Как держать форму. Массаж. Здоровье. Уход за волосами

Железная руда. Состав и свойства железной руды

Прямо посередине карьера стоит гора с пустой породой, вокруг которой добыли всю руду содержащую железо. В скором времени планируется ее взорвать по частям и вывезти из карьера.

Сперва расскажу про сам карьер. Лебединский ГОК — является крупнейшим российским предприятием по добыче и обогащению железной руды и имеет самый крупный в мире карьер по добыче железной руды. Комбинат и карьер расположены в Белгородской области, между городами Старый Оскол и Губкин. Вид на карьер сверху. Он действительно огромный и разрастается с каждым днем. Глубина карьера Лебединского ГОКа — 250 м от уровня моря или 450 м – от поверхности земли (а диаметр – 4 на 5 километров), в него постоянно просачиваются подземные воды, и если бы не работа насосов, то он заполнился до самого верха за месяц. Он дважды занесен в книгу рекордов Гиннеса как крупнейший карьер по добыче негорючих полезных ископаемых.


Немного официальной информации: Лебединский ГОК входит в концерн «Металлоинвест» и является лидирующим производителем железорудной продукции в России. В 2011 году доля производства концентрата комбинатом в общем годовом объеме производства железорудного концентрата и аглоруды в России составила 21%. В карьере работает много всевозможной техники, но самая заметная конечно же многотонные самосвалы «Белаз» и «Caterpillar».


В год оба комбината входящих в компанию (Лебединский и Михайловский ГОК) производят около 40 млн. тонн железной руды в виде концентрата и аглоруды (это не объем добычи, а обогащенная уже руда, то есть отделенная от пустой породы). Таким образом выходит, что в день на двух ГОКах производится в среднем около 110 тысяч тонн обогащенной железной руды. Этот малыш за один раз перевозит до 220 тонн (!) железной руды.


Экскаватор дает сигнал и он аккуратно дает задний ход. Всего несколько ковшов и кузов гиганта заполнен. Экскаватор еще раз дает сигнал и самосвал отъезжает.


Недавно были закуплены «Белазы» грузоподъемностью 160 и 220 тонн (до сих пор грузоподъемность самосвалов в карьерах была не больше 136 тонн), и ожидается поступление экскаваторов «Хитачи» с емкостью ковша 23 куб.м. (в настоящее время максимальная емкость ковша карьерных экскаваторов составляет 12 куб.м.).



«Белаз» и «Caterpillar» чередуются. Импортный самосвал перевозит кстати всего 180 тонн. Самосвалы такой большой грузоподъемности – это новая техника, в настоящее время поступающая на ГОКи в рамках инвестпрограммы «Металлоинвеста» по повышению эффективности горно-транспортного комплекса.


Интересная фактура у камней, обратите внимание. Если не ошибаюсь слева кварцит, из такой руды добывают железо. Карьер полон не только железной руды, но и различными минералами. Они, в основном, не представляют интереса для дальнейшей переработки в промышленных масштабах. Сегодня из пустой породы получают мел, а также делают щебень для строительных целей.


Ежесуточно в карьере Лебединского ГОКа работает 133 единицы основной горной техники (30 большегрузных самосвалов, 38 экскаваторов, 20 бурстанков, 45 тяговых агрегатов).


Я конечно надеялся увидеть зрелищные взрывы, но даже если бы они проходили в этот день, мне все равно не удалось бы проникнуть на территорию карьера. Такой взрыв делают один раз в три недели. Вся техника по нормам безопасности (а ее немало) перед этим выводится из карьера.


Лебединский ГОК и Михайловский ГОК – два крупнейших комбината по добыче и переработке железной руды в России по объему выпускаемой продукции. Компания «Металлоинвест» обладает вторыми по величине в мире разведанными запасами железной руды - около 14,6 млрд тонн по международной классификации JORС, что гарантирует около 150 лет эксплуатационного периода при текущем уровне добычи. Так что жители Старого Оскола и Губкина надолго будут обеспечены работой.



Наверное заметили по предыдущим фотографиям, что погода была неважная, шел дождь, а в карьере стоял туман. Ближе к отъезду он слегка рассеялся, но все равно не сильно. Вытянул фото насколько возможно. Размеры карьера конечно впечатляют.



Железную руду загружают тут же в жд составы, в специальные усиленные вагоны, которые вывозят руду из карьера, они называются думпкары, их грузоподъемность – 105 тонн.


Геологические пласты, по которым можно изучать историю развития Земли.


Гигантские машины с высоты обзорной площадки кажутся не больше муравья.


Затем руду везут на комбинат, где происходит процесс отделения пустой породы методом магнитной сепарации: руду дробят мелко, потом отправляют на магнитный барабан (сепаратор), к которому в соответствии с законами физики все железное прилипает, а не железное – смывается водой. После этого из полученного железорудного концентрата делают окатыши и горячебрикетированное железо (ГБЖ), которое затем используется для выплавки стали. Горячебрикетированное железо (ГБЖ) - один из видов прямовосстановленного железа (ПВЖ). Материал с высоким (>90 %) содержанием железа, полученный по технологии, отличной от доменного передела. Используется в качестве сырья для производства стали. Высококачественный (с малым количеством вредных примесей) заменитель чугуна, металлолома. В отличие от чугуна, в производстве ГБЖ не используется угольный кокс. Процесс производства брикетированного железа базируется на обработке железорудного сырья (окатышей) высокими температурами, чаще всего, посредством природного газа.


Внутрь завода ГБЖ просто так не зайдешь, потому что процесс выпекания горячебрикетированных пирожков проходит при температуре около 900 градусов, а загорать в Старом Осколе у меня не входило в планах).

Лебединский ГОК — единственный производитель ГБЖ в России и СНГ. Комбинат начал производство этого вида продукции в 2001 году, запустив цех по производству ГБЖ (ЦГБЖ-1) с применением технологии HYL–III мощностью 1,0 миллион тонн в год. В 2007 году ЛГОК завершил строительство второй очереди цеха по производству ГБЖ (ЦГБЖ-2) с использованием технологии MIDREX с производственной мощностью 1,4 миллиона тонн в год. В настоящее время производственная мощность ЛГОКа составляет 2,4 миллиона тонн ГБЖ в год.


После карьера мы посетили Оскольский электрометаллургический комбинат (ОЭМК) входящий в Металлургический сегмент компании. В одном из цехов комбината производят вот такие стальные заготовки. Их длина может достигать от 4 до 12 метров, в зависимости от желания заказчиков.


Видите сноп искр? В том месте отрезается брусок стали.




Интересная машина с ковшом, называется бадьевоз, в него сливают шлак в процессе производства.


В соседнем цехе ОЭМК обтачивают и полируют стальные пруты разного диаметра, прошедшие прокат в другом цехе. Кстати, это комбинат — седьмое по величине предприятие в России по производству стали и стальной продукции.В 2011 году доля производства стали на ОЭМК составила 5 % от общего объема стали, производимой в Роcсии, доля производства проката также составила 5%.


ОЭМК применяет передовые технологии, включая технологию прямого восстановления железа и электродуговой плавки, что обеспечивает производство металла высокого качества, с уменьшенным содержанием примесей.



Основными потребителями металлопродукции ОЭМК на российском рынке являются предприятия автомобильной, машиностроительной, трубной, метизной и подшипниковой промышленности.




Металлопродукция ОЭМК экспортируется в Германию, Францию, США, Италию, Норвегию, Турцию, Египет и многие другие страны.



Комбинатом освоено производство сортового проката для изготовления изделий, используемых ведущими мировыми автомобилестроителями.


Кстати, не первый раз замечаю на подобных производствах женщин — крановщиц.


На этом заводе чуть ли не стерильная чистота, не характерная для подобных производств.


Нравятся сложенные аккуратно стальные пруты.


По требованию заказчика на каждое изделие клеится стикер.


На стикере проштамповывается номер плавки и код марки стали.


Противоположный конец может маркироваться краской, а к каждому пакету к готовыми изделиями крепятся бирки с номером контракта, страны назначения, марки стали, номера плавки, размера в миллиметрах, наименования поставщика и веса пакета.





Эти изделия — эталоны, по которым настраивается оборудование для точной прокатки.


А этот станок может просканировать изделие, и выявить микротрещины и дефекты до того, как металл попадет к заказчику.


На предприятии серьезно относятся к технике безопасности.



Вся вода, используемая в производстве очищается совсем недавно установленным суперсовременным оборудованием.


Это установка очистки сточных вод комбината. После обработки она чище, чем в реке, куда ее сбрасывают.


Вода техническая, почти дистиллированная. Как и любую техническую воду ее пить нельзя, но один раз можно попробовать, это не опасно для здоровья.


На следующий день мы поехали в Железногорск, находящийся в Курской области. Именно там находится Михайловский ГОК. На снимке — строящийся комплекс обжиговой машины №3. Здесь будут производить окатыши.

В его строительство будет инвестировано 450 млн. долларов. Предприятие будет построено и пущено в эксплуатацию в 2014 г.


Это макет комбината.



Затем мы поехали на карьер Михайловского ГОКа. Глубина карьера МГОКа — более 350 метров от поверхности земли, а его размер – 3 на 7 километров. На его территории на самом деле три карьера, это можно видеть на снимке со спутника. Один большой и два поменьше. Примерно через 3-5 лет карьер разрастется настолько, что станет одним большим единым, и возможно догонит по размерам Лебединский карьер.



В карьере задействовано 49 самосвалов, 54 тяговых агрегата, 21 тепловоз, 72 экскаватора, 17 буровых станков, 28 бульдозеров и 7 автогрейдеров. В остальном добыча руды на МГОКе не отличается от ЛГОКа.


В этот раз нам все-таки удалось попасть на комбинат, где железнорудный концентрат превращают в конечный продукт — окатыши.. Окатыши - комочки измельчённого рудного концентрата. Полуфабрикат металлургического производства железа. Является продуктом обогащения железосодержащих руд специальными концентрирующими способами. Используется в доменном производстве для получения чугуна.


Для производства окатышей используют железорудный концентрат. Для удаления минеральных примесей исходную (сырую) руду мелко измельчают и обогащают различными способами. Процесс изготовления окатышей часто называют «окомкование». Шихта, то есть смесь тонко измельчённых концентратов железосодержащих минералов, флюса (добавок, регулирующих состав продукта), и упрочняющих добавок (обычно это бентонитовая глина), увлажняется и подвергается окомкованию во вращающихся чашах (грануляторах) или барабанах-окомкователях. Они самые на снимке.



Подойдем поближе.


В результате окомкования получают близкие к сферическим частицы диаметром 5÷30 мм.


Довольно интересно наблюдать за процессом.



Затем окатыши по ленте направляются в корпус обжига.



Они высушиваются и обжигаются при температурах 1200÷1300° C на специальных установках - обжиговых машинах. Обжиговые машины (обычно конвейерного типа) представляют собой конвейер из обжиговых тележек (палет), которые движутся по рельсам. Но на снимке — концентрат, который вскоре попадет в барабаны.


В верхней части обжиговой машины над обжиговыми тележками располагают отопительный горн, в котором происходит сжигание газообразного, твердого или жидкого топлива и формирование теплоносителя для сушки, нагревания и обжига окатышей. Различают обжиговые машины с охлаждением окатышей непосредственно на машине и с выносным охладителем. Этого процесса к сожалению мы не увидели.


Обожжённые окатыши приобретают высокую механическую прочность. При обжиге удаляется значительная часть сернистых загрязнений. Так выглядит готовый к употреблению продукт).


Несмотря на то, что оборудование служит с советских времен, процесс автоматизирован, и для контроля за ним не нужно большого количества персонала.



Железные руды представляют собой горные породы, содержащие железо, причем в таком количестве, что руду выгодно перерабатывать. В природе имеется около 20 минералов с высоким содержанием железа (23-72%). Железо в руде находится в виде окислов или солей, соединенных с горной породой. В зависимости от состояния, в котором находится железо, различают четыре вида железных руд.

Бурый железняк содержит Железо в виде водного окисла 2Fe2O3-3H2O. Цвет руды желто-бурый. Эта руда бедна железом (от 35 до 60%), а серы и фосфора, наоборот, содержит больше, чем другие руды. Руда легко восстановима. Крупнейшие ее месторождения находятся на Урале (Бакальские руды с высоким содержанием железа, почти без примесей серы и фосфора). Большие запасы бурого железняка в порошкообразном виде имеются на Керченском полуострове. Известны также Тульское и Липецкое месторождения, руды Кольского полуострова, Тогайского железорудного бассейна.

Красный железняк содержит Железо в виде окисла Fe2O3. Руда красного цвета, содержание железа 55-60%. Это одна из лучших железных руд; она легко восстанавливается, содержит мало серы и фосфора. Богатейшие месторождения красного железняка находятся в Кривом Роге. Крупные запасы красного железняка имеются также в районе Курской магнитной аномалии.

Магнитный железняк содержит Железо в виде окисла Fe304. Руда черного цвета, содержание железа 45-70%. Это наиболее богатая железом руда. Она обладает магнитными свойствами, плотна, восстанавливается с трудом. Залегает главным образом на Урале - в горах Магнитная, Высокая, Благодать. Недавно разведаны месторождения магнитного железняка в Тогайской степи в Казахстане.

Шпатовый железняк содержит Железо в виде соли FeCO3. Эту руду называют сидеритом, или болотной рудой. Она бедна железом (от 30 до 45%). Залежи шпатового железняка встречаются на Урале в районе Бакальского месторождения

Комплексные железные руды содержат, кроме железа, другие металлы (хром, никель, титан, ванадий), восставав-ливаемые в доменной плавке:

хромоникелевые бурые железняки Орско-Халиловского месторождения содержат 35-45% железа; 1,3-1,5% хрома и 0,3-0,5% никеля;

титаномагнетиты, содержащие 42-48% железа; 0,3-0,4/о ванадия и 4,5-13,0% двуокиси титана, добываются на Урале в Качканарском, Кусинском и Первоуральском месторождениях.

Марганцевые руды применяют, чтобы увеличить содержание марганца в выплавляемых чугунах. Эти руды мягки, рыхлы и гигроскопичны. Содержание окиси марганца в них 28- 40%. Наиболее важным месторождением богатых руд (содержание окиси марганца 48-52%) являются Чиатурское на Кавказе, Никопольское на Украине, у г. Ачинска в Сибири, Уралоазовское и Полуночное на Урале и в Казахстане.


В процессе доменной плавки, кроме железных и марганцевых руд, используют различные отходы: чугунный лом и стружку, загрязненный стальной лом.

Флюсы применяют в доменной плавке для сплавления пустой породы и золы топлива в шлак. При работе доменных печей на коксе используют главным образом известняк (СаСO3). Если в пустой породе находятся основные окислы, применяют кислые флюсы - кварциты.

В качестве топлива для доменной плавки используют кокс. Металлургическое топливо должно иметь следующие качества: высокую теплотворную способность, прочность, пористость, невысокую зольность и минимальное содержание серы. Кокс отвечает почти всем этим требованиям. Теплота сгорания кокса 5600 ккал/кг , поэтому на нем выплавляют 98% мирового чугуна. Кокс получают из каменного угля при нагревании его до 950-1000° без доступа воздуха в специальных печах. При этом из угля удаляются летучие вещества, а остающаяся часть спекается в твердый и пористый кокс.

Современная коксовая печь (батарея) состоит из 50-70 узких длинных камер емкостью 18-20 мв каждой из них выжигается 12-16 т кокса. Длительность процесса коксования около 12-15 часов. Из одной тонны угля можно получить 750-800 кг кокса и 300-350 м3 высококалорийного газа.

Лучшим коксом считается кузнецкий, содержащий 0,5-0,6% серы и 12-13,5% золы.

Одним из наиболее эффективных частичных заменителей кокса в доменной плавке является природный газ. Стоимость его не превышает 2 руб. за 1000 л3, т. е. в десятки раз ниже стоимости кокса.

Применение природного газа способствует снижению себестоимости чугуна, так как экономится от 10 до 15% кокса.

5. Устройство доменной печи и её работа

Доменная печь - домна) является шахтной печью непрерывного действия. Она имеет форму двух усеченных конусов, сложенных широкими основаниями, между которыми находится цилиндрическая часть, называемая распаром.

Чугун выплавляется из железных руд в специальных печах, называемых доменными. Отсюда процесс получения чугуна из железных руд называется доменным процессом.

Доменная печь имеет большое количество специальных устройств и механизмов, обеспечивающих беспрерывность процесса. Большинство механизмов работает автоматически.

1-скип; 2-засыпной аппарат; 3-доменная печь; 4-фурменные отверстия; 5- чугунная летка; шлаковая летка; 7-воздухонагреватели; 8-газоочистительные устройства; 9-дымовая труба

Смесь из руды, кокса и флюса подготовляется в определенной пропорции для загрузки в доменную печь. Такая смесь называется шихтой. Специальный подъемник - скип 1 перемещающийся по наклонным путям, доставляет шихту к верхней части доменной печи, откуда она через засыпной аппарат 2 поступает в печь 3.

Для поддержания интенсивного горения загружаемого кокса необходимо большое количество воздуха. Воздух подается в печь через специальные отверстия 4 в нижней части печи, которые называются фурменными отверстиями. Чтобы воздух пробил высокий столб шихты и проник во все части печи, а также чтобы имелось достаточное количество кислорода для сгорания всего топлива, воздух вдувают в печь под давлением в 1-2 ати. Воздух подогревается до температуры 600-800°, так как вдувание большого количества холодного воздуха снижает температуру внутри печи, в результате чего процесс плавки руды замедляется.

Подогрев воздуха осуществляется в воздухонагревателях 7, которые строятся рядом с доменной печью. Воздухонагреватели отапливаются доменным (колошниковым) газом, получающимся при выплавке чугуна. Доменный газ предварительно очищается от пыли в специальных газоочистительных устройствах 8. Продукты сгорания из воздухонагревателей удаляются через дымовую трубу 9.

Полученный в печи жидкий чугун опускается в нижнюю ее часть, откуда периодически выпускается через отверстие 5, называемое чугунной леткой. В специальных ковшах большой емкости чугун от доменной печи отвозится в сталеплавильные цехи для переработки в сталь или к разливочной машине для получения чугунных чушек.

Пустая порода, флюсы и зола топлива образуют в печи жидкий шлак, который имеет меньший удельный вес, чем чугун, и поэтому располагается над жидким чугуном. Шлак выпускается из печи через шлаковую летку 6 и направляется для переработки и дальнейшего использования в качестве строительного материала или в шлаковый отвал.

Доменная печь работает беспрерывно по принципу противотока: исходные материалы загружаются сверху, постепенно опускаются вниз, превращаясь в чугун и шлак, а газы, нагревшиеся в нижней зоне печи, поднимаются кверху навстречу исходным материалам.

Печь имеет наружную стальную оболочку, которая называется кожухом, и внутреннюю кладку, или футеровку. Футеровка должна устойчиво сопротивляться износу от трения беспрерывно опускающихся столбом исходных материалов, выдерживать действие высоких температур, не расплавляясь и не давая деформаций. Поэтому для футеровки применяется высококачественный огнеупорный (шамотный) кирпич.

6. Производство стали в конвертерах

КИСЛОРОДНЫЙ КОНВЕРТЕР с верхней продувкой. 1 – стальной кожух; 2 – огнеупорная футеровка; 3 – кислородная фурма; 4 – завалка флюса; 5 – легирующие добавки; 6 – летка; 7 – ковш; 8 – заготовка; 9 – проволока; 10 – бесшовная труба; 11 – блюм; 12 – балка; 13 – толстолистовая сталь; 14 – листовая заготовка (сляб); 15 – листовой прокат.

Кислородный конвертер с верхней продувкой представляет собой грушевидный сосуд (с открытой узкой верхней горловиной) диаметром ок. 6 м и высотой ок. 10 м, облицованный изнутри магнезиальным (основным) кирпичом. Эта футеровка выдерживает примерно 1500 плавок. Конвертер снабжен боковыми цапфами, закрепленными в опорных кольцах, что позволяет наклонять его. В вертикальном положении конвертера его горловина находится под вытяжным колпаком дымоотводящего камина. Боковое выпускное отверстие, имеющееся с одной стороны, позволяет отделить металл от шлака при сливе. В конвертерном цеху рядом с конвертером обычно имеется загрузочный пролет. Сюда транспортируется в большом ковше жидкий чугун из доменной печи, а в стальных бункерах накапливается металлолом для загрузки. Все это сырье переносится к конвертеру мостовым краном. По другую сторону от конвертера расположен разливочный пролет, где имеются приемный ковш для выплавленной стали и железнодорожные тележки для транспортировки его на разливочную площадку.

Перед началом кислородно-конвертерного процесса конвертер наклоняют в сторону загрузочного пролета и через горловину засыпают металлолом. Затем в конвертер заливают жидкий металл из доменной печи, содержащий около 4,5% углерода и 1,5% кремния. Предварительно металл подвергается десульфуризации в ковше. Конвертер возвращают в вертикальное положение, сверху вводят охлаждаемую водой фурму и включают подачу кислорода. Углерод в чугуне окисляется до CO или CO2, а кремний – до диоксида SiO2. По «течке» (загрузочному лотку) добавляется известь для образования шлака с диоксидом кремния. Со шлаком выводится до 90 % кремния, содержащегося в чугуне. Содержание азота в готовой стали сильно понижается благодаря промывающему действию CO. Приблизительно через 25 мин дутье прекращается, конвертер немного наклоняют, отбирают пробу и анализируют ее. При необходимости в корректировке можно снова возвратить конвертер в вертикальное положение и ввести в горловину кислородную фурму. Если же состав и температура расплава соответствуют спецификациям, то конвертер наклоняют в сторону разливочного пролета и через выпускное отверстие сливают сталь.

7. Получение стали в мартеновских печах

Мартеновский процесс был разработан в 1865 г. французскими металлургами отцом Э. Мартеном и сыном П. Мартеном. Мартеновская печь по устройству и принципу работы является пламенной регенеративной печью. В ее плавильном пространстве сжигается газообразное топливо или мазут. Высокая температура для получения стали в расплавленном состоянии обеспечивается регенерацией тепла печных газов. Рабочее плавильное пространство печи ограничено снизу ванной, образованной подиной и откосами; сверху - сводом; с боков - передней и задней стенками; с торцов - головками. В передней стенке расположены окна, через которые в печь загружают исходную шихту и дополнительные материалы (по ходу плавки), а также берут пробы металла и шлака, удаляют шлак при дефосфорации. Окна закрыты заслонками со смотровыми отверстиями. Готовую плавку выпускают через отверстие, расположенное в задней стенке на нижнем уровне подины. Отверстие плотно забивают малоспекающимися огнеупорными материалами.

Для более полного использования тепла отходящих газов в системе газоотводов установлены регенераторы. Регенераторы выполнены в виде камер, заполненных насадкой из огнеупорного кирпича. Принцип регенерации тепла заключается в том, что насадка одной пары регенераторов некоторое время нагревается до 1250 – 1300 оС отходящими из печи газами. Затем при помощи клапанов направление движения регенераторов меняется автоматически. Через один из нагретых регенераторов в рабочее пространство печи подается воздух, через другой – газ. Проходя через насадку, они нагреваются до 1100- 1200 С. В это время другая пара регенераторов нагревается, аккумулируя тепло отходящих газов. После охлаждения насадки регенераторов до установленной температуры снова происходит автоматическое переключение клапанов.

8. Получение стали в электропечах

Плавка в электропечах имеет ряд преимуществ перед плавкой в конверторах и мартеновских печах. Высокая температура позволяет применять сильноосновные шлаки, вводить большое количество флюсов и достигать максимального удаления из стали серы и фосфора. Для плавки в электропечи не требуется воздуха; окисляющая способность печи невысока, поэтому количество FeO в ванне незначительно, сталь получается достаточно раскисленная и плотная. Благодаря высокой температуре в печи можно получить легированные стали с тугоплавкими элементами: вольфрамовые, молибденовые и др.

Исходными материалами для плавки в электропечах являются стальной лом, железная руда, окалина. Передельный мартеновский чугун применяют только для сталей с высоким содержаниемуглерода, но чаще заменяют электродным боем или малосернистым коксом.

В качестве флюсов в основных печах применяют известь, а в кислых печах - кварцевый песок. Для разжижения основных шлаков применяют плавиковый шпат, боксит и шамотный бой, а для кислых шлаков - известь и шамотный бой. Для раскисления стали, кроме обычных ферросплавов, применяют комплексные раскислители (АМС, содержащий по 10% кремния, марганца и алюминия, силикомарганец, силикокальций).

Все материалы, загружаемые в электрические печи, должны быть сухими, чтобы не произошло насыщения стали водородом от разложения влаги.

Электрические печи для плавки металла делятся на три вида: печи сопротивления, дуговые и индукционные.

Для плавки стали применяют в основном дуговые и индукционные печи, а в печах сопротивления плавят сплавы цветных металллов.

Дуговые печи н аиболее распространены в промышленности, так как устройство и эксплуатация их несложны, коэффициент полезного действия высок и, кроме того, в них можно выплавлять самые разнообразные сорта стали и сплавов цветных металлов. В дуговых печах электроэнергия превращается в тепловую энергию дуги, которая передается плавящейся шихте посредством излучения.

Индукционные печи применяют для выплавки высоколегированных сталей и сплавов с низким содержанием углерода, а также для производства тонкостенного фасонного литья специальными методами (по выплавляемым моделям, под давлением и т. п.).

Электрошлаковый переплав стали представляет собой совершенно новый метод получения высококачественных легированных сталей, в том числе и быстрорежущих. Он разработан Институтом электросварки им. Е. О. Патона Академии наук УССР.

Сущность его состоит в том, что слитки из стали, полученной в обычных печах, перерабатываются на электроды для последующей переплавки их в электрошлаковой печи. плавление электродов происходит не за счет тепла электрической дуги, а за счет тепла, выделяющегося в слое расплавленного шлака, служащего сопротивлением при прохождении через него электрического тока. Принцип электрошлакового переплава очень прост. Электрод-слиток 1 (рис. 3) диаметром до 150 мм и длиной от 2 до б м вводят в медный водоохлаждаемый кристаллизатор 2, который представляет собой полый цилиндр. К дну кристаллизатора прикреплен поддон 5 с затравкой 4 - это шайба из переплавляемой стали. На затравку насыпают электропроводный флюс из порошка алюминия с магнием. В зазор между слитком-электродом и стенкой кристаллизатора засыпают рабочий флюс 3, состоящий из Аl2O3, CaFe2 и СаО.

9. Прогрессивные способы получения стали

Одним из прогрессивных способов получения сложных и высоколегированных сталей является электрометаллургический: плавка в электрических дуговых и индукционных печах.

Сталь особо высокого качества выплавляют в вакуумных электрических печах, а также путем электрошлакового, плазменного переплава, электронно-лучевой плавки.

10. Общее сведения о металлах. Классификация металлов.

Металлы - материалы кристаллической структуры, обладающие рядом специфических свойств: металлическим блеском; высокой электропроводностью и теплопроводностью; положительным температурным коэффициентом электросопротивления; электронной эмиссией; при нормальных условиях находятся в твердом состоянии (исключением является ртуть).

По внешнему виду металлы подразделяются на черные и цветные. К черным металлам относят железо и сплавы на его основе, остальные металлы принято относить к цветным.

Черные металлы, используемые в производстве хозяйственных товаров, представлены двумя сплавами: сталью (сплав железа с углеродом, с содержанием последнего не более 2,14%) и чугуном (сплав железа с углеродом, с содержанием последнего более 2,14%).

Чугун выплавляют из железной руды в доменных печах.

Сталь получают из чугуна путем выжигания из него избытка углерода кислородом воздуха.

11. Атомно-кристаллическое строение металлов.

Под атомно-кристаллической структурой понимают взаимное расположение атомов, существующее в кристалле. Кристалл состоит из атомов (ионов), расположенных в определенном порядке, который периодически повторяется в трех измерениях.

В кристаллах существует не только ближний, но и дальний порядок размещения атомов, т. е. упорядоченное расположение частиц в кристалле сохраняется на больших участках кристаллов. Для описания атомно-кристаллической структуры пользуются понятием пространственной или кристаллической решетки.

Кристаллическая решетка представляет собой воображаемую пространственную сетку, в узлах которой располагаются атомы (ионы), образующие металл (твердое кристаллическое тело).

Наименьший объем кристалла, дающий представление об атомной структуре металла во всем объеме, получил название элементарной кристаллической ячейки.

12. Свойства металлов и сплавов

Механические свойства

К основным механическим свойства относят:

Прочность

Пластичность

Твердость

Прочность – способность материала сопротивляться разрушению под действием нагрузок.

Пластичность – способность материала изменять свою форму и размеры по действием внешних сил.

Твердость – способность материала сопротивляться проникновению в него другого тела.

Физические свойства

К физическим свойства относят:

Плотность

Температуру плавления

Теплопроводность

Электропроводность

Магнитные свойства

Цвет – способность металлов отражать излучение с определенной длиной волны. Например, медь имеет розовато-красный цвет, алюминий – серебристо-белый.

Плотность металла определяется отношением массы к единице объема. По плотности металлы делят на легкие (менее 4500 кг/м3) и тяжелые.

Температура плавления – температура, при которой металл переходит из твердого состояния в жидкое. По температуре плавления различают тугоплавкие (вольфрам – 3416 оС, тантал – 2950 оС и др.) и легкоплавкие (олово – 232 оС, свинец – 327 оС). В единицах СИ температуру плавления выражают в градусах Кельвина (К).

Теплопроводность – способность металлов передавать тепло от более нагретых участков тела к менее нагретым. Большой теплопроводностью обладают серебро, медь, алюминий. В единицах СИ теплопроводность имеет размерность Вт/(м·К).

Способность металлов проводить электрический ток оценивают двумя противоположными характеристиками – электрической проводимостью и электрическим сопротивлением.

Электропроводность оценивается в системе СИ в сименсах (См). Электросопротивление выражают в омах (Ом). Хорошая электропроводность необходима, например, для токонесущих проводов (их изготавливают из меди, алюминия). При изготовлении электронагревательных приборов и печей необходимы сплавы с высоким электросопротивлением (из нихрома, константана, манганина). С повышением температуры металла его электропроводность уменьшается, а с понижением – увеличивается.

Магнитные свойства выражаются в способности металлов намагничиваться. Высокими магнитными свойствами обладают железо, никель, кобальт и их сплавы, которые называют ферромагнитными. Материалы с магнитными свойствами применяют в электротехнической аппаратуре и для изготовления магнитов.

Химические свойства

Химические свойства характеризуют способность металлов и сплавов сопротивляться окислению или вступать в соединение с различными веществами: кислородом воздуха, растворами кислот, растворами щелочей и др.

К химическим свойствам относят:

Коррозионную стойкость

Жаростойкость

Коррозионная стойкость – способность металлов сопротивляться химическому разрушению под действием на их поверхность внешней агрессивной среды (коррозия происходит при вступлении в химическое взаимодействие с другими элементами).

Жаростойкость – способность металлов сопротивляться окислению при высоких температурах

Химические свойства учитывают в первую очередь для изделий или деталей, работающих в химически агрессивных средах:

Емкости для перевозки химических реактивов

Трубопроводы химических веществ

Приборы и инструменты в химической промышленности

13. Понятия: Сплав, компонент, фаза, механические смеси, твёрдые растворы, химические соединения.

Сплав - макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.

Компоненты - вещества, образующие систему. В качестве компонентов выступают чистые вещества и химические соединения, если они не диссоциируют на составные части в исследуемом интервале температур.

Фаза - однородная часть системы, отделенная от других частей системы поверхностного раздела, при переходе через которую структура и свойства резко меняются.

МЕХАНИЧЕСКАЯ СМЕСЬ (в металловедении) - строение сплава из двух компонентов, которые неспособны к взаимному растворению в твердом состоянии и не вступают в химическую реакцию с образованием соединений. Сплав состоит из кристаллов компонентов А и Б

Твёрдые растворы - фазы переменного состава, в которых атомы различных элементов расположены в общей кристаллической решётке.

Хими́ческое соедине́ние - сложное вещество, состоящее из химически связанных атомов двух или более элементов (гетероядерные молекулы). Некоторые простые вещества также могут рассматриваться как химические соединения, если их молекулы состоят из атомов, соединённых ковалентной связью (азот, кислород, иод, бром, хлор, фтор, предположительно астат).

14. Кристаллизация металлов и сплавов

Процессы кристаллизации металлов и сплавов, являющиеся процессами перехода их из жидкого состояния в твердое, связаны с выделением скрытой теплоты кристаллизации. Для того чтобы происходил процесс кристаллизации металла или сплава, его необходимо все время охлаждать (отводить, отнимать от него тепло).

При рассмотрении процессов кристаллизации мы прежде всего должны иметь в виду определенный объем жидкого металла или сплава, который отдает тепло, и форму, которая принимает его. Передача тепла от жидкого металла и сплава форме проходит не мгновенно, так как теплопроводность жидкого металла или сплава и формы имеет определенные конечные значения. Поэтому одновременная кристаллизация всего объема металла или сплава в форме невозможна даже при одинаковых температурах во всех точках его объема.

15. Экспериментальное построение диаграмм состояния двойных сплавов

16. Правила фаз и отрезков

Фазами могут быть жидкие растворы, твердые растворы и химические соединения. Следовательно, однородная жидкость представляет собой однофазную систему, механическая смесь двух видов кристаллов - двухфазную систему и т. д.

Под числом степеней свободы (вариантностью) системы понимают число внешних и внутренних факторов (температура, давление и концентрация), которые можно изменять без изменения числа фаз в системе.

Количественную зависимость между числом степеней свободы системы, находящейся в равновесном состоянии, и числом компонентов и фаз принято называть правилом фаз (закон Гиббса). Правило фаз для металлических систем выражается уравнением

С = К - Ф + m,

где С -число степеней свободы системы; К -число компонентов; Ф - число фаз; т - число внешних факторов (температура, давление).

Если принять, что все превращения происходят при постоянном давлении (Р = const), это уравнение примет следующий вид: С = К – Ф + 1, где 1 - внешний переменный фактор (температура).

Пользуясь правилом фаз, рассмотрим, как происходит изменение числа степеней свободы однокомпонентной системы для случая расплавленного чистого металла (К=1; Ф=1) С = 1-1 + 1 = 1, т.е. температуру можно изменять не меняя числа фаз. Такое состояние системы называют моновариантным (одновариантным). В процессе кристаллизации Ф = 2 (две фазы - жидкая и твердая), а К=1, тогда С= 1-2+1=0. Это значит, что две фазы находятся в равновесии при строго определенной температуре (температура плавления), и она не может быть изменена, пока одна из фаз не пропадет. Такое состояние системы называют нонвариантным (безвариантным).Для диухкомпонентной системы, находящейся в жидком состоянии (К = 2; Ф=1), правило фаз имеет вид С = 2-1 + 1=2, такая система называется бивариантной (двухвариантной). В этом случае возможно изменение двух факторов равновесия (темпера­туры и концентрации), число фаз при этом не меняется. Для этой же системы при существовании двух фаз (жидкой и твердой) К=2, Ф = 2, согласно правилу фаз С = 2-2+1 = 1, т.е. с изменением температуры концентрация должна быть строго определенной.

Применение правила фаз для диаграммы состояния первого типа(см. рис.). Пользуясь этой диаграммой, можно определить фазовое состояние сплавов любого состава при любой температуре. Так, например, в области 1 существует одна фаза - жидкий раствор. Правило фаз запишется в виде С = К – Ф + 1 = 2- 1 + 1 = 2, т. е. система имеет две степени свободы. Для остальных областей 2, 3, 4 и 5 система ха­рактеризуется одной степенью свободы (С = 2 – 2 + 1 = 1).

17. Диаграмма состояния сплавов с механической смесью

22. Структурные составляющие железоуглеродистых сплавов

Феррит – это твёрдый раствор углерода в α-железе. Максимальная концентрация углерода – всего лишь 0,025% (точка P). При комнатной температуре – не выше 0,006%. Феррит мягок и пластичен.

Аустенит – твёрдый раствор углерода в γ-железе. Максимальная концентрация углерода - 2,14 % (точка E). Аустенит имеет невысокую твёрдость, пластичен, не магнитится.

Цементит - химическое соединение железа с углеродом (карбид железа, Fe3C). Концентрация углерода, соответственно, постоянная – 6,67 % углерода. Цементит очень твёрд, хрупок, непластичен.

Необходимо так же выделить 2 структурные составляющие железоуглеродистых сплавов:

Перлит (эвтектоид) – механическая смесь 2 фаз – пластинок/зерен феррита и цементита. Перлит образуется в результате перлитного превращения аустенита («свободного» или входящего в состав ледебурита) с концентрацией углерода 0,8% при прохождении ниже линии PSK:

А0,8→Ф0,025 + Ц6,67

Железо при этом переходит из γ-формы в α-форму. Механические свойства сильно зависят от размера (дисперсности) частичек, из которых состоит данный перлит.

Ледебурит (эвтектика) – механическая смесь 2 фаз – пластинок/зерен аустенита и цементита. Ледебурит образуется из жидкой фазы с концентрацией углерода 4,3% при прохождении ниже линии ECF:

Ж4,3→А2,14 + Ц6,67

Структура ледебурита. Ц - цементит, А - аустенит.

23. Диаграмма состояния сплавов железо-цементит

Диаграмма железо-углерод (железо-цементит) – это графическое отображение структуры сплавов, состоящих только из железа и углерода, в зависимости от исходной средней концентрации углерода и текущей температуры сплава. Диаграмма железо-углерод позволяет понять процессы, происходящие при термообработке стали.

Диаграмма железо-углерод (железо-цементит). Упрощенная

линия ACD. Линия ликвидус. При охлаждении сплавов ниже нее начинается их кристаллизация;

линия AECF. Линия солидус. При охлаждении сплавов ниже нее весь сплав переходит в твердое состояние;

линия ECF. Иногда называется линией ледебуритного превращения. При охлаждении сплавов с содержанием углерода выше 2,14% ниже нее жидкая фаза превращается в ледебурит;

линия PSK. Линия перлитного превращения. При охлаждении сплавов ниже нее аустенит превращается в перлит.

Отметим несколько важных точек на диаграмме:

точка E. Точка максимального насыщения аустенита углеродом – 2,14%, при температуре 1147°С;

точка P. Точка максимального насыщения феррита углеродом – 0,025%, при температуре 727°С;

точка S. Точка «0,8% С-727°С» превращения аустенита с концентрацией углерода 0,8% в перлит (эвтектоид) той же средней концентрации;

точка C. Точка «2,14 % С-1147°С» превращения жидкости с концентрацией углерода 2,14% в ледебурит (эвтектику) той же средней концентрации.

Железная руда представляют собой особое минеральное образование, включающее железо, а также его соединения. Руду считают железной в том случае, если она содержит этот элемент в достаточных объемах для того, чтобы было экономически выгодно его извлекать.

Основной разновидностью железной руды является Он содержит почти 70% окиси и закиси железа. Эта руда имеет черный или серо-стальной цвет. Магнитный железняк на территории России добывают на Урале. Встречается он в недрах Высокая, Благодать и Качканар. На территории Швеции его находят в окрестностях Фалуня, Даннемора и Гелливара. В США - это Пенсильвания, а в Норвегии - Арендаль и Персберг.

В черной металлургии железорудную продукцию разделяют на три вида:

Сепарированную железную руду (с низким содержанием железа);

Аглоруду (со средним содержанием железа);

Окатыши (сырую железосодержащую массу).

Морфологические типы

Богатыми считаются такие залежи железной руды, которые содержат более 57% железа в своем составе. К бедным рудам относят те, в которых не менее 26% железа. Ученые разделили железную руду на два морфологических типа: линейный и плоскоподобный.

Железная руда линейного типа представляет собой рудные клиновидные тела в зонах изгибов и земных разломов. Данный тип отличается особенно большим содержанием железа (от 50 до 69%), но сера и фосфор в такой руде содержится в небольшом количестве.

Плоскоподобные залежи встречаются на вершинах пластов железистых кварцитов, которые представляют собой типовую кору выветривания.

Железная руда. Применение и добыча

Богатая железная руда применение находит для получения чугуна и в основном идет на выплавку в конвертерное и мартеновское производство или же непосредственно на восстановление железа. Небольшое количество используется как природная краска (охра) и утяжелитель глинистых

Объем мировых запасов разведанных месторождений составляют 160 млрд. тонн, а железа в них содержится около 80 млрд. тонн. Железная руда найдена на Украине, а самыми крупными запасами чистого железа обладают Россия и Бразилиия.

Объемы мировой добычи руды растут с каждым годом. В большинстве случаев железная руда добывается открытым методом, суть которого заключается в том, что всю нужную технику доставляют к месторождению, и там же строят карьер. Глубина карьера составляет в среднем около 500 м, а его диаметр зависит от особенностей найденного месторождения. После этого при помощи специального оборудования добывают железную руду, складывают на машины, приспособленные для перевозки тяжелых грузов, и доставляют из карьера на предприятия, которые занимаются переработкой.

Недостатком открытого метода является возможность добывать руду только на небольшой глубине. Если же она лежит намного глубже, приходится возводить шахты. Вначале делают ствол, напоминающий глубокий колодец с хорошо укрепленными стенками. В разные стороны от ствола отходят коридоры, так называемые штреки. Найденную в них руду взрывают, а потом ее куски поднимают на поверхность с помощью особого оборудования. Добыча железной руды таким способом эффективна, но связана с серьезной опасностью и затратами.

Существует еще другой способ, при помощи которого добывают железную руду. Его называют СГД или скважинной гидродобычей. Руда извлекается из-под земли таким образом: бурят скважину, опускают в нее трубы с гидромонитором и очень мощной водной струей дробят породу, которую потом поднимают на поверхность. Добыча железной руды этим способом безопасна, однако, к сожалению, неэффективна. Так удается добыть лишь 3% руды, а 70% добывается с помощью шахт. Однако разработка метода СГД совершенствуется, и есть большая вероятность, что в будущем этот вариант станет основным, вытеснив шахты и карьеры.

Железные руды

Общие сведения

Происхождение железной руды

Месторождения

Исторические сведения о месторождениях Промышленные типы месторождений

Железные руды- это природные минеральные образования, содержащие и его соединения в таком объеме, когда промышленное извлечение железа целесообразно.

Железныеруды - это такие скопления в земной коре соединений железа , из которых в больших размерах и с выгодного можно получать металлическое .

Железные руды - єто значительные по рентабельности добычи скопления соединений .

Общие сведения

Существует три вида железорудной продукции, использующиеся в чёрной металлургии: сепарированная железная руда (с низким содержанием железа), аглоруда (путем термической обработки содержание железа повышено) и окатыши(сырая железосодержащая масса с добавлением известнякаформируется в шарики диаметром около 1 см). Различаются следующие промышленные типы железных руд:

Титано-магнетитовые и ильменит-титаномагнетитовые в базитах и ультрабазитах

Апатит-магнетитовые в карбонатитах

Магнетитовые и магно-магнетитовые в скарнах

Магнетит-гематитовые в железных кварцитах

Мартитовые и мартит-гидрогематитовые (богатые руды, образуются по железным кварцитам)

Гётит-гидрогётитовые в корах выветривания.


Железныеруды разнообразны по минеральному составу, содержанию железа,полезных и вредных примесей, условиям образования и промышленным свойствам. Важнейшими рудными минералами являются: магнетит, магномагнетит, титаномагнетит,гематит, гидрогематит, гётит, гидрогётит, сидерит, железистыехлориты(шамозит, тюрингит и др.). Содержание железав промышленных рудах изменяется в широких пределах - от 16 до 70%. Различают богатые (і 50% Fe), рядовые (50-25% Fe) и бедные (і 25% Fe) железныеруды В зависимости от химическогосостава железныеруды применяются для выплавки чугуна в естественном виде или после обогащения. Железныеруды , содержащие меньше 50% Fe, обогащают (до 60% Fe) главным образом методами магнитнойсепарации или гравитационного обогащения. Рыхлые и сернистые (>0,3% S) богатые руды, а также концентраты обогащения окусковываются путём агломерации; из концентратов производятся также т. н. окатыши. Железныеруды , идущие в доменную шахту, во избежание ухудшения качества стали или условий плавки, не должны содержать более 0,1-0,3% S, Р и Cuи 0,05-0,09% As, Zn, Sn, Pb. Примесь в железнойруде Mn, Cr, Ni, Ti, V, Co, кроме некоторых случаев, полезна. Три первых элемента улучшают качество стали, а Ti, V, Со могут попутно извлекаться при обогащении и металлургическими переделе.

Химический состав железных руд

По химическому составу железные руды представляют собой окиси, гидраты окисей и углекислые солизакиси железа, встречаются в природе в виде разнообразных рудных минералов , из которых главнейшие: магнитный железнякили магнетит, железный блески плотная его разновидность красный железняк, бурый железняк, к которому относятся болотные и озерные руды, наконец, шпатоватый железнякв его разновидность сферосидерит. Обыкновенно каждое скопление названных рудных минералов представляет смесь их, иногда весьма тесную, с другими минералами, не содержащими железа, как, например, с глиной, известняком или даже с составными частями кристаллических изверженных пород. Иногда в одном и том же месторождении встречаются некоторые из этих минералов совместно, хотя в большинстве случаев преобладает какой-нибудь один, а другие связаны с ним генетически.





Магнитный железняк - соединение окиси и закиси железа по формуле Fe 2O4, в чистом виде содержит 72,4% металлического железа, хотя чистая, сплошная руда встречается крайне редко, почти всюду к ней примешиваются серный колчеданили руды других металлов: медный колчедан, свинцовый блеск, цинковая обманка, а также составные части пород, сопровождающих магнитный железняк в его месторождениях: полевой шпат, роговая обманка, хлорити др. Магнитный железняк представляет одну из лучших и наиболее разрабатываемых железных руд; встречается пластами, жилами и гнездами в гнейсах и кристаллических сланцах архейской группы, а также образует иногда целые горы в области развития массивных изверженных горных пород. Железный блеск - безводная окись железа Fe 2O3, является в виде руды как агрегаткристаллических зерен минерала того же имени; содержит до 70% металла и образует сплошные пласты и залежи в кристаллических сланцах и гнейсах; одна из лучших железных руд по чистоте. Окись железа плотного, шестоватого, чешуйчатого или землистого строения носит название красного железняка и также во многих местностях служит источником добычи железа. Под именем бурых железняков соединяют чрезвычайно различные по строению железные руды, в составе которых преобладает водная окисьжелеза 2Fe 2 О 3 +3Н 2 О, что соответствует 59,89% металлического железа. Чистые бурые железняки всюду в значительном количестве содержат разнообразные примеси, часто вредные, как, например, фосфор, марганец, серу. Месторождения бурого железняка весьма многочисленны, но редко достигают значительных размеров. Как продукты выветривания других железных руд, бурые железняки встречаются в большинстве известных месторождений железных руд. К бурым железнякам по химическому составу приближаются болотные и озерные руды, представляющие отчасти химический, отчасти механический осадок водной окиси и кремнекислой закиси железа, песка и глины в виде горошин, лепешек или ноздреватых пористых масс в болотах, озерах и других стоячих водах. Обыкновенно содержат 35-45% железа. Бурые железняки, по удобству добывания и своей легкоплавкости, с самых давних времен служили предметом разработки, но получаемое из них железо обыкновенно невысокого качества. Шпатоватый железняк и его разновидность сферосидерит - по составу углекислая закись железа (49% металлического железа), встречается в виде пластов и залежей в гнейсах, кристаллических сланцах, реже в более новых осадочных образованиях, где весьма часто сопровождается медным колчеданом и свинцовым блеском. Обыкновенно встречается в природе в тесной смеси с глиной, мергелем, углистым веществом, в каком виде они известны под именем глинистых, мергелистых и углистых сферосидеритов. Такие руды встречаются в виде пластов, гнезд или залежей в осадочных породах различного возраста и если не содержат вредных примесей (фосфорнокислая известь, серный колчедан), то представляют ценную руду. Наконец, всюду распространенные бурые охристые глины местами так богаты железом, что могут тоже считаться Ж. рудами и носят в этом случае название глинистых железняков - красных, если железо содержится в них в виде безводной окиси, и бурых, когда рудный имеет состав бурого железняка. Остальные рудные минералы, иногда образующие значительные скопления, как, например, самородное железо и серный колчедан (FeS2), не могут быть названы железными рудами, первое - по своему малому распространению, а второй - по затруднительности отделить заключенное в нем железо от серы.






Происхождение железной руды

Способ и время происхождения железных руд чрезвычайно разнообразны. Одни из рудных минералов, как, например, магнитный железняк и, может быть, отчасти железный блеск, в особенном изобилии залегающие в гнейсах и кристаллических сланцах архейской группы, представляют, по всей вероятности, первичные продукты - результат первоначального отвердевания земной коры. К первичным же минералам, непосредственно выкристаллизовавшимся из расплавленной массы, относится магнитный железняк, зерна и кристаллы которого встречаются во всех без исключения изверженных горных породах от самых древних гранитов до современных базальтовых лав. Как непосредственные продукты первоначальных слоев земной коры - гнейсы и кристаллические сланцы, так и изверженные горные породы , заключающие, помимо рудных, много других минералов, в более или менее значительном количестве содержащих железо, послужили материалом, из которого при дальнейшей химической и механической переработке в природе произошли вторичные скопления железных руд, то выполняющих трещины и пустоты в горных породах, то образующих обширные и мощные пласты среди осадочных образований, то неправильные гнезда и залежи метаморфического происхождения, каковы в особенности месторождения бурых железняков и сферосидеритов. Образование таких вторичных месторождений - результат изменения и разрушения более древних пород деятельностью атмосферных агентов, а главным образом деятельностью наземных и подземных вод и водных растворов, - совершалось во все периоды жизни Земли, происходит весьма энергично и в настоящее время, о чем свидетельствуют, например, образующиеся на наших глазах во многих местностях северной и средней Российской Федерацииболотные и озерные железные руды. Тем не менее большинство железных руд залегает среди наиболее древних геологических образований палеозойской и особенно архейской группы, в которых метаморфическая деятельность проявлялась особенно энергично, вследствие особых условий их образования. Многоразличны и формы залегания железных руд. Они являются как в осадочных, так и в изверженных породах то в виде жил, вкрапленников, гнезд или штоков, пластов, залежей, поверхностных масс, то даже в виде россыпей и рыхлых механических осадков.


По условиям залегания, минеральному составу, а отчасти и происхождению один из наилучших знатоков рудных месторождений (Гроддек) различает следующие главные типы месторождений железных руд, повторяющиеся с незначительными различиями на всем земном шаре:

- Слоистые месторождения

1) Пласты шпатоватых и глинистых железняков, образующие залежи во всех геологических отложениях, содержащих окаменелости. По минералогическому составу руды этого типа представляют плотный сферосидерит, реже тонкокристаллический шпатоватый железняк, с глиной и углистым веществом. Месторождения этого типа по преимуществу в Богемии, Вестфалии, Саксонии, Силезии, но встречаются также в Англии, Франциии Богемии.

2) Пласты или залежи бурых и красных железняков, часто богатые окаменелостями железные руды, состоят из плотного или землистого, чистого или глинистого, известковатого или кремнистого, бурого или красного железняка, очень часто оолитового строения. Месторождения этого типа частью относятся к разряду метаморфических, частью же по слоистому характеру и присутствию окаменелостей причисляются к настоящим осадочным образованьям. Железистые руды этого типа особенно распространены в Северной Америке, Богемии и на Гарце.

3) залежи шпатоватого железняка в связи с известняками. Шпатоватый железняк кристалличен и содержит иногда в виде примеси сернистые руды: серный и медный колчедан, свинцовый, блеск, кобальтовые и никелевые руды. В наибольшем числе месторождения этого типа встречаются в кристаллических сланцах и пластах силурийской системы Каринтии, Штириии Восточных Альп.

4) Железно-слюдковые сланцы - кристаллические сланцы, содержащие железную слюдку (разновидность железного блеска) и другие железные руды, встречаются среди кристаллических сланцев архейской группы Южной Каролины и Бразилии, под именем итабирита - зернистая плотная порода, состоящая из железного блеска, магнитного железняка, железной слюдки и зерен кварца. Пласты итабирита, вместе с катавбиритом , представляющим смесь талькас магнитным железняком, образуют часто сплошные рудные массы и содержат в виде примеси золотои алмазы.

5) залежи сплошного магнитного железняка (франклинита), железного блеска и плотного красного железняка в кристаллических сланцах. Ж. руды находятся в смеси с полевым шпатом, гранатом, роговой обманкой, авгитом и другими минералами; весьма часто содержат значительную примесь медного колчедана. Сюда относится громадная залежь железного блеска на острове Эльба, между тальковыми сланцами и известняками архейской группы, разрабатываемая уже в течение нескольких столетий; залежи железного блеска, переходящего в плотный красный железняк, в слюдяных сланцах Сьерры-Морены в Испании, также некоторые месторождения Буковины, Силезии и Саксонии. В Швеции, Норвегиии Финляндиигромадные штокообразные залежи магнитного железняка среди гнейсов пользуются особым распространением, таковы, например, знаменитые месторождения Даннеморыи Гелливары в Швеции и Арендальские залежи Норвегии . В гнейсах и кристаллических сланцах Северной Америки месторождения этого типа достигают исполинских размеров в окрестностях Верхнего озера, где красные железняки образуют целые горы, как, например, железная гораСмита, Мичигамми и др. массивные месторождения.

6) Включения магнитного железняка, часто титанистого, очень нередко встречаются в массивных горных породах, а местами образуют настолько значительные скопления, что приобретают техническое значение, например в Табергев Швеции и особенно у нас на Урале - знаменитые месторождения гор Высокой, Магнитной и Благодати.

7) Включения железного блеска в массивных породах - единственным примером служит Айрон Монтен в Северной Америке, где коренная порода, порфировидный мелафир, пересечена мощными прожилками железного блеска.

Выполнения пустот.

8) Красный железняк в виде красной стеклянной головы, плотного красного железняка и железной сметаны, в смеси с кварцем, углекислыми и другими соединениями, в жилах, пересекающих массивные горные породы или залегающих на границе последних с осадочными образованиями, встречается очень часто в диабазах Гарца, на границе гранитов и порфиров с кристаллическими сланцами в Саксонии и в др. местностях.

9) Бурый и красный железняки, большей частью смешанные с кварцем и известковым или тяжелым шпатом, проходящие жилами в осадочных породах различных геологических систем, часто встречаются в силурийских, девонских, триасовых и юрских отложениях Германии.

10) Шпатоватый железняк в сплошном виде или в смеси с кварцем и известковым шпатом встречается довольно редко, и классическим примером месторождений этого типа может служить Штальберг, среди девонских образований Рейнского кряжа, где в глинистых сланцах разрабатывается жильный штоп шпатоватого железняка от 16 до 3 0 м толщиной.

11) Жилы магнитного железняка и железного блеска в кристаллических сланцах Рио-Альбано и Терра-Нера.

12) Бурые железняки, содержащие часто марганец, встречаются часто как выполнения пустот или псевдоморфные образования по известняку; кроме Германии, чрезвычайно распространены и у нас в средней Российской Федерации .

13) Бобовыеруды - скопления шаровидного глинистого железняка, как предполагают, осадки минеральных источников, попадаются кое-где в юрских отложениях Западной Европы. У нас им отчасти соответствуют весьма распространенные современные образования на дне болот и озер, известные под именем болотных и озерных железных руд.

Обломочные месторождения.

14) Бурые железняки в виде сплошных или внутри полых обломков и конкреций в глинах и рухляках встречаются часто в пластах новейших геологических систем, но по своим размерам редко имеют техническое значение.

15) Брекчииили конгломераты магнитного или красного железняка с сыпучим глинистым или плотным железистым цементом встречаются иногда в ближайшем соседстве с месторождениями других типов, как механического их разрушения. В Бразилии, в провинции МинасГераес, над итабиритом и кристаллическими сланцами часто находят особое поверхностное образование, толщиной от 1 до 4 м, называемое тапанхоаканга и состоящее из крупных угловатых обломков магнитного железняка, итабирита, железного блеска и бурого железняка, вместе с обломками кварцита, итаколумита и других пород, связанных цементом, в состав которого входят красный и бурый железняк, красная и бурая железная охра.

16) Наконец, известны и рыхлые россыпи железной руды, наичаще титанистого магнитного железняка, на побережьях многих рек, озер и морей, но они редко достигают значительных размеров и не представляют особого значения для промышленности.





Месторождения

Железная руда (Ironstone) - это

Классификация месторождений железных руд по запасам (в млн. тонн)

Уникальные - более 1000

Крупные - до 100

Средние - до 50

Мелкие - до 10

Исторические сведения о месторождениях

В Европейской Российской Федерации железные руды значительно распространены на Урале, в центральной и южной Российской Федерации, в Олонецкой губернии, Финляндии и Привислянских губерниях. Значительные месторождения железных руд известны также на Алтае, в Саянах и Восточной Сибири, но до сих пор остаются еще неисследованными. На Урале, на восточном склоне хребта, многочисленные месторождения магнитного железняка, из которых до сих пор разрабатываются лишь немногие, находятся в связи с развитыми здесь ортоклазовыми породами (сиенитами и порфирами). Месторождения гор Благодати, Высокой и Магнитной (Ула-Утасе-Тау), по громадному запасу руд занимающие выдающееся место на всем земном шаре. Гора Благодать, наиболее северное из названных месторождений, находится в среднем Урале, около Кушвинского завода. К югу от предыдущей, около Нижне-Тагильского завода, находится другая Ж. гора Урала - Высокая. Главная залежь магнитного железняка, в виде гигантского штока, находится на западном склоне горы среди разрушенных в буроватые глины ортоклазовых пород. работается около 150 лет открытым разносом. Руда, вообще весьма высокого качества, состоит из магнитного железняка, часто переходящего в скрытно-кристаллический железный блеск (мартит), дает 63-69% металлического железа, но местами содержит вредную примесь медных руд. Не менее значительные запасы руд заключает наиболее южная Магнитная горана Урале (в Верхнеуральском уезде), имеющая тот же характер, как вышеописанные; до сих пор это месторождение, находящееся в безлесной местности, мало разрабатывается. Красный железняк встречается на Урале только небольшими массами, подчиненными залежам бурого железняка. В последнее время открыто, по-видимому, значительное месторождение этой руды на западном склоне Северного Урала, недалеко от Кутимского завода, около которого находится также недавно открытое наилучшее на Урале месторождение железного блеска в кристаллических сланцах. Напротив, месторождений бурых железняков, иногда крайне значительных, насчитывается на Урале до 3000, принадлежащих к самым разнообразным типам и залегающих пластами, гнездами, залежами как в массивных, так и в слоистых породах, от самых древних до самых новых. В южной Российской Федерации наиболее значительны месторождения железных руд в окрестностях Кривого Рога, на границе Екатеринославской и Херсонской губерний, где многочисленные пласты красного железняка и железного блеска залегают среди кристаллических сланцев, и месторождение Корсак-Могилы, в котором между кварцитами и гнейсами открыты мощные залежи магнитного железняка. В Донецком кряже, по соседству с месторождениями каменного угля находятся многочисленные пластовые залежи бурых железняков, переходящих иногда в шпатоватые, среди осадочных пород каменноугольной системы. По разведкам в одной области Войска Донского, на глубине не более 60 м заключается до 23 миллиардов пудов железной руды, которые могут дать до 10 миллиардов пудов чугуна . В центральной Российской Федерации - подмосковном бассейне - железные руды, по преимуществу бурые железняки и глинистые сферосидериты, известны давно и во многих местностях и служат предметом энергичной эксплуатации. Все рпреимуществу язаны с известняками, доломитами и рухляками девонской, каменноугольной и пермской систем и образуют различных размеров гнезда и пластообразные залежи, образовавшиеся гидрохимическим путем - действием железосодержащих растворов на известковые породы. Первичной рудой должны считаться сферосидериты, из которых путем выветривания произошли бурые железняки. На севере Российской Федерации и в Финляндии известны многочисленные жилы и залежи магнитного железняка и железного блеска среди массивных пород и кристаллических сланцев архейской группы, в Финляндии служащие предметом эксплуатации. Что касается Олонецкой и Новгородской губерний, то здесь предметом разработки служат исключительно болотные и озерные руды, хотя и содержащие много вредных примесей, но по удобству добычи и обработки представляющие немалое экономическое значение. Запасы озерных руд настолько значительны, что на заводах Олонецкого округа в 1891г. добыча этих руд достигла 535000 пудов, из которых выплавлено 189500 пудов чугуна . Наконец, в Привислянском крае, в южных его частях, имеются многочисленные месторождения бурых железняков и сферосидеритов.





Железныеруды по происхождению разделяются на 3 группы - магматогенные, экзогенные и метаморфогенные. Среди магматогенных различаются: магматические - дайкообразные, неправильные и пластообразные залежи титаномагнетитов,связанные с габбро-пироксенитовыми породами (Кусинское и Качканарское месторождения на Урале в СССР, местооождения Бушвельдского комплекса в ЮАР, Лиганга в Танзании), и апатито-магнетитовые залежи, связанные с сиенитами и сиенитдиоритами (Лебяжинское на Урале в СССР, Кируна и Елливарс в Швеции); контактово-метасоматические, или скарновые, возникают на контактах или вблизи интрузивных массивов; под воздействием высокотемпературных растворов вмещающие карбонатные и др. породы превращаются в скарны, а также пироксен-альбитовые и скаполитовые породы, в которых обособляются сложные по форме залежи сплошных и вкрапленных магнетитовых руд (в СССР - Соколовское, Сарбайское в Северо-Западном Казахстане, Магнитогорское,Высокогорское и др. на Урале, ряд месторождений в Горной Шории; Айрон-Спрингс в США и др.); гидротермальные образуются при участии горячих минерализованных растворов, путём отложения Железныеруды по трещинам и зонам смятия, а также при метасоматическом замещении боковых пород; к этому типу относятся Коршуновское и Рудногорское магномагнетитовые месторождения Восточной Сибири, гидрогётит-сидеритовое Абаильское в Средней Азии, сидеритовые месторождения Бильбао в Испании и др.

К экзогенным месторождениям относятся: осадочные - химическиеи механические осадки морских и озерных бассейнов, реже в долинах и дельтах рек, возникающие при местном обогащении вод бассейна соединениями железаи при сносе в них железистыхпродуктов прилегающей суши; слагают пласты или линзы среди осадочных, иногда - вулканогенно-осадочных пород; к этому типу относятся месторождения бурых железняков,частью сидеритов, силикатных руд (в СССР - Керченское в Крыму, Аятское - Казахская ССР; в ФРГ - Лан-Диль и др.); месторождения коры выветривания образуются в результате выветривания горных пород с железосодержащимипородообразующими минералами; различают остаточные, или элювиальные, месторождения, когда продукты выветривания, обогащенные железом (вследствие выноса из породы др. составных частей), остаются на месте (тела богатых гематито-мартитовых руд Кривого Рога, Курской магнитной аномалии, района оз. Верхнего в США и др.), и инфильтрационные (цементационные), когда железо вынесено из выветривающихся пород и переотложено в нижележащих горизонтах (Алапаевское месторождение на Урале и др.).

Метаморфогенные (метаморфизованные) месторождения - преобразованные в условиях высоких давлений и температур ранее существовавшие, преимущественно осадочные, месторождения. Гидроокислы железа и сидериты переходят при этом обычно в гематит и магнетит. Метаморфические процессы иногда дополняются гидротермально-метасоматическим образованием магнетитовых руд. К этому типу относятся месторождения железистых кварцитов Кривого Рога, Курской магнитной аномалии, месторождения Кольского полуострова, железорудной провинции Хамерсли (), полуострова Лабрадор (), Минас-Жерайс (), штат Майсур () и пр. Основные промышленные типы железной руды классифицируются по преобладающему рудному минералу. Бурые железняки. Рудные минералы представлены гидроокислами железа,больше всего гидрогетитом. Такие руды обычны в осадочных месторождениях и месторождениях коры выветривания. Сложение плотное или рыхлое; осадочные руды часто имеют оолитовую текстуру. Содержание Feколеблется от 55 до 30% и менее. Обычно требуют обогащения. Т. н. самоплавкие бурые железняки,в которых близко к единице, идут в плавку при содержании Feдо 30% (Лотарингия). В бурых железнякахнекоторых месторождений находится до 1-1,5% и более Mn(Бильбао в Испании , Бакальское в СССР). Важное значение имеют комплексные хромо-никелевыебурые железняки;при наличии 32-48% Feв них нередко содержится также до 1% Ni, до 2% Cr, сотые доли процента Со, иногда V. Из таких руд могут без добавок выплавляться хромо-никелевые чугуны и низколегированная . Красные железняки, или гематитовые руды. Основным рудным минералом является гематит. Представлены главным образом в коре выветривания (зона окисления) железистыхкварцитов и скарновых магнетитовых руд. Такие руды часто называют мартитовыми (мартит - псевдоморфозы гематита по магнетиту). Среднее содержание Feот 51 до 60%, иногда выше, с незначительными примесями Sи Р. Известны месторождения гематитовых руд с присутствием в них до 15-18% Mn. Менее развиты гидротермальные месторождения гематитовых руд. Магнитныежелезняки,или магнетитовые руды. Рудный минерал - магнетит (иногда магнезиальный), нередко мартитизированный. Наиболее характерны для месторождений контактово-метасоматического типа, связанных с известковыми и магнезиальными скарнами. Наряду с богатыми массивными рудами (50-60% Fe) распространены вкрапленные руды, содержащие менее 50% Fe. Известны месторождения руд с присутствием ценных примесей, в частности Со, Mn. Вредные примеси - сульфидная сера , Р, иногда Zn, As. Особую разновидность магнетитовых руд представляют титаномагнетитовыеруды, являющиеся комплексными железо-титано-ванадиевыми. Важное промышленное значение приобретают вкрапленные титаномагнетитовыеруды, являющиеся по существу основными интрузивными породами с повышенным содержанием породообразующего титаномагнетита.В них обычно присутствует 16-18% Fe, но они легко обогащаются магнитнойсепарацией (Качканарское месторождение на Урале и др.). Сидеритовые руды (шпатовые железняки)разделяются на кристаллическиесидеритовые руды и глинистые шпатовые железняки.Среднее содержание Fe30-35%. После обжига, в результате удаления CO2, сидеритовые руды превращаются в промышленные ценные тонкопористые железо-окисные(обычно содержат до 1-2% Mn, иногда до 10%). В зоне окисления сидеритовые руды превращаются в бурые железняки.Силикатные железныеруды. Рудными минералами в них являются железистыехлориты,обычно сопровождающиеся гидроокислами железа,иногда сидеритом (Fe25-40%). Примесь Sнезначительна, Р до 0,9-1%. Силикатные руды слагают пласты и линзы в рыхлых осадочных породах. Часто обладают оолитовой текстурой. В коре выветривания превращаются в бурые, частью красные железняки.Железистыекварциты (джеспилиты, железистыероговики) - бедные и средние (12-36% Fe) докембрийские метаморфизованные железные руды , сложенные тонкими чередующимися кварцевыми, магнетитовыми, гематитовыми, магнетит-гематитовыми прослоями, местами с примесью силикатов и карбонатов. В железистыхкварцитах мало примесей S, Р. Залежи железистыхкварцитов обычно обладают крупными запасами металла . Их обогащение, в особенности магнетитовых разностей, даёт вполне рентабельный концентрат с содержанием 62-68% Fe. В коре выветривания кварц из железистыхкварцитов выносится, и возникают крупные залежи богатых гематито-мартитовых руд. Большая часть железной руды используется для выплавки чугунов, сталей, а также ферросплавов. В относительно небольших количествах служат природными красками (охры) и утяжелителями буровых глинистых растворов. Требования промышленности к качеству и свойствам железной руды разнообразны. Так, для выплавки некоторых литейных чугунов применяются железныеруды с большой примесью Р (до 0,3-0,4%). Для плавки мартеновских чугунов (главного товара доменного производства), при плавке на коксе содержание Sв руде, вводимой в домну, не должно превышать 0,15%. Для производства чугунов, идущих в мартеновский передел кислым способом, железныеруды должны быть особо малосернистыми и малофосфористыми; для передела основным способом в качающихся мартенах допускается несколько более повышенная примесь в руде Р, но не выше 1,0-1,5% (в зависимости от содержания Fe). Томасовские чугуны плавятся из фосфористыхжелезных руды с повышенным количеством Fe. При выплавке чугунов любого типа содержание Znв железной руде не должно превышать 0,05%. Руда, используемая в домне без предварительного спекания, должна быть механически достаточно прочной. Т. н. мартеновские руды, вводимые в шихту, должны быть кусковыми и иметь высокое содержание Feпри отсутствии примесей Sи Р. Обычно таким требованиям удовлетворяют плотные богатые мартитовые руды. Магнетитовые руды с содержанием до 0,3-0,5% Cuиспользуются для получения сталей с повышенной устойчивостью против коррозии.

В мировой добыче и переработке железныеруды различных промышленных типов отчётливо проявляется тенденция значительного увеличения добычи бедных, но хорошо обогащающихся руд, в особенности магнетитовых железистыхкварцитов, в меньшей мере вкрапленных титано-магнетитовыхруд. Рентабельность использования таких руд достигается крупными масштабами горно-обогатительных предприятий, совершенствованием техники обогащения и окускования получаемых концентратов, в частности получения т. н. окатышей. Вместе с тем сохраняет актуальность задачи увеличения ресурсов железной руды , не требующих обогащения.

Месторождения железных руд в мире

Высокое содержание железа в земной коре, многообразие геологических обстановок и условий его концентрации обусловили многочисленность типов месторождений железных руд, отличающихся также широким спектром объёмов их запасов. В целом минерально-сырьевую базу железных руд мира характеризуют четыре главные геолого-промышленные типа месторождений, обладающих наибольшими ресурсами и запасами, из которых добывается почти весь объём товарных руд:

1 - месторождения магнетитовых руд в железистых кварцитах и сланцах кристаллических щитов, локализованные в крупных железорудных бассейнах. Запасы месторождений такого типа составляют 71,3% мировых. Наиболее крупные из них расположены в России, Украине, Индии, Габоне, Гвинее, ЮАР, Бразилии, Китае, Венесуэле, Канаде, США и Австралии .

2 - осадочные и вулканогенно-осадочные месторождения, залегающие в осадочных прибрежно-морских или вулканогенно-осадочных толщах. Месторождения этого типа составляют 11,4% мировых запасов. Они разведаны на территории России, Украины, Казахстана, Китая, США, Австралии и некоторых стран Европы и Северной Африки.

3 - месторождения магнетитовых руд в складчатых зонах древних платформ и в осадочном покрове платформ (7,3% мировых запасов). Наиболее крупные залежи этого типа расположены в России, Вьетнаме, Казахстане, Иране, Турции, США, Перуанская республика и Чили.

4 - магматогенные и титаномагнетитовые руды составляют 6,5% мировых запасов. Месторождения такого типа находятся в России, Швеции, Танзании, Уганде, ЮАР, Турции, Иране, США и на территории некоторых других государств Европы и Африки.

Второстепенные типы месторождений в целом составляют всего 3,5% мировых запасов. Они представлены железистыми корами выветривания (Албания, Филиппины, Куба и страны тропической Африки) и современными прибрежно-морскими россыпными месторождениями (Индонезия, Новая Зеландия, ЮАР, и Бразилия).

Промышленные типы месторождений

Главные промышленные типы железорудных месторождений:

Месторождения железистых кварцитов и богатых руд, образовавшихся по ним

Имеют метаморфогенное происхождение. Руда представлена железистыми кварцитами, или джеспилитами, магнетитовыми, гематит-магнетитовыми и гематит-мартитовыми (в зоне окисления). бассейны КМАи Криворожский(СССР), район оз. Верхнего (США и Канада), железорудная провинция Хамерсли (), район Минас-Жерайс (Бразилия)

Пластовые осадочные месторождения

Имеют хемогенное происхождение, образовались за счет выпадения железа из коллоидных растворов. Это оолитовые, или бобовые, железные руды, представленные преимущественно гетитоми гидрогетитом. Лотарингский бассейн (), Керченский бассейн, Лисаковское и др.(СССР)

Скарновые железорудные месторождения

Сарбайское, Соколовское, Качарское, Гора Благодать, Магнитогорское, Таштагольское (СССР)

Комплексные титаномагнетитовые месторождения

Происхождение магматическое, месторождения приурочены к крупным докембрийским интрузивам. Рудные минералы - магнетит, титаномагнетит. Качканарское, Кусинское (СССР), месторождения Канады, Норвегии


Второстепенные промышленные типы железорудных месторождений:

Комплексные карбопатитовые апатит-магнетитовые месторождения

Ковдорское, СССР

Железорудные магно-магнетитовые месторождения

Коршуновское, Рудногорское, Нерюндинское в СССР

Железорудные сидеритовые месторождения

Бакальское, СССР; Зигерлянд, ФРГ и др.

Железорудные и железомарганцевые оксидные пластовые месторождения в вулканогенно-осадочных толщах

Каражальское, СССР

Железорудные пластообразные латеритныеместорождения

Южный Урал; Куба и др.

Мировые разведанные запасы железной руды составляют порядка 160 млрд тонн, содержащих около 80 млрд тонн чистого железа. По данным Геологической службы США, Украинаобладает крупнейшими в мире разведанными запасами железной руды, в то время как Россияи Бразилияделят первенство по объему запасов руды в пересчете на содержащееся в ней железо.

Для промышленного обогащения используются руды с содержанием железа не ниже 14-25%. При этом учитывается размер месторождения, условия залегания железосодержащей породы, качество и комплексность руды. Вредными примесями в руде являются сера и фосфор. Богатыми считаются руды с содержанием железа не ниже 57%, кремнезёма - 8-10%, а серы и фосфора - до 0,15%. Наиболее качественные руды обычно содержат более 68% железа, менее 2% кремнезема, 0,01% серы и фосфора и до 3,3% других примесей. По объемам запасов железных руд их месторождения условно подразделяются на уникальные, крупные, средние и мелкие. Уникальных в мире насчитывается десятки, крупных и средних - сотни, а мелких - тысячи.

Разнообразные ресурсы железных руд имеются в почти 100 странах мира. Прогнозные и выявленные их ресурсы достигают 664,3 млрд. тонн. В десятку обладателей крупнейших залежей железа входят: , США, Бразилия, Австралия, Украина, Канада, Казахстан, Индия и Швеция. В каждой из этих стран запасы сырья для чёрной металлургии превышают 10 млрд. тонн. В целом эти залежи оцениваются в 555,8 млрд. тонн или 83,7% мировых выявленных запасов.

Распределение прогнозных и выявленных запасов железных руд по материкам

(в млрд. тонн):

Европа 55,3

Добыча железных руд в 2005 г. велась в 52 странах мира открытым и подземным способами. Производство товарных руд составило около 1100 млн. тонн.

Товарных железных руд в 2003 г. в мире составил 486,3 млн. тонн, а в 1993 г. - 383,1, т.е. и этот показатель заметно возрастает. Главными импортерами и потребителями важнейшего для чёрной металлургии сырья являются: Япония, Китай, Южная Корея, Франция, США, Тайвань, Польша, Бельгия и Люксембург.

Распределение запасов руды по странам:

Украина— 18 %

Россия— 16 %

Китай— 13 %

Бразилия— 13 %

Австралия— 11 %

Индия— 4 %

Прочие — 20 %

Запасы в пересчёте на содержание железа:

Россия— 18 %

Бразилия— 18 %

Австралия— 14 %

Украина— 11 %

Китай— 9 %

Индия— 5 %

Прочие — 22 %

Крупнейшие экспортёры и импортёры железно-рудного сырья

Экспортёры:

Австралия— 186,1 млн тонн.

Бразилия— 184,4 млн тонн.

Индия— 55 млн тонн.

Канада— 27,1 млн тонн.

ЮАР— 24,1 млн тонн.

Украина— 20,2 млн тонн.

Россия— 16,2 млн тонн.

Швеция— 16,1 млн тонн.

Казахстан— 10,8 млн тонн.

Всего экспорт 580 млн тонн.

Импортёры:

Китай— 148,1 млн тонн.

Япония— 132,1 млн тонн.

Южная Корея— 41,3 млн тонн.

Германия— 33,9 млн тонн.

Франция— 19,0 млн тонн.

Великобритания— 16,1 млн тонн.

Тайвань— 15,6 млн тонн.

Италия— 15,2 млн тонн.

Нидерланды— 14,7 млн тонн.

США— 12,5 млн тонн.

Особенности производства железорудного сырья в Российской Федерации

Железную руду, извлеченную из недр, в горном деле принято называть «сырой рудой». Под термином «товарная руда» в горном деле понимают «руду, подготовленную к металлургическому переделу». В Российской Федерации добывают два типа железной руды: богатая и бедная. Богатая железная руда - это , первичное происхождение которой осадочное с последующей частичной дезинтеграцией под действием процессов выветривания. Основными породообразующими минералами богатой железной руды являются гематит Fe2O3 (содержание 40-55%) и кварц (содержание до 20%). Бедная руда представлена неокисленными железистыми кварцитами, которые состоят в основном из кварца, магнетита, гематита (не всегда) и имеют характерное тонкослоистое строение.

Количество стадий рудоподготовки богатой руды на пути от «сырой руды» к «товарной руде» минимальное: дробление и клас­сификация по крупности на грохотах.

Технологическое превращение неокисленных железистых кварцитов как «сырой руды» в товарную руду (концентрат) значительно более сложно и включает процессы дробления, измельчения, классификации по крупности и по плотности, дешламации, магнитной сепарации, обезвоживания. В этой совокупности процессов первичной обработки неокисленных железистых кварцитов они приобретают свойства нового товара , но не свойства товарного товара. Товарным товаром они становятся только тогда, когда их свойства удовлетворяют требованиям приобретателя (металлургических заводов), т. е. определенным стандартным требованиям, нормируемым техническими требованиями заказчиков. Такими свойствами на горных (горно-обогатительных) предприятиях Российской Федерации, добывающих и перерабатывающих железные руды, обладают аглоруда, доменная руда, кондиционный железорудный концентрат, железорудные окатыши и брикеты.

Добыча и обогащение руд сосредоточены в нескольких районах. В Центральном ФО - в Курской и Белгородской областях с Лебединским, Михайловским, Стойленским ГОКами и комбинатом КМА-Руда. Качество магнетитовых концентратов для месторождений КМА: крупность - 0,1-0 мм, влажность - 10,5%, содержание железа - не менее 64%.

На Северо-западе Российской Федерации руду добывают Карельский окатыш, Оленегорский и Ковдорский ГОКи. Наиболее крупными уральскими ГОКами являются Качканарский, Высокогорский, Бакальские рудники, Богословское рудоуправление. В Сибири крупных комбинатов нет за исключением расположенного в Иркутской области Коршуновского ГОКа. На Урале, в Сибири и на Дальнем Востоке расположены также несколько средних и мелких добывающих и перерабатывающих предприятий.

Обогащение магнетитовых кварцитов осуществляют магнитным методом в слабом магнитном поле в 2-5 стадий с применением барабанных магнитных сепараторов различных типов, а в ряде переделов — промывкой, отсадкой, флотацией. Весьма эффективной является сухая магнитная сепарация крупнокускового материала (6-10 мм) При содержании в исходной руде около 35 %железа получают конечный концентрат и хвосты, содержащие 65-68 и менее 12 % железа соответственно. Извлечение железа в концентраты составляет более 81 %.

Обогащение гематит-магнетитовых, гематитовых, бурожелезняковых и сидеритовых руд осуществляют по комбинированным магнитно-гравитационным, магнитно-флотационно-гравитационным схемам. Так, апатит-магнетитовые руды Ковдорского месторождения обогащают по комбинированной магнитно-флотационно-гравитационной технологии с получением же­лезорудного, бадделеитового и апатитового концентратов.

Разработаны оригинальные комбинированные технологии (магнитно-гравитационные, магнитно-флотационные и пирометаллургические) для переработки высокотитанистых титаномагнетитовых руд Южного Урала, Сибири и Кольского полуострова.

Доля балансовых запасов, разрабатываемых открытым способом, составляет 92,5%, из них на 8 крупнейших горно-обогатительных комбинатов приходится 85% всей добычи железных руд. Из 30 действующих карьеров 5 наиболее крупных (Лебединский, Михайловский, Стойленский, Костомукшский, Северный Качканарского ГОКа) обеспечивают 69% общероссийской добычи открытым способом и 3 карьера (Ковдорский, Главный и Западный Качканарского ГОКа) - 16% добычи, Коршуновский карьер - 2,5%.

Массовая добыча и переработка бедных железистых кварцитов вызвала значительное увеличение затраты электричества на подготовку металлургического сырья. Средний удельный затрата электричества на железорудных горных предприятиях Российской Федерации составляет 44-45 кВт-ч на 1 т добытой и переработанной руды и 125-126 кВт-ч на 1 т полученного концентрата. На ГОКах, где конечным товаром являются железорудные окатыши, энергоемкость добычи и переработки 1 т железной руды составляет 61-62 кВт-ч, а на ГОКах, где товарным товаром является железорудный концентрат, — 38-45 кВт-ч.

Источники

ru.wikipedia.org - ВикиПедия - свободная энциклопедия

wikiznanie.ru - ВикиЗнание - свободная энциклопедия

bse.sci-lib.com - Большая Советская Энциклопедия

dic.academic.ru -Словари и энциклопедии на Академике


Энциклопедия инвестора . 2013 .

  • - geležies rūda statusas T sritis chemija apibrėžtis Mineralų, kurių sudėtyje yra padidintas Fe kiekis, sankaupa. atitikmenys: angl. iron ore rus. железная руда; железняк … Chemijos terminų aiškinamasis žodynas
  • железная руда сложного вещественного состава - Железная руда, представленная несколькими железосодержащими и другими минералами. [ГОСТ 26475 85] Тематики продукция железорудная и марганцеворудная EN iron ore of a complex mineral composition … Справочник технического переводчика

    гематитовая железная руда - Железная руда, представленная в основном гематитом. [ГОСТ 26475 85] Тематики продукция железорудная и марганцеворудная EN hematite iron ore … Справочник технического переводчика, Султанова Марина. Для ребёнка мир, который его окружает, полон тайн и чудес. Он хочет их раскрыть и тщательно изучить, поэтому задаёт бесчисленное множество вопросов. Особенно маленького исследователя…


Железная руда представляет собой минеральное образование природного характера, которое имеет в своем составе соединения железа, накопленные в таком объеме, которого достаточно для экономически выгодного его извлечения. Конечно, железо есть в составе всех горных пород. Но железными рудами называют именно те железистые соединения, которые настолько богаты этим веществом, что позволяют промышленную добычу металлического железа.

Типы железных руд и их основные характеристики

Все железные руды сильно отличаются по своему минеральному составу, наличию вредных и полезных примесей. Условиям их образования и, наконец, содержанию железа.

Основные материалы, которые относят к рудным, можно разделить на несколько групп:

  • Оксиды железа, к которым относятся гематит, мартит, магнетит.
  • Гидроксиды железа - гидрогетит и гетит;
  • Силикаты - тюрингит и шамозит;
  • Карбонаты - сидероплезит и сидерит.

В промышленных железных рудах железо содержится в различных концентрациях - от 16 до 72%. К полезным примесям, содержащимся в железных рудах, относят: Mn, Ni, Co, Mo, и пр. Есть и вредные примеси, к которым можно отнести: Zn, S, Pb, Cu и др.

Месторождения железных руд и технология добычи

По генезису существующие месторождения железных руд разделяются на:

  • Эндогенные. Они могут быть магматическими, представляющими собой вкрапления титаномагнетитовых руд. Также могут быть карбонатитовые вкрапления. Кроме того, существуют линзообразные, пластообразные скарново-магнетитовые залежи, вулкано-осадочные пластовые залежи, гидротермальные жильные, а также неправильной формы рудные тела.
  • Экзогенные. К ним в основном относят бурожелезняковые и сидеритовые осадочные пластовые месторождения, а также месторождения тюрингитовых, шамозитовых и гидрогетитовых руд.
  • Метаморфогенные - это месторождения железистых кварцитов.

Максимальные объемы добычи руд спровоцированы значительными запасами и приходятся на докембрийсские железистые кварциты. Меньшее распространение имеют осадочные бурожелезняковые руды.

При добыче различают богатые, и требующие обогащения руды. Отрасль, осуществляющая добычу железной руды, проводит также ее предварительную переработку: сортировку, дробление и вышеупомянутое обогащение, а также агломерация. Промышленность добычи руды именуется железорудной отраслью и является сырьевой базой для черной металлургии.

Отрасли применения

Железная руда является основным сырьем для получения чугуна. Он поступает на мартеновское или конвертерное производство, а также на восстановление железа. Из железа, как известно, производят самую различную продукцию, как впрочем, и из чугуна. В этих материалах нуждаются такие отрасли:

  • Машиностроение и металлообработка;
  • Автомобильная промышленность;
  • Ракетная промышленность;
  • Военная промышленность;
  • Пищевая и легкая промышленность;
  • Строительная отрасль;
  • Добыча нефти и газа и их транспортировка.