дислокации, в обратную сторону пойдем, туда, где конвейер строится.

24. О своем экскаваторе Алексей Мартианов, бригадир машинистов ГВК рассказывает с любовью, как об одушевленном предмете. Говорит, что в этом ему нечего стесняться: каждый из его экипажа также относится к своей машине. Более того, как о живом начинают отзываться и специалисты чешского завода-изготовителя, курирующие крупные ремонты экскаватора.

25. Только на верхней площадке экскаватора, в сорока метрах от земли, ощущаешь его истинные размеры. Кажется, что в лестничных галереях можно заблудиться, а ведь в этих хитросплетениях металла и кабельных коммуникаций есть еще рабочие и машинные отделения, зал с электрооборудованием, распредустройства, отсеки гидравлических агрегатов шагания, поворота, устройства подъёма и выдвижения роторной стрелы, грузоподъемные краны, конвейеры.

При всей металло- и энергоемкости экскаватора в его экипаже работает всего 6 человек.

26. Узкие железные лесенки местами с подвижными ступенями опутывают экскаватор, как лесные тропинки. Бесконечные реки проводов пронизывают экскаватор вдоль и поперек.

27. - Как вы им управляете? Есть ли какие-нибудь свои секреты? Вот придет, к примеру, новый человек, через сколько месяцев его можно будет посадить сюда, в это кресло?
- Это не месяцы, это годы. Научиться в кабине работать, врезаться, шагать - это одно, а машину чувствовать - совсем другое. Ведь расстояние от меня до машиниста погрузочной стрелы 170 метров, и мы должны хорошо слышать и видеть друг друга. Не знаю чем, наверное, спиной чувствовать. Есть здесь, конечно, и громкая связь. Меня слышат все пятеро машинистов. И я их слышу. Знать нужно еще и электросхемы, устройство этой огромной машины. Кто осваивается быстро, а кто только через десять лет становится машинистом.

28. Конструкция KU-800 и сейчас удивляет инженерными решениями. В первую очередь, оптимальными расчетами несущих узлов и деталей. Достаточно сказать, что экскаваторы, аналогичные по производительности чешскому KU-800, имеют значительно большие размеры и массу, они до полутора раз тяжелее.

29. Срезанный ротором мел по системе конвейеров проезжает около 7 километров и с помощью отвалообразователя складируется в меловые горы.

30. За год в отвалы отправляют такой объем мела, которого хватило бы, чтоб насыпать двухполосную дорогу высотой 1 метр и длиной 500 километров.

31. Машинист погрузочной стрелы. Всего на отвалообразователе работает смена из 4 человек.

32. Отвалообразователь - уменьшенная копия KU-800 за исключением отсутствия роторного колеса. Экскаватор наоборот.

34. Сейчас основной полезный минерал в карьере Стойленского ГОКа - это железистые кварциты. Железа в них от 20 до 45%. Те камни, где железа больше 30% активно реагируют на магнит. Этим трюком горняки часто вызывают удивление у гостей: «Как это - обычные с виду камни, и вдруг притягиваются магнитом?»

35. Богатой железной руды в карьере Стойленского ГОКа уже мало. Она покрывала не очень толстым слоем кварциты и её почти выработали. Поэтому кварциты теперь главное железорудное сырье.

37. Чтобы добыть кварциты, их вначале взрывают. Для этого бурят сеть скважин и заливают в них взрывчатку.

38. Глубина скважин достигает 17 метров.

39. В год Стойленский ГОК проводит до 20 взрывов горной породы. При этом масса взрывчатки, использованной при одном взрыве, может достигать 1 000 тонн. Чтобы при этом не получилось сейсмического удара, взрывчатое вещество подрывают волной от скважины к скважине с задержкой в доли секунды.

40. Бадабум!


41.

43. Раздробленную взрывом руду большие экскаваторы перегружают в автосамосвалы. В карьере СГОКа работают около 30 БелАЗов грузоподъемностью по 136 тонн.

44. 136-тонный Белаз заполняется с горочкой за 5-6 оборотов экскаватора.

48. Кликабельно:

49. Гусеница размером с человека.

51. Дмитрий, водитель Белаза, говорит, что управлять этим «слоником» не сложнее Шестерки жигулей.

52. Но права нужно получать отдельно. Главное - чувствовать габариты и никогда не забывать, с каким весом работаешь.

60. Белазы перевозят руду на перегрузочные склады в средней части карьера, где уже другие экскаваторы перегружают её в вагоны думпкары.

63. Загруженные составы из 11 вагонов отправляются на обогатительную фабрику. Электровозам приходится потрудиться, потому что везти по восходящему серпантину 1150 тонн руды – дело нелегкое.

64. Груженые на подъем и пустые на спуск.

66. На обогатительной фабрике руду выгружают в устья огромных дробилок.

67. В процессе обогащения руда проходит несколько этапов дробления. На каждом из них она становится все мельче.

68. Цель процесса - получить руду, истертую почти в мелкий песок.

69. Из этой измельченной массы кварцитов с помощью магнитных сепараторов отбирают магнитную составляющую.

72. Таким образом получают железорудный концентрат с содержанием железа 65 – 66%. Все, что не примагнитилось к сепараторам, горняки называют пустой породой или хвостами.

73. Хвосты смешивают с водой и перекачивают в специальные водоемы - хвостохранилища.

74. Хвостохранилища считают техногенными месторождениями, потому что, возможно, в будущем из них научатся добывать ценные элементы. Чтобы с хвостохранилищ не поднималась ветром пыль, которая вызывает гнев экологов и местных жителей, хвосты постоянно поливают дождиком с радугой. Благо воды из карьера - завались!

75. Чтобы карьер не затопило водой, на глубине около 200 метров под землей пробита опоясывающая сеть штреков дренажной шахты.

76. Из штреков, общая протяженность которых около 40 километров, вверх, в карьер пробурены скважины, которые перехватывают грунтовые воды.

78. Каждый час из дренажной шахты Стойленского ГОКа откачивают 4 500 кубометров воды. Это равно объему 75 железнодорожных цистерн.

80. Большое спасибо за внимание и терпение!

КРАТКИЕ ИСТОРИЧЕСКИЕ СВЕДЕНИЯ. Первые упоминания о железе встречаются в египетских папирусах, сделанных примерно 4000 лет до н. э. По-видимому, оно было известно лишь в метеоритах. Изделия из железа появились во втором тысячелетии до н. э. в Египте, Ассирии и несколько позже в Индии и Китае. Широкое использование человеком железа для изготовления оружия, орудий труда и других предметов определило смену бронзового века железным (примерно IX–VIII вв. до н. э.). С развитием металлургии мелкие печи, в которых плавились бурые железняки на древесном угле, сменились домнами, выплавляющими чугун из разнообразных железных руд на каменноугольном коксе. Особенно большое развитие черная металлургия получила в XX веке, когда для изготовления специальных сталей начали широко использовать легирующие добавки (Co, Cr, Ni, Mo, W), а затем редкие металлы (Nb, Ta, Zr, Se, Te, V), редкие земли (Ce, La и др.).

Железо, чугун и сталь различаются между собой по содержанию углерода: железо содержит его 0,04–0,2 %, сталь 0,2–1,5 %, чугун 2,5–4 % и более. Содержание S и P в рудах не должно превышать 0,3 %, As 0,07 %, Sn 0,08 %, Zn и Pb 0,01 %, Cu 0,2 %, SiО 2 15 %, MgO 12,5 %. Полезными примесями в рудах железа являются Mn, Ti, Ni, Cr, Mo и V.

ГЕОХИМИЯ. Железо является одним из наиболее широко распространенных элементов в земной коре. Его кларк равен 4,65 %. Повышенные концентрации (до двух кларков) наблюдаются в ультраосновных, основных и средних, а также метаморфических породах. В этих породах оно связано с пироксенами, оливином, амфиболом или биотитом. Известно четыре изотопа железа – 54 Fe, 56 Fe, 57 Fe и 58 Fe. Оно обладает двумя устойчивыми валентностями; соединения Fe 2+ связаны преимущественно с эндогенными процессами, а Fe 3+ – с экзогенными. Коэффициент концентрации железа, представляющий отношения среднего содержания металла в промышленных рудах к его кларку, невысокий и равен 10. Имея много общего в строении атома, в химических и геохимических свойствах, железо вместе с Ti, V, Mn, Cr, Ni, и Co образует одно геохимическое семейство. В гипогенных условиях оно обычно ассоциирует с Ti и V в основных и с Cr, Ni, Co в ультраосновных изверженных породах. В зоне гипергенеза типична ассоциация железа с Al, Mn, реже с Cr, Ni, Co и V. Самородное железо в природе встречается редко. Железо является в основном литофильным и халькофильным элементом, но проявляет также сидерофильные тенденции. Трехвалентное железо устойчиво в растворе лишь при низком pH. При повышении pH резко возрастает гидролиз солей с образованием нерастворимого осадка Fe(OH) 3. В случае наличия в растворе электролитов (солей Ca, Mg, щелочных металлов) Fe 3+ быстро осаждается. Коллоиды SiO 2 и гумусовых веществ предохраняют Fe 3+ от коагуляции. Двухвалентное железо менее чувствительно к электролитам, но устойчиво также только в кислой или нейтральной среде.

МИНЕРАЛОГИЯ. Известно около 300 минералов, содержащих железо. Среди них много породообразующих. Промышленное значение имеет относительно небольшая группа минералов. Магнетит Fe 3 O 4 (содержание Fe 72,4 %). Минерал группы ферришпинелей. Образует изоморфный ряд с магнезиоферритом MgFe 2 O 4 и непрерывные ряды с другими шпинелидами. Кристаллизуется в кубической сингонии, кристаллы октаэдрические, реже ромбододекаэдрические и кубические. Характерны агрегаты зернистые, друзы, радиальнолучистые, почковидные, оолитовые, сажистые и др. Сильно магнитен. Черный, иногда с синеватой побежалостью. Черта черная. Блеск полуметаллический до металлического. Твердость 5,5–5,6, удельльная масса 4,8–5,3 г/см 3 . Магнетит с примесью TiO 2 называется титаномагнетитом , а с примесью V 2 O 5 – кульсонитом . Гематит Fe 2 O 3 (Fe 70 %) кристаллизуется в тригональной сингонии. Кристаллы пластинчатые, ромбоэдрические, редко призматические и скаленоэдрические. Агрегаты листоватые (железная слюдка , железная роза ), чешуйчатые и жирные на ощупь (железная сметана ), плотные, скрытокристаллические (красный железняк ), натёчные, почковидные (красная стеклянная голова , крововик ), землистые, оолитовые и др. Цвет минерала черный, стально-серый. Черта вишнево-красная, блеск полуметаллический, алмазный. Твердость 5–6, удельная масса 5,26 г/ см 3 . Мартит Fe 2 O 3 (Fe 70 %) – псевдоморфозы гематита по магнетиту. Образуется на месторождениях латеритного выветривания и в железных шляпах. Бурый железняк : природные гидрооксиды железа – гётит (FeOOH) и гидрогётит (FeOOHnH 2 О) в смеси с гидрооксидами кремнезема и глинистым веществом (Fe 48–63 %). Сидерит FeCO 3 (Fe 48,3 %). Существуют изомофные ряды FeCO 3 – MgCO 3 и FeCO 3 – MnCO 3 . Разновидности марганецсодержащих минералов – манганосидерит , олигонит , магнийсодержащих минералов – сидероплезит , кальцийсодержащих – сидеродот и кобальтсодержащих – кобальтолигонит и кобальтферосидерит . Силикаты железа – шамозит и тюрингит (Fe 27 – 38 %).

Сернистые и мышьяковистые соединения железа (пирит , арсенопирит и др.), несмотря на высокое содержание Fe, не могут являться минералами, представляющими промышленный интерес в качестве руд железа, так как S и As являются вредными компонентами в составе железных руд.

ПРИМЕНЕНИЕ В ПРОМЫШЛЕННОСТИ. Железные руды являются природным сырьем для получения чугуна в доменных печах, железа – внедоменным способом и стали – в бессемеровских конверторах или мартеновских печах. В нефтяной промышленности применяется магнетит в качестве утяжелителя глинистых растворов при бурении глубоких скважин.

Железные руды, пригодные для металлургии, должны иметь определенный минеральный и химический состав, а также физические свойства. Минимальное содержание железа в сырых рудах, пригодных для эксплуатации, допускается в количестве 25–30 %. Титаномагнетитовые руды могут разрабатываться при среднем содержании железа 15–17 % в связи с попутным извлечением из них титана и ванадия.

Минимальное содержание железа в рудах, используемых для плавки в домнах, изменяется в определенных пределах и зависит от минерального типа руд. Для магнетитовых и гематитовых руд содержание железа должно быть не менее 46–50 %; для бурожелезняковых – 37–45 %; для сидеритовых – 30–36 %. Руды с более низким содержанием железа подвергаются обогащению путем рудоразборки, промывки, магнитный и электромагнитной сепарации и других процессов. Из физических свойств железной руды основное значение имеют следующие: плотность, твердость, кусковатость, пористость, газопроницаемость, а также структура и текстура.

РЕСУРСЫ И ЗАПАСЫ. Ресурсы железных руд известны более чем в 130 странах. По данным ГНПП «Аэрогеология» Министерства природных ресурсов РФ по состоянию на начало 1997 г. они оценивались в 1456 млрд т. В недрах Америки сосредоточено 33,3 %, Европы – 29,6 %, Азии – 15,8 %, Австралии и Океании – 12 % и Африки – 9,3 %. Наибольшими ресурсами железных руд обладают Россия – 256 млрд т (включая прогнозные ресурсы категорий P 1 , P 2 , и P 3), Бразилия – 200 млрд т, Австралия – 165 млрд т и США – 150 млрд т.

Общие запасы железных руд известны в 107 странах. Они составляют 381,3 млрд т, в том числе подтвержденные – 214,3 млрд т. По количеству общих и подтвержденных запасов лидирует Россия: 26,4 % и 26,7 % мировых, соответственно (табл. 1).

Таблица 1

Запасы железных руд (млн т) в некоторых странах

Часть света,

подтверж-денные

Великобритания

Германия

Казахстан

Кот-д"Ивуар

Мадагаскар

Бразилия

Венесуэла

АВСТРАЛИЯ

По разведанным (подтвержденным) запасам месторождения железных руд разделяют на весьма крупные (более 1 млрд т), крупные (300 млн–1 млрд т), средние (50–300 млн т) и мелкие (менее 50 млн т).

ДОБЫЧА И ПРОИЗВОДСТВО. Добыча железных руд на рубеже XX–XXI вв. осуществлялась более чем в 40 странах. Основное количество железорудного сырья добывалось на месторождениях магнетит-гематитовых руд в железистых кварцитах и сланцах. Превалирующее большинство месторождений этого типа разрабатывается открытым способом. Второе место по объемам разработки занимают месторождения осадочных гидрогётит-шамозит-сидеритовых руд.

Мировое производство товарных железных руд составляет около 1 млрд т. На 12 стран-продуцентов приходится 92,1 % суммарного производства железных руд: Китай – 24,2 %, Бразилия – 17,5 %, Австралия – 14,3 %, Россия – 7 %, Индия – 6,5 %, США – 6,1 %, Украина – 4,6 %, Канада – 3,6 %, ЮАР – 3 %, Венесуэла – 2 %, Швеция – 2 %, Казахстан – 1,3 %.

В Китае разрабатывается около 100 крупных месторождений, запасы которых превышают 100 млн т (содержание железа в рудах в среднем 33 %). Действуют 17 горнодобывающих компаний. В Австралии почти вся горнодобывающая промышленность страны сосредоточено в железорудной провинции Пилбара (Западная Австралия). На этот регион приходится 97 % всех добытых в стране руд. Самым крупным продуцентом железорудного сырья является компания « Rio Tinto " s Hamersley Iron » .

В России наиболее крупные месторождения сосредоточены в Центрально-Черноземном регионе. Эксплуатация железорудных месторождений здесь ведется тремя горно-обогатительными комбинатами (Лебединским, Михайловским и Стойленским). Месторождения железных руд разрабатываются также в Северном (Ковдорское, Костомукшское и Оленегорское месторождения), Уральском, Западно-Сибирском и Восточно-Сибирском регионах.

МЕТАЛЛОГЕНИЯ И ЭПОХИ РУДООБРАЗАВАНИЯ. Железорудные месторождения образовывались во все эпохи: начиная с позднего архея и раннего протерозоя до миоцена и плиоцена включительно. На геосинклинальном этапе основная концентрация железа происходит на ранней стадии и тесно связана с базальтовым магматизмом, когда формируются магматические и скарновые месторождения железных руд. Средняя и поздняя стадии геосинклинального цикла для железа мало продуктивны.

Экзогенные железорудные месторождения начали формироваться в раннем протерозое, когда существовали специфические условия переноса железа, поступавшего с континентов в водные бассейны. Железо, по-видимому, переносилось в виде бикарбонатов в глубинные области океана, где осаждалось в виде гидрооксидов и частично карбонатов совместно с кремнистыми образованиями. Последующий метаморфизм таких образований мог привести к формированию железистых кварцитов, с которыми связаны огромные запасы железорудного сырья. Осадочные месторождения железа, возникшие в более поздние эпохи, формировались в основном в зоне шельфа за счет соединений железа, поступавших с суши, предварительно испытавших интенсивное латеритное выветривание. Перенос железа осуществлялся в виде коллоидных растворов, предохраненных гумусовыми кислотами от коагуляции. В зависимости от изменения окислительно-восстановительного потенциала в области накопления осадков возникали бурожелезняковые либо силикатные железные руды.

Докембрийская эпоха была исключительно благоприятной для формирования крупных и уникальных месторождений железорудного сырья. К ним относятся месторождения железистых кварцитов и образованным по ним богатых мартит-гематитовых руд Кривого Рога (Украина), КМА (Россия), Западной Австралии (месторождение Хамерсли), района Лабрадора (Канада), озера Верхнего (США, Канада), штатов Бихар и Орисса (Индия), Минас-Жерайс (Бразилия) и др.

Раннепалеозойская эпоха по сравнению с докембрийской характеризуется менее значительным железооруденением, связанным с каледонским тектогенезом. Месторождения железных руд встречаются во многих странах мира, но удельный вес их в мировых запасах и добыче относительно невелик. Наиболее крупные месторождения этого возраста известны в Северной Америке – Уобана (провинция Ньюфаундленд в Канаде) и месторождения Бирмингенского района штата Алабама в США.

В позднепалеозойскую эпоху образовался ряд месторождений в СНГ. Большая часть их представлена контактово-метасоматическими магнетитовыми рудами, генетически связанными с гранитоидами. К ним относятся месторождения Тагило-Кушвинской группы на Урале (Высокогорское, Горноблагодатское и др.); в Кузнецком Алатау (Тейская группа), Горном Алтае (Инское, Белорецкое и другие месторождения). В Казахстане месторождения этого возраста известны в Кустанайском рудном районе (Качарское, Сарбайское, Соколовское и др.), а также в Центральном Казахстане (Атасуйская группа, в которой наиболее крупным является месторождение Западный Караджал). Многочисленные, но относительно небольшие месторождения имеются в Западной Европе – в Австрии, Бельгии, Франции. Издавна разрабатываются сидеритовые месторождения Австрии в Восточных Альпах, в районе развития девонских отложений, представленных граувакками, известняками, филлитами, кварцитами и песчаниками. Из них наиболее крупным является месторождение Эрцберг. Месторождения этого возраста выявлены также в Алжире, Ливии и других странах Северной Африки.

В мезозойскую эпоху были образованы многочисленные осадочные морские и континентальные (речные и озерные) железорудные месторождения на молодых эпигерцинских платформах и плитах. Накопление железных руд происходило в больших масштабах. Одной из крупнейших в мире является Западно-Европейская провинция, где образовались оолитовые железные руды, состоящие из лимонита и гематита и в меньшей степени из сидерита и шамозита. Большая часть этой провинции находится на территории Франции. Крупные месторождения железных руд юрского возраста сосредоточены в Великобритании – в Линкошире (месторождение Фродингем), Йоркшире (месторождение Кливленд), Оксфоршире (месторождение Банбери) и др. В Германии наиболее значительные месторождения расположены в районе Зальцгиттера. Здесь рудоносен базальный конгломерат нижнего мела мощностью 5–100 м. С ним связаны оолитовые бурые железняки. Содержание железа в рудах 25–33 %, SiO 2 17–30 %, CaO 4– 9 %, P менее 0,9 %.

В Северной Африке в мезозойскую эпоху сформировалась многочисленная группа железорудных месторождений (тип Бильбао). Они отличаются небольшими запасами (от 1 до 20–30 млн т), реже до 100 млн т, но характеризуются высоким качеством руд (среднее содержание железа около 52 %). К этой группе принадлежат месторождения замещения в известняках юры и мела: в Алжире месторождения Уэнза, Бу-Кхарда, Бени-Суэйф; в Марокко – Уиксон; в Тунисе – Джерисса, Дуария и др. В Азии мезозойские месторождения железных руд известны в Китае и Малайзии. В Китае они представлены несколькими типами. В провинции Хубэй разведана группа месторождений Дае. Рудные залежи расположены на контакте известняков триаса с интрузиями диорита и сиенита. Они представлены в основном гематитом, местами магнетитом, реже лимонитом. Содержание железа 57,6–60,5 %, P 0,03–0,1 %, S 0,06–0,32 %, SiO 2 5,9–9,4 %.

На территории России Н. М. Страхов выделил Северо-Евразийскую металлогеническую провинцию, в пределах которой расположены: Липецкий и Тульский бассейны сидерит-гидрогётитовых руд; месторождения сидерит-гидрогётитовых руд Горьковской и Вятской областей; месторождения инфильтрационного типа Алапаевской группы восточного склона Урала; Хоперский железорудный район; Аятский бассейн морских руд (K 2) в Восточном Зауралье; Западно-Сибирский бассейн морских оолитовых руд в среднем течении р. Обь. Многочисленные месторождения железных руд известны в пределах Сибирской платформы в области развития траппов пермо-триаса, тяготеющих к краевым частям Тунгусской синеклизы.

Кайнозойская эпоха характеризовалась исключительно широким проявлением процессов формирования железных руд, которые привели к образованию: 1) многочисленных месторождений латеритного типа в Америке, Азии, Океании и Африке; 2) осадочных (морских и континентальных) месторождений на территории СНГ, Западной Европы, Северной Америки и Африки; 3) скарновых месторождений в Румынии, Индонезии, Мексике и других странах. Для этой эпохи характерны крупные ресурсы железа, заключенные в месторождениях латеритных руд, которые часто содержат промышленные концентрации Ni и Co. На территории СНГ крупнейшим по запасам руд является Керченский бассейн, включающий Северное Причерноморье, восточную часть степного Крыма, Керченский и Таманский полуострова. Месторождения осадочных руд третичного возраста известны в ряде стран Западной Европы – Дании, Германии (Кессенберг, Грюнтен), Бельгии (Герольд), Швейцарии (Делемон).

ГЕНЕТИЧЕСКИЕ ТИПЫ ПРОМЫШЛЕННЫХ МЕСТОРОЖДЕНИЙ . Железорудные месторождения промышленного значения весьма разнообразны. Среди них выделяются: 1) магматические, 2) карбонатитовые, 3) скарновые, 4) вулканогенные гидротермальные, 5) вулканогенно-осадочные, 6) кор выветривания, 7) осадочные и 8) метаморфогенные. Основные запасы железных руд в земной коре связаны с метаморфогенными и осадочными месторождениями.

Магматические месторождения. В группе собственно магматических месторождений железных руд выделяются два класса, связанные: 1) с кислыми изверженными породами и 2) с основными и ультраосновными породами. Типичным представителем первого класса является месторождение Кирунавара , расположенное в Северной Швеции. Разработка его началась в XIX веке после внедрения в производство томасовского способа плавки стали, когда стало возможным промышленное использование фосфористых руд. Месторождение представлено плитообразным рудным телом субмеридионального простирания с падением на восток под углом 50–60, залегающим по контакту сиенит-порфиров в лежачем боку и кварцевых порфиров в висячем. Протяженность этого тела достигает 4,75 км, средняя мощность 100 м. Оно сложено магнетитом в тесной ассоциации с апатитом. Жильные минералы представлены авгитом, роговой обманкой, биотитом и турмалином. Руды массивные, плотные, реже с флюидальной и брекчиевидной текстурой. Рудное тело пересечено дайками аплитов, сиенит-порфиров и гранитов. Содержание Fe составляет 55–70 %, P – 3,5–6 % и более. В апатитах присутствуют редкие земли и иттрий в пределах 0,15–0,65 %. Запасы магнетитовых руд месторождения Кируновара оцениваются в 1,8 млрд т. Месторождение интенсивно разрабатывается. Руда поступает на металлургические предприятия Швеции, Германии и Великобритании. Удельный вес месторождений данного типа превышает 5 % и в основном приходится на Швецию.

Магматические месторождения, связанные с основными и ультраосновными породами, представляют собой зоны концентрированной вкрапленности с шлировыми и жило-линзовидными обособлениями титаномагнетита. Основным рудным минералом месторождений этого класса является титаномагнетит со структурой распада твердого раствора, представляющего собой магнетит, содержащий тонкопластинчатые вростки ильменита. В подчиненном количестве отмечаются зерна магнетита, ильменита и шпинели. Руды характеризуются промышленными концентрациями Fe, V, иногда Ti и низким содержанием S и P. Месторождения этого класса широко известны на Урале (Качканарское, Кусинское и др.), в Горном Алтае (Харловское), в США (Тегавус), ЮАР и других странах.

Карбонатитовые месторождения. С карбонатитовыми массивами нередко связаны железорудные месторождения. Они приурочены, как правило, к щелочно-ультраосновным интрузивам центрального типа. Характерны перовскит-титаномагнетитовые и апатит-магнетитовые руды. Такие месторождения известны в России на Балтийском щите (Ковдор, Африканда), Сибирской платформе (Гулинский массив), на Африканской платформе (Сукулу в Уганде, Дорова в Зимбабве, Люлекоп в ЮАР и др.).

Типичным примером может служить Ковдорское месторождение. Оно расположено в Кировском районе Мурманской области и приурочено к одноименному массиву ультраосновных-щелочных пород и карбонатитов площадью 40 км 2 . Массив представляет многофазный интрузив центрального типа, сложенный последовательно внедрившимися оливинитами, мельтейгитами, ийолитами, нефелиновыми сиенитами, а также сложным комплексом силикатных метасоматитов и карбонатитов. Магнетитовые руды и магнетитсодержащие породы слагают вытянутое в субмеридиональном направлении рудное тело длиной 0,3 км и шириной 0,1–0,8 км. Месторождение разведано до глубины 600–700 м. Преобладают руды с небольшим содержанием кальцита: апатит-форстерит-магнетитовые, форстерит-магнетитовые и флогопит-апатит-форстерит-магнетитовые. Во всех разновидностях руд наблюдается тонкая вкрапленность пирохлора и бадделеита. Содержание основных компонентов в рудах составляет (%): Fe 20–55 (в среднем 29), MgO 15–17, CaO 11–12, P 2,9, S 1,2, MnO и TiO 2 – десятые доли процента. Месторождение разрабатывается АО «Ковдор» .

Скарновые (контактово-метасоматические) месторождения связаны с умеренно кислыми интрузивами (гранодиоритами, кварцевыми диоритами), контактирующими обычно с карбонатными толщами. Они широко распространены на Урале (Высокогорское, Гороблагодатское и др.), в Казахстане в Кустанайской области (Соколовское, Сарбайское, Качарское и др.), Горной Шории и Хакассии (Тейское, Тельбес, Таштагол, Абаканское и др.), США (Айрон-Спрингс, Адирондак), Марокко (Риф), Румынии (Банат) и других странах.

Месторождения представлены пластообразными залежами, линзами, гнездами сплошных руд и вкрапленностью магнетитов в скарнах. Состав скарнов разнообразен: встречаются гранатовые, гранат-эпидотовые, пироксен-гранатовые, актинолитовые и эпидот-хлоритовые. Содержание железа в рудах варьирует от 20 до 70 %. Нередко присутствует сера (до 3 %), связанная с вкрапленностью в рудах пирита и халькопирита.

Соколовское месторождение. Оно расположено в 40 км от г. Кустаная в Тургайском прогибе и приурочено к зоне гранат-пироксен-скаполитовых скарнов, развивавшихся вдоль зоны разлома по контакту палеозойских известняков с диоритами и порфиритами. В скарновой зоне, вытянутой в субмеридиональном направлении на 7,3 км, залегает магнетитовое рудное тело, падающее на запад под углом 70–80. Наиболее высокие концентрации магнетита наблюдаются в южной части рудного тела. Здесь на верхних горизонтах мощность рудного тела достигает 250–270 м. На остальной площади месторождения мощность его не превышает 100–110 м. Оруденение развито в пачке известняковых туффитов (мощность 120–140 м), залегающих под толщей порфиритов. Субширотные и диагональные разломы делят месторождение на ряд отрезков протяженностью 800–1400 м. Руды магнетитовые, массивные, реже вкрапленные. На верхних горизонтах месторождения до глубины 70–75 м магнетиты мартитизированы. Содержание Fe в богатых рудах составляет 57–58 %, S 1,35–2,57 %, P 0,07–0,09 %. Среди вкрапленных руд, требующих обогащения, различают два сорта: с содержанием Fe 30–50 и 20–30 %. Руды характеризуются высокими концентрациями Ca и Mg, что улучшает технологический процесс их плавки. Месторождение разрабатывается «Соколовско-Сарбайской ассоциацией» . Добытая руда поступает на Соколовско-Сарбайский ГОК.

Вулканогенные гидротермальные месторождения парагенетически тесно связаны с траппами. Они широко распространены на Сибирской платформе, где образуют ряд железорудных районов: Ангаро-Катский, Ангаро-Илимский, Среднеангарский, Канско-Тасеевский, Тунгусский, Бахтинский и Илимпейский. Месторождения залегают в палеозойских отложениях платформенного чехла. Область их распространения контролируется развитием интрузивных траппов, ниже которых в разрезе залегают галогенные отложения. С ними связывают образование хлоридов железа, которые мигрировали в вышележащие комплексы пород. Путями интенсивной миграции этих растворов являлись тектонические разрывы, а также, возможно и трубка взрывов. В результате их воздействия происходили метасоматические изменения пород и оруденение. Рудные тела жилообразной, линзообразной и часто неправильной формы. Наиболее богатые рудные зоны сложены как телами сплошных, так и брекчиево-вкрапленных и вкрапленных руд. Содержание железа в рудах варьирует от 25 до 60 %. Рудообразующий магнетит всегда содержит изоморфную примесь магния и относится к разности магномагнетита.

Наиболее крупным и типичным представителем этой группы является Коршуновское месторождение. Оно находится в районе г. Же- лезногорска Иркутской области вблизи железнодорожной магистрали Тайшет–Лена. Месторождение локализовано в отложениях платформенного чехла, представленных аргиллитами, известняками, мергелями, алевролитами и песчаниками кембро-ордовика. Места пересечения осадочных пород крутопадающими тектоническими нарушениями выполнены туфобрекчиями и обломками вмещающих пород, подвергшимися метасоматическим изменениям. Форма рудных тел – штоко-, линзо- и столбообразная. Основное рудное тело вытянуто с юго-запада на северо-восток на 2,5 км при ширине 0,4–0,6 км. На глубину рудное тело суживается и прослежено до 1100 м. Доминируют брекчиевые и вкрапленные руды, которые связаны постепенными взаимопереходами. Главный рудный минерал магномагнетит, содержащий до 6 % MgO. Второстепенный рудный минерал гематит. Разведанные запасы месторождения превышают 400 млн т; среднее содержание Fe 34,4 %, S 0,02 % и P 0,2 %. Эксплуатация месторождения ведется Коршуновским ГОК.

Вулканогенно-осадочные месторождения встречаются относительно редко. К ним относится Западный Караджал в Казахстане, Терсинская группа в Кузнецком Алатау, в Алжире Гара Джебилет и Мишери Абделазис, в Германии месторождения Лан и Дилль. Они пространственно связаны, как правило, с синклинальными зонами эвгеосинклинальных формаций. Рудные пласты обычно деформированы вместе с вмещающими их толщами. Руды сложены гематитом, магнетитом и сидеритом. В них встречаются сульфиды – пирит, халькопирит, арсенопирит, сфалерит, галенит, а среди нерудных (жильных) минералов – серицит, хлорит, кварц, опал, халцедон, доломит, анкерит, апатит и др. Промышленное значение месторождений этой группы невелико.

Типичным представителем этой группы является месторождение Западный Караджал. Оно находится в Карагандинской области Казахстана примерно в 110 км к юго-западу от ст. Жана Арка. В разведке этого месторождения принимали участие выпускники 1957–1958 гг. геолого-географического факультета Белорусского государственного университета (В. П. Ерошин, Д. М. Ерошина). В районе месторождения развиты свита эффузивных и туфогенных пород нижнего–среднего девона (мощность до 1,5 км) и такой же мощности свиты осадочных пород верхнего девона – нижнего карбона. Породы, слагающие эти свиты, сильно дислоцированы, смяты в складки, разбиты разломами и прорваны дайками диоритов и диоритовых порфиров. До глубины 600 м породы залегают под углом 45–50, формируя сложную по строению синклиналь. Рудная залежь образует пластообразное тело, прослеживающееся по простиранию на 6,5 км и по падению на 0,8 км. Мощность этого тела 20–40 м. В нижней части рудной залежи развиты гематитовые руды, в средней – преимущественно магнетитовые, а верхней – бедные гематитовые и марганцевые руды. Второстепенные минералы – сидерит, барит пирит, галенит, сфалерит. Разведанные запасы месторождения превышают 300 млн т руды, со средним содержанием Fe 55,6 %, SiO 2 12,4 %, S 0,6 % и P 0,03 %.

Месторождения выветривания. Они чаще всего представлены: 1) латеритами и 2) железными шляпами. Месторождения железистых латеритов образуются при выветривании массивов основных и ультраосновных пород в условиях влажного тропического климата. В этих обстановках происходит разложение силикатов, содержащих двухвалентное железо с образованием лимонитовых руд обогащенных Ni, Co, Cr, и Mr, т. е. возникают природно-легированные руды. Крупнейшие месторождения, связанные с корой латеритного выветривания, находятся на Кубе. Латеритный покров мощностью от 5 до 30 м развит на площади 150 км 2 и прослеживается с перерывами на несколько десятков километров. Руды сложены землистым элювием, содержащим гидрооксиды железа, гематит, остатки серпентинита с примесью зерен хромшпинелидов, силикатов никеля. Руды содержат (%): Fe 40–50, Cr 2 O 3 1,5–1,8 (до 4), Ni 0,7–0,8 (до 2,5), Mn 0,5–3, P сотые доли, S до 0,2, SiO 2 18–30 и Al 2 O 3 10–12. Возраст месторождений третичный, общие запасы их 15 млрд т. Наиболее крупными являются месторождения Моа и Майари.

Месторождения железных шляп образуются при окислении сульфидных или сидеритовых руд. Руды чаще всего сложены гидрооксидами железа. Они имеют пористое, ячеистое, кавернозное или колломорфное строение. В рудах железных шляп сохраняются некоторые ценные элементы – Au, Ag, Pb, Ni и др.

Осадочные месторождения. Распространены весьма широко и имеют важное экономическое значение, занимая второе место среди других генетических типов железных руд. По условиям образования они разделяются на морские и континентальные.

Осадочные морские месторождения образуются в результате переноса железа речными подземными водами в виде тонких и грубых взвесей, коллоидных растворов и коагуляции их при встрече с солеными водами морских бассейнов. Рудоотложение часто происходит при трансгрессии моря, что способствует формированию руд с оолитовыми структурами. Среди них выделяются оксидные руды, состоящие из гидрооксидов железа, силикатные руды, представленные главным образом железистыми хлоритами, и карбонатные – существенно сидеритовые руды. Морские осадочные месторождения встречаются среди отложений различного возраста – от протерозойских (Нижнеангарское месторождение) до третичных включительно (Керченский железорудный бассейн, месторождения в Нигере и Бенине и др.). В рудах морских осадочных месторождений содержание Fe колеблется в пределах 20–50 %, чаще составляет 30–40 %.

Среди осадочных морских железорудных месторождений различают геосинклинальные и платформенные. Первые представлены сидеритовыми пластовыми месторождениями в морских терригенно-карбонатных отложениях (Бакальская группа месторождений Западного склона Южного Урала) и морскими гематитовыми месторождениями в терригенно-карбонатных отложениях (Нижнеангарское, Клинтон в США). Платформенные морские месторождения сложены сидерит-лептохлорит-гидрогематитовыми рудами (Аятский, Керченский, Западно-Сибирский, Лотарингский бассейны).

Характерным представителем осадочных морских бассейнов платформенного типа является Керченский железорудный бассейн. Бассейн был открыт еще в 1830-х годах. Руды стали осваиваться в 1955–1970-х годах. Он охватывает восточную и северную окраины Керченского полуострова и прослеживается на Таманский полуостров. Площадь его составляет 150 км 2 . Территория бассейна сложена верхнетретичными отложениями, смятыми в пологие складки с осями, вытянутыми в широтном и северо-восточном направлениях. Выделяются два типа месторождений осадочных железных руд. Первый тип приурочен к крупным тектоническим брахисинклинальным структурам – мульдам, второй – связан с ложнотектоническими структурами – компенсационными прогибами в зоне развития грязевого вулканизма.

Верхнетретичные отложения, слагающие мульды, включают ряд пластов глин, переслаивающихся с песками, а в нижней части с известняками. Рудный пласт подстилается известняками понтического яруса (нижний плиоцен). В центральных частях мульд он залегает горизонтально, а на крыльях наклонен под углом 10–15. Мощность пласта колеблется от 2–3 м на крыльях до 25–30 м в осевых частях мульд. Рудный пласт сложен в основном оолитовыми рудами. Размер оолитов варьирует от долей миллиметра до 5–10 мм. Они сцементированы керченитом, вивианитом, баритом, псиломеланом, пиролюзитом, карбонатами железа и марганца. Главными типами руд являются «табачные» и «коричневые». Первые формировались в окислительно-восстановительной зоне, вторые за счет первых в окислительной зоне. Второстепенными являются марганцево-железистые «икряные» руды, отличающиеся от «коричневых» повышенным содержанием марганца. Наиболее высококачественные «коричневые» руды, главными минералами которых являются гидрогётит и ферримонтмориллонит, а второстепенными – псиломелан, пиролюзит, гипс, арагонит, кальцит, пирит, керченит, кварц, полевой шпат и глауконит. В «коричневых» рудах содержится (%): Fe 37,7; MnO 3;V 2 O 5 1,20; P 1,0; S 0,06; As 0,13.

Осадочные континентальные месторождения представлены преимущественно бурожелезняковыми рудами озерного и болотного генезиса. Такие руды широко распространены на Восточно-Европейской платформе и известны в Тульской и Липецкой областях. Они характеризуются низким содержанием железа (до 30–40 %). Наиболее крупное месторождение этого типа – Лисаковское было открыто в 1960-х годах в Кустанайской области (Казахстан). Рудные залежи здесь вытянуты на десятки километров вдоль палеорусел рек. Содержание Fe в рудах 30–35 % и P около 0,5 %.

Метаморфогенные месторождения имеют исключительно важное экономическое значение. На их долю приходится основная масса мировых запасов и около 60 % мировой добычи железных руд. По запасам это, как правило, уникальные и крупные месторождения. Они известны на Канадском, Бразильском, Индийском, Южно-Африканском, Балтийском и Украинском щитах, а также на Китайской и Австралийской платформах, Курско-Воронежском массиве и в других провинциях, сложенными докембрийскими образованиями.

К этой серии относятся: 1) залежи железистых кварцитов и 2) богатых железных руд в древних метаморфических формациях. Железистые кварциты присущи только докембрийским складчатым областям. Они представляют собой сравнительно бедные руды с содержанием железа 20–40 % (чаще 32–37 %) и характеризуются крайне низкими концентрациями P и S. Все крупнейшие месторождения железистых кварцитов с запасами руды в миллиарды и десятки миллиардов тонн относятся к нижнепротерозойским эвгеосинклинальным образованиям, претерпевшим метаморфизм фации зеленых сланцев. Главными минералами железистых кварцитов этой формации являются кварц, магнетит, гематит, куммингтонит, биотит, хлорит, реже сидерит, пироксены и щелочные амфиболы. Более глубоко измененные месторождения амфиболитовой фации метаморфизма представлены менее крупными (сотни миллионов тонн) месторождениями.

С толщами железистых кварцитов связаны залежи богатых железных руд. Они представляют собой продукт природного обогащения железистых кварцитов, образующихся в результате выщелачивания кварца и разложения силикатов при процессах древнего выветривания или метаморфизма. Существуют два основных морфологических типа залежей богатых руд – плащеобразные и линейные. Первые залегают на головах крутопадающих пластов железистых кварцитов, вторые – представляют собой уходящие на глубину, протяженные по простиранию и значительной мощности клинообразные рудные тела богатых железных руд среди железистых кварцитов. Минеральный состав богатых руд: мартит и мартитизированный магнетит, гематит, гётит, гидрогётит, глинистые минералы, вторичные карбонаты и пирит. Руды имеют высокое содержание Fe (54–69 %).

Крупнейшими железорудными бассейнами этого типа являются в СНГ: Курская магнитная аномалия (Лебединское, Михайловское, Коробковское, Салтыковское и др. месторождения), Криворожский железорудный бассейн, в дальнем зарубежье – железорудный пояс Лабродора (Канада), группа месторождений в районе озера Верхнего (США), в штате Минас Жерайс (Бразилия), в штатах Бихар и Орисса (Индия), бассейн Хамерсли (Западная Австралия) и т. д.

Типичный представитель этой группы – Криворожский (Криворожско-Кременчугский) железорудный бассейн. Расположен на правобережье Днепра в пределах Украины. Продуктивной является криворожская серия железистых пород протерозойского возраста, простирающаяся в виде узкой полосы север-северо-восточного простирания на 100 км. Ширина ее в районе Кривого Рога достигают 5–6 км. Криворожская серия залегает трансгрессивно с резким угловым несогласием на породах архея. В разрезе ее выделяют три отдела: нижний – аркозово-филлитовый (подрудный); средний – рудоносный, представленный железистыми кварцитами и роговиками, и верхний – глинисто-сланцевый (надрудный). Геологическая структура бассейна очень сложная (рис. 1). Криворожская серия образует сложный синклинорий, состоящий из синклинальных и антиклинальных складок с падением крыльев под углами 45–80. Шарниры синклиналей погружаются под углом до 40 в северном направлении. В бассейне выделяется ряд рудоносных структур (с юга на север): Ингулецкая (Южное рудное поле), Саксаганская (Главное, или Саксаганское рудное поле), Первомайская, Анновская, Желтореченская (Северное рудное поле), Попельнонастовская.

Среди железистых кварцитов различают магнетитовые, магнетит-гематитовые, гематитовые типы и оксидные их разности. Богатые руды, состоящие в основном из оксидов и гидрооксидов железа, слагают пласто-, столбо-, штоко- и линзообразные залежи среди железистых кварцитов. Они характеризуются высоким содержанием Fe (54–64 %) и низкими концентрациями вредных примесей (S 0,03–0,15 %, P 0,04–0,26 %). Запасы богатых руд составляют 1,5 млрд т (среднее содержание Fe 57,6 %), железистых кварцитов-18 млрд т (среднее содержание Fe 35,9 %).

МЕСТОРОЖДЕНИЯ И РУДОПРОЯВЛЕНИЯ В БЕЛАРУСИ. Железные руды выявлены в породах кристаллического фундамента и осадочном чехле (болотные руды, сидерит). В кристаллическом фундаменте известны 2 месторождения и 10 рудопроявлений. Наиболее крупным месторождением является Околовское , расположенное в Столбцовском районе Минской области. Железистые кварциты связаны со стратифицированными образованиями околовской серии (возраст около 2 млрд лет). Они находятся в тесной парагенетической ассоциации с вмещающими плагиогнейсами и амфиболитами. Залегание железистой толщи осложнено тектоническими нарушениями субширотного, субмеридионального и северо-западного простирания. На месторождении выявлены три горизонта железистых кварцитов мощностью от 20–80 до 125–259 м, имеющих пластообразную форму, моноклинальное залегание с падением на юго-восток под углом 60–80. В горизонтах выделяется до 5–6 рудных пластов. Развиты два основных типа руд: силикатно-магнетитовые кварциты и магнетитовые амфиболиты. Главный рудный минерал-магнетит, изредка встречаются пирит, пирротин, халькопирит, ильменит, а в слабо развитой зоне окисления – мартит, гематит и лимонит. Среднее содержание железа в продуктивных пластах 27 %. Руды хорошо обогащаются. По данным предварительной разведки запасы железных руд категории С 1 до глубины 700 м составляют 340 млн т.

Новоселковское месторождение ильменит-магнетитовых руд находится в Кореличском районе Гродненской области. Оно контролируется небольшой (1,50,5 км) интрузией габбро, испытавшей метаморфизм в условиях амфиболитовой фации. Месторождение разбито тектоническими нарушениями (типа сбросов) северо-западного простирания на три блока с амплитудой смещения около 100 м. При бортовом содержании Fe общ. 15 % в каждом из них выделяется от трех до пяти рудных тел пластообразной, линзообразной формы мощностью от 4 до 128 м, протяженностью по простиранию от 110 до 411 м и по падению – от 110 до 640 м. Главными рудными минералами являются магнетит (до 60 %) и ильменит (до 30 %), второстепенными – пирит и пирротин. Среднее содержание основных компонентов в рудах колеблется в пределах (%): Fe общ. 23,5–35,7; TiO 2 4,2–6,0; V 2 O 5 0,15–0,24; P 2 O 5 0,48–0,51; S 0,8–1,04.

Криворожское месторождение гематитовых и мартитовых руд Украины располагается в Днепропетровской области узкой полосой шириной 3-й длиной до 90 км. Глубина залегания руды достигает на отдельных участках 500 м. Добычу ведут шахтным способом и открытыми (~50% всей добычи) разработками. Богатые руды (46-60% Fe), состоящие в большинстве случаев из гематита и кварца, находятся поверх скоплений бедных магнетитовых и гематитовых кварцитов. Руды чрезвычайно чисты по фосфору и сере. Магнетитовые кварциты (Кирунавара (Швеция). Месторождение магнетитовых руд магматического происхождения у северного полярного круга. Руда содержит в среднем 59,8% Fe, 0,1-0,2% Mn. Пустая порода представлена апатитом 3(3CaOР 2 С>5) СаFe2. В связи с этим содержание фосфора находится в обратной связи с содержанием железа в руде. Так, при 68% Ре в руде содержится всего 0,03% Р, а при 58% Fe > 2,5% Р. Добываемые открытыми.разработками руды подвергают дроблению, измельчению, магнитной сепарации; в концентратах содержится 63-69% Fe. Экспорт руды и концентрата осуществляется главным образом через порт Лулео и норвежский порт Нарвик. Запасы месторождения составляют 2,4 млрд. т.

Лотарингский железорудный бассейн (Франция, у г. Нанси, частично на территории Люксембурга и Бельгии). Здесь располагается одно из крупнейших в мире осадочных месторождений оолитового железняка (руды минетт) и сидеритов. В руде в среднем содержится,% : 31-35 Fe; 0,2-0,3 Mn; до 2,0 Р и 0,1 5. Характер пустой породы руды на отдельных участках месторождения резко различный. По этой причине руды с кислой пустой породой (15-27% SiO 2 , 3-12% CaO; 4-8% Al 2 O 3) смешивают с рудами с основной пустой породой (15-22% CaO; 6-12% SiO 2 ; 4-8% Al 2 O 3), получая самоплавкие смеси. Ресурсы руд оцениваются в 6 млрд. т. Франция потребляет до 65% добываемой руды, экспортируя остальную ее массу в Бельгию, Люксембург и ФРГ.

Ньюфаундленское месторождение (Канада). На северном берегу острова Бель-Айленд в заливе Консепшен располагается крупное до кембрийское осадочное месторождение гематито-сидеритовых руд оолитового строения с ресурсами (А + В + С) в 0,112 млрд. т (забалансовые резервы 3 млрд. т). В руде содержится Месторождение у г. Лабрадор-Сити (Канада) расположено на восточном берегу озера Вабуш (полуострова Лабрадор). Здесь на поверхности земли (рудник Кэрол) ведется разработка докембрийского осадочного месторождения гематита, содержащего 35-40% Fe (запасы 3 млрд. т). Руда, содержащая 0,01-0,03% S, 0,03-1,14% Р, 0,08-7,9% Mn, подвергается обогащению. В полученном концентрате содержится 64% Fe. Характер пустой породы кислый.

Месторождение Верхнего озера (США). На площади 160 км 2 находится эксплуатируемое с 1854 г. крупное месторождение до кембрийских метаморфизованных богатых гематитовых руд с кварцевой пустой породой, располагающихся поверх пластов железистых кварцитов (таконитов) гематитовой и магнетитовой разности. Богатые пылеватые руды содержат 50-51% Бе, 9-10% SiO 2 . Главная масса руды содержит мало марганца, фосфора и серы (в округе Кайюна руды содержат до 6% Mn). Общие запасы богатых руд составляют около 2 млрд. т.

Месторождение бурого железняка на острове Куба расположено у восточной оконечности острова у порта Маяри (общие запасы около 3 млрд. т). Руда содержит в среднем, %: 45 Fe; 1,7-2,0 Сг; 0,8-1,0 N1; 0,06 Р; 0,04 Б и имеет латеритовую пустую породу (2-6% SiO 2 , 6-14% Al 2 O 3). Вся руда пылеватая и нуждается в агломерации.

Красный железняк Венесуэлы (запасы 2,2 млрд. т). Докембрийские осадочные месторождения Эль-Пао и Серро-Боливар находятся на востоке страны и разрабатываются открытым способом. Руда рудника Сер-ро-Боливар содержит в среднем, %: 60,7 Fe; 1,78 SiO 2 ; 5,20 Al 2 O 3 ;0,18 Р Руда месторождения Эль-Пао поставляется при содержании,%: 68,0 Fe; 0,77 SiO 2 ; 0,14 Al 2 O 3 ; 0,051 Р; 80% руды экспортируется в США.

Месторождения Итабира и Итабирита (Бразилия) расположены в 350 км к северу от Рио-де-Жанейро на площади 7000 км 2 . Это докембрийские осадочные метаморфизованные гематитовые месторождения. При добыче образуется лишь 30% мелочи. Типичный состав экспортируемой из этого района руды,%: 66,5-70,7 Fe; 0,1-1,3 SiO 2 ; 0,05-0,5 Al 2 O 3 ; до 0,5 Mn; до 0,03 S; до 0,08 Р. Запасы руды в этом районе составляют 16,3 млрд. т.

Месторождение Каражас (Бразилия) в районе р. Амазонка также относится к докембрийским осадочным метаморфизованным месторождениям. Запасы оцениваются в 15-20 млрд. т. После несложного обогащения руда содержит 67% Fe. Проектная мощность рудника 35 млн. т/год.

Месторождение латеритового бурого железняка у г. Конакри (Гвинея). Это крупнейшее железорудное месторождение Африки (общие запасы 2,5 млрд. т, в том числе богатой руды более 1 млрд. т) состава, %: 51,5 Fe; 2,50 SiO 2 ; 9,80 Al 2 O 3 ; 0,3 до 0,06 Р; до 0,60 Cr; до 0,4 Ni + Со; до 0,08 Mn и до 12 п. п. п.

Месторождение «железного пояса» Индии (шт. Бихар и Орисса на северо-востоке страны, 250-300 км от Калькутты). Здесь расположено докембрийское осадочное месторождение гематитовых руд с глиноземистой пустой породой (запасы около 20 млрд. т). Богатые руды содержат, %: до 66 Fe; до 0,06 Р; следы S; до 2,5 SiO 2 ; 1,5-4 Al 2 O 3 . Относительно более бедные руды поставляются при 58-59% Fe. Значительная часть добываемой руды экспортируется в Японию.