Как держать форму. Массаж. Здоровье. Уход за волосами

Современное образование: робототехника в школе.

Как вы оцениваете образовательную робототехн ику в России и что нас ждет в ближайшие 5 лет? Такой вопрос мы задали тренерам, судьям и участникам Всероссийской робототехнической олимпиады. Самые интересные ответы ниже.

Сергей Филиппов, учитель робототехники ФМЛ 239, Санкт-Петербург, тренер команд-победителей российских и международных соревнований:

На уровне школьной робототехники я считаю, что у нас ускоренное развитие и мы входим в мировой уровень. Студенческая — сильно отстает — это не одно десятилетие надо активно работать. И возникнет странная ситуация, когда мотивированные, талантливые и очень опытные школьники придут в вузы. Не всех их смогут обеспечить достаточно интенсивной и интересной учебой и работой.

В прошлом году на ВРО наблюдался стремительный скачок усложнения творческих проектов, и они были очень интересные. В этом году тенденция поддерживается, но немножко устаканивается — нового рывка не было. Хотя предлагаются довольно интересные решения, технологии.

Федеральный тьютор по робототехнике и высоким технологиям в детских технопарках «Кванториум»:

Я думаю, что поколение детей, которое выросло, скажем, с уровня LEGO, перейдет сейчас уже на следующий этап, добавится более сложная электроника, мехатроника и прочее. И я думаю, что будущее за DIY-роботами — сделай своими руками — мейкеры и прочие ребята, которые будут делать роботов как-будто из хлама. Собрали своего робота и вау.

Динара Гагарина, Занимательная робототехника, и Андрей Гурьев, Кванториум

Александр Колотов, Университет Иннополис:

О том, что будет дальше, можно только фантазировать. Если мы посмотрим тренды в сети интернет, какие задачи сейчас решаются ведущими робототехниками, вузами исследовательскими или уже реализуется в коммерческих проектах, то видно, что образовательная робототехника в какой-то момент должна начать соответствовать этому уровню, что должна выстраиваться какая-то определенная ступенька подготовки. Задачи, которые должны ставить перед собой участники, тренеры, которые готовят этих участников, с каждым годом усложняться должны. Потому что, если говорить избитую достаточно фразу из «Алисы в Зазеркалье», что чтобы остаться на месте, нужно быстро бежать, а чтобы попасть куда-то, нужно бежать в два раза быстрее. Также и сейчас, если мы хотим, чтобы наши школьники, которые сейчас занимаются робототехникой, через 5 лет условно пришли в вуз, а через 5 лет после вуза пришли на предприятие, получается через 10 лет, то они должны задачи решать не 30-летней давности, которые потеряли актуальность, а задачи, которые сейчас актуальны, только тогда через 10 лет они смогут выбиваться в тот робототехнический уклад, которые сформируется через 10 лет, а он сформируется мгновенно. Мы знаем, что 10 лет назад облачные технологии, нейроинтерфейсы и нейронные сетки — это все была какая-то фантазия, сейчас инструментарий шагнул далеко вперед и каких-то базовых основ, базовой математики уже достаточно, чтобы начать понимать и с этим знакомиться. Базовая математика у школьников есть. Математика, программирование, физика есть. Соответственно они могут научиться не просто решать задачи позавчерашнего дня, а хотя бы вчерашнего или сегодняшнего дня. Я вижу развитие такое. Это не только в России, но и по всему миру. А у нас, может быть, получится задать тон, какие задачи могут решать школьники.

Нашим школьникам, это не секрет, традиционно нравится решать сложные задачи, которые являются challenge . Мы слабы в доведении до конца, т.е. нам нравится задача, она нас мотивирует, но когда уже более-менее все понятно, как все должно работать, все выстроено…. Плюс, наверное, это российская тоже черта — перфекционизм — это другая проблема, когда хочется все время лучше и лучше. Можно остановиться …

Игорь Лосицкий , Университет ИТМО:

Я хорошо оцениваю состояние, поскольку, если сравнивать с мировой, то у нас неплохие результаты, судя по результатам олимпиады, значит и уровень образовательной робототехники в норме относительно среднемирового. Перспективы … Не знаю… Как-то началось все очень так с каким-то пафосом, с какими-то ожиданиями, а, глядя по сторонам, можно заметить, что занимаются одни и те же люди, больше их не становится, уровень иногда растет, иногда падает. Потому что перспектив у детей, как робототехников, в России очень мало. Они все равно становятся либо инженерами, либо программистами в итоге… , но я пока не знаю, чтобы это было таким же массовым явлением, которое сильно востребовано в России настолько же, например, как программирование.

Максим Васильев, РАОР:

Если сравнивать, например, с другими странами, в том числе близлежащими, то состояние образовательной робототехники в России неплохое. Она достаточно популярна, она поддерживается на очень многих уровнях — государственном, частном, например, частный университет Иннополис проводит серьезную олимпиаду. Много движений, где робототехника, начинает свое место занимать, начиная от допобразования до Кванториумов, робототехника учитывается при поступлении в вузы. Процесс идет сейчас достаточно семимильными шагами. Думаю, что все хорошо, если о перспективах говорить, то будет еще лучше.

Усложнение будет в том смысле, что меняются технологии, добавляются вещи общего технического плана, в том числе опускаются в образовательную робототехнику. LEGO выпустит новый набор по робототехнике, там будут какие-то новые технологии, которых сейчас нет в EV3 (который сейчас самый популярный). Подтянутся другие производители, которые тоже это включат (может быть, это элементы технического зрения). Это все, с одной стороны усложнится, но тем не менее это все равно будет доступно детям.

В школе не нужно заниматься образовательной робототехникой… Не к месту совершенно. У школы есть стандартные образовательные предметы, которые крайне нужны и важны: физика, химия, математика. Лучше бы астрономию вернули, черчение… Учителям это не нужно. Особенно сидеть, собирать этих роботов. Они плохо понимают, это не в их интересах. Учитель информатики учился на информатика, ему механика чужда.

Дмитрий Алексеев, генеральный директор компании DNS, Центр развития робототехники во Владивостоке:

С образовательной робототехникой все хорошо. Нас ждет развитие робототехники самой по себе… Будут усложняться сами роботы. Я думаю, что мы скоро увидим в рамках школьных соревнований задачи на распознавание образов, техническое зрение. Честно говоря, думаю, что следующая версия LEGO будет это поддерживать. Ну, если LEGO не сделает, мы сделаем.



Оглавление

1. Введение 1

II .Теоретические аспекты включения робототехники в образовательное пространство 2

1.Актуальность введения в школе межпредметного курса «Основы робототехники» 2

2.«Основы робототехники» как межпредметный курс внедрения робототехники в образовательное пространство школы. 5

III .Содержание инновационного педагогического опыта работ 9

1. Анализ исходного состояния деятельности учителя на основе

выявления противоречий. 9

2.Цель опыта. 11

3.Объект опыта. 11

4.Предмет опыта. 11

5.Сущность опыта. 11

6.Конечный практический результат опыта. 12

7.Нормативная база опыта. 12

8.Новизна опыта. 12

9.Теоретическая значимость опыта. 13

10.Практическая значимость опыта. 13

11.Перспектива внедрения опыта. 13

12.Комплекс условий,обеспечивающий распространения опыта. 14

13.Индикаторы опыта. 14

IV .Методические аспекты внедрения робототехники в образовательное пространство школы 14

1. Теоретико-методологическая основа опыта. 14

2. Место робототехники в учебном плане школы 15

3. Формы и методы организации обучения 18

4. Методы обучения 18

5. Формы организации учебных занятий 20

6.Основные этапы разработки Лего- проекта 20

7. Структура образовательной робототехники 21

V .Результаты внедрения и обобщение опыта 22

VI .Заключение 24

VII .Литература 26

VIII .Приложения 27

    Введение.

Робототехника - прикладная наука, занимающаяся разработкой автоматизированных технических систем. Робототехника опирается на такие дисциплины как электроника, механика, программирование, физика.

Робототехника является одним из важнейших направлений научно- технического прогресса, в котором проблемы механики и новых технологий соприкасаются с проблемами искусственного интеллекта. Человечество остро нуждается в роботах, которые могут без помощи оператора тушить пожары, самостоятельно передвигаться по заранее неизвестной, реальной пересеченной местности, выполнять спасательные операции во время стихийных бедствий, аварий атомных электростанций, в борьбе с терроризмом. Кроме того, по мере развития и совершенствования робототехнических устройств возникла необходимость в мобильных роботах, предназначенных для удовлетворения каждодневных потребностей людей: роботах – сиделках, роботах – нянечках, роботах – домработницах, роботах – всевозможных детских и взрослых игрушках и т.д. И уже сейчас в современном производстве и промышленности востребованы специалисты, обладающие знаниями в этой области. Начинать готовить таких специалистов нужно школе и с самого младшего возраста. Поэтому, образовательная робототехника в школе приобретает все большую значимость и актуальность в настоящее время.

II . Теоретические аспекты включения робототехники в образовательное пространство

    Актуальность введения в школе межпредметного курса «Основы робототехники».

«Уже в школе дети должны получить возможность раскрыть свои способности, подготовиться к жизни в высокотехнологичном конкурентном мире»

Д. А. Медведев

Первый человекоподобный рыцарь был предложен Леонардо да Винчи в 1495 г., в 1738 г. французский механик Жак де Вакансон создал первого андроида, а в 1921 году чешский писатель Карел Чапек придумал слово «робот».

Бурными темпами робототехника вошла в мир в середине XX века. Это было одно из самых передовых, престижных, дорогостоящих направлений машиностроения. Основой робототехники были техническая физика, электроника, измерительная техника и многие другие технические и научные дисциплины. В начале XXI века робототехника является одним из приоритетных направлений в сфере экономики, машиностроения, здравоохранения, военного дела и других направлений деятельности человека. На сегодняшний день человек незаметно окунулся в мир автоматики и робототехники. На улицах можно видеть шагающих роботов, технология позволила создать материалы для роботов – андроидов. В быту - сенсорная автоматика и робототехника. Поэтому специалисты, обладающие знаниями в этой области, востребованы. В России существует такая проблема: недостаточная обеспеченность инженерными кадрами и низкий статус инженерного образования. Поэтому необходимо вести популяризацию профессии инженера, ведь использование роботов в быту, на производстве и поле боя требует, чтобы пользователи обладали современными знаниями в области управления роботами. Как этого достичь? С чего начинать? Школа – это первая ступень, где можно закладывать начальные знания и навыки в области робототехники, прививать интерес учащихся к робототехнике и автоматизированным системам.

"Если ученик в школе не научился сам ничего творить,

то и в жизни он всегда будет только подражать, копировать,

так как мало таких, которые бы, научившись копировать,

умели сделать самостоятельное приложение этих сведений"

Л.Н.Толстой.

Несмотря на то, что Лев Толстой сказал эти слова в прошлом веке, они актуальны сегодня. Основная задача современного образования - создать среду, облегчающую ребёнку возможность раскрытия собственного потенциала. Это позволит ему свободно действовать, познавая эту среду, а через неё и окружающий мир. Новая роль педагога состоит в том, чтобы организовать и оборудовать соответствующую образовательную среду и побуждать ребёнка к познанию и к деятельности.

Образовательная среда ЛЕГО, объединяет в себе специально скомпонованные для занятий в группе комплекты ЛЕГО, тщательно продуманную систему заданий для детей и четко сформулированную образовательную концепцию.

Что такое ЛЕГО-конструирование ? Ещё одно веянье моды или требование времени? Лего-педагогика – одна из самых известных и распространённых ныне педагогических систем, широко использующая трёхмерные модели реального мира и предметно-игровую среду обучения и развития ребёнка. «Лего» в переводе с датского языка означает «умная игра». ЛЕГО конструктор побуждает работать, в равной степени, и голову, и руки учащегося. Конструктор помогает детям воплощать в жизнь свои задумки, строить и фантазировать, увлечённо работая и видя конечный результат. Именно ЛЕГО позволяет учиться играя и обучаться в игре. Введение элементов робототехники в школьные предметы позволит заинтересовать учащихся, разнообразить учебную деятельность, использовать групповые активные методы обучения, решать задачи практической направленности. Программирование реального робота поможет увидеть законы математики не на страницах тетради или учебника, а в окружающем мире. Использование конструкторов Lego Mindstorms NXT позволяет взглянуть на школьные предметы по-новому.

В этом мы видим актуальность введения в школе межпредметного курса «Основы робототехники».

Изучение робототехники создает предпосылки для социализации личности учащихся и обеспечивает возможность ее непрерывного технического образования, а освоение с помощью лего- наборов и других роботоконструкторов компьютерных технологий – это путь школьников к современным перспективным профессиям и успешной жизни в информационном обществе. Конечно же, занятия робототехникой не приведут к тому, что все дети захотят стать программистами и роботостроителями, инженерами, исследователями. В первую очередь занятия рассчитаны на общенаучную подготовку школьников, развитие их мышления, логики, математических способностей, исследовательских навыков.

    «Основы робототехники» как межпредметный курс внедрения робототехники в образовательное пространство школы.

LEGO® MINDSTORMS® Education – новое поколение образовательной робототехники, позволяющей изучать естественные науки (информатику, физику, химию, математику и др.) а также технологии (научно – технические достижения) в процессе увлекательных практических занятий. Наш курс межпредметный.

1. Физика Использование Лего-технологий в преподавании физики может проходить по следующим направлениям:

1. демонстрации;

2. фронтальные лабораторные работы и опыты;

3. исследовательская проектная деятельность.

Деятельность в данных направлениях отвечает требованиям Примерной программы по физике для основной школы, составленной на основе Фундаментального ядра содержания общего образования и Требований к результатам основного общего образования, представленных в федеральном государственном образовательном стандарте общего образования второго поколения. Внедряя Лего-технологии в обучение, учитель получает возможность достижения следующих целей изучения физики:

развитие интересов и способностей учащихся на основе передачи им знаний и опыта познавательной и творческой деятельности;

понимание учащимися смысла основных научных понятий и законов физики, взаимосвязи между ними.

Достижение этих целей обеспечивается решением следующих задач:

знакомство учащихся с методом научного познания;

приобретение учащимися знаний о физических явлениях и физических величинах, характеризующих эти явления;

формирование у учащихся умений наблюдать природные явления и выполнять опыты, лабораторные работы и экспериментальные исследования с использованием Лего-конструкторов;

овладение учащимися такими общенаучными понятиями, как эмпирически установленный факт, проблема, гипотеза, теоретический вывод, результат экспериментальной проверки.

Личностные результаты обучения физике с использованием Лего-технологий:

сформированность познавательных интересов, интеллектуальных и творческих способностей учащихся;

самостоятельность в приобретении новых знаний и практических умений;

мотивация образовательной деятельности школьников на основе личностно ориентированного подхода;

формирование ценностных отношений друг к другу, учителю, авторам открытий и изобретений, результатам обучения.

Метапредметные результаты внедрения Лего-конструирования в обучение физике:

овладение навыками самостоятельного приобретения новых знаний, организации учебной деятельности, постановки целей, планирования, самоконтроля и оценки результатов своей деятельности, умениями предвидеть возможные результаты своих действий;

понимание различий между исходными фактами и гипотезами для их объяснения, теоретическими моделями и реальными объектами, овладение универсальными учебными действиями на примерах гипотез для объяснения известных фактов и экспериментальной проверки выдвигаемых гипотез, разработки теоретических моделей процессов или явлений;

приобретение опыта самостоятельного поиска, анализа и отбора информации с использованием новых информационных технологий для решения познавательных задач;

освоение приемов действий в нестандартных ситуациях, овладение эвристическими методами решения проблем;

формирование умений работать в группе.

Например, на уроке изучения скорости движения тел можно использовать робот Валли или робот- пятиминутка.

2. Информатика. В содержании базовой дисциплины ―Информатика понятийный аппарат информатики предполагается разделить на три концентра:

Понятия, связанные с описанием информационного процесса;

Понятия, раскрывающие суть информационного моделирования;

Понятия, характеризующие применение информатики в различных областях, прежде всего: технологиях, управлении, социально-экономической сфере.

Для учителя информатики помимо содержания и количества часов, выделяемых на предмет, важна информация и о новых подходах в стандартах второго поколения - это деятельностный подход . Для этого подхода главным является вопрос, какие необходимы действия, которыми должен овладеть ученик, чтобы решать любые задачи. Иначе говоря, необходимо выделить универсальные действия, овладение которыми дает возможность

решать в неопределенных жизненных ситуациях разные классы задач. Таким образом, на первый план, наряду с общей грамотностью, выступают такие качества выпускника, как, например, разработка и проверка гипотез, умение работать в проектном режиме, инициативность в принятии решений и т.п. Эти способности востребованы в постиндустриальном обществе. Они и становятся одним из значимых ожидаемых результатов образования и предметом стандартизации. Одним из методических решений , позволяющим более интенсивно осваивать информатику и формировать ключевые компетенции учащихся, является использование конструктора Лего на уроках информатики. Главная идея состоит в том, чтобы через насыщение школьного пространства новыми технологиями изменить содержание учебно-воспитательного процесса, создать новую внутришкольную коммуникационную среду, попадая в которую учащийся и учитель был бы более успешен, более компетентен, более современен. Цель внедрения конструктора Лего на уроках информатики: научить учащихся самостоятельно мыслить, находить и решать проблемы, привлекая для этого знания из разных областей, уметь прогнозировать результаты и возможные последствия разных вариантов решения. Одной из основных задач является осуществление технологической подготовки учащихся. На уроках информатики с применением Лего в основной и старшей школе учащиеся могут разрабатывать проекты по интересующей их тематике, широко используя в своей работе межпредметные связи.

Пример использования робота на уроках информатики:

Раздел информатики: Информационные основы процессов управления -Примеры систем автоматического управления, неавтоматического управления, автоматизированных систем управления на основе конструктора Лего. Например, создать сначала управляемую с помощью вращения двигателя модель машины (автоматическую), а затем автоматизировать процесс при помощи системного блока NXT (RCX).

3.Технология. Использование образовательной робототехники в преподавании Технологии является не столько модным веянием, сколько действительной необходимостью, которая делает современную школу конкурентоспособной, а урок по-настоящему эффективным и продуктивным для всех участников образовательного процесса. Лего позволяет постигать взаимосвязь между различными областями знаний на основе смоделированных руками самого ребенка уменьшенных аналогий различных механических устройств. Интересные и несложные в сборке модели Лего дают ясное представление о работе механических конструкций, о силе, движении и скорости. Принцип обучения «шаг за шагом», являющийся ключевым для Лего, обеспечивает учащемуся возможность работать в собственном темпе.

Кроме того, все школьные наборы Лего предназначены для групповой работы, в результате чего учащиеся одновременно приобретают и навыки сотрудничества, и умение справляться с индивидуальными заданиями, составляющими часть общей задачи. Конструируя и добиваясь того, чтобы созданные модели работали, испытывая полученные конструкции, учащиеся получают возможность учиться на собственном опыте. Наиболее гармонично образовательная робототехника встраивается в такие разделы Технологии как «Машины и механизмы. Графическое представление и моделирование»:

Механизмы технологических машин;

Сборка моделей технологических машин из деталей конструктора по эскизам и чертежам;

Сборка моделей механических устройств автоматики по эскизам и чертежам. Электротехнические работы. - Устройства с элементами автоматики;

Электропривод;

Простые электронные устройства.

И так, наш курс позволит через эти предметы внедрить в образовательное пространство школы основ робототехники и определить роль робототехники в учебно-воспитательном процессе.

Тема «Робототехника и компьютер- это творчество»

апрель,2013

Республиканский конкурс «Лучшая программа компьютерного лагеря»

Тема « Робототехника и компьютер- это творчество»

Диплом 2 степени

Май,2013

Мастер-класс республиканского семинара «Лагерь компьютерных технологий:от идеи до воплощения»

Благодарственное письмо от РЦИ и ОКО

2013

Районная выставка-конференция инновационной деятельности педагогических и руководящих работников.

Тема выступления « Робототехника в школе»

Диплом участника

2014,

январь

Мастер- класс на районной конференции инновационной деятельности педагогических работников «Знание.Опыт.Исследование»

Тема «Робототехника»

Диплом участника конференции

Практико-исследовательская конференция «Ступени творчества-2014» при МКОУ ДО ДДТ.

Секция «Дети и техника»

1 место.( команда в составе Коротаева Никиты и Романова Дениса).

Летний лагерь общешкольный

Грамота за проведение лагеря по робототехнике

Республиканская олимпиада по образовательной робототехнике

3 место (команда в составе Штина Кости и Овчинникова Саши, 6 класс)

Прилагаются копии дипломов, благодарностей учителю(Приложение ).

Подводя итоги внедрения курса в образовательное пространство школы можно сказать, что повлекло за собой:

    Повышение заинтересованности предметом.

    Сформированность новых моделей учебной деятельности, в том числе Лего – технологию, использующих информационные и коммуникационные технологии.

    Сформированность информационной компетентности учащихся и учителя.

    Использование проектных и исследовательских методов обучения.

    Изученность языков программирования.

    Совершенствование системы работы с одаренными детьми на основе использования возможностей новых информационных технологий.

    разработка и внедрение курса «Образовательная робототехника» в образовательное пространство школы еще не окончены. Предстоит доработка методических и дидактических материалов элективного курса и для встраивания робототехники в курс информатики и ИКТ, физики, начальной школы.

    Создание условий, которые позволяют реализовать способности и интересы учащихся.

Описанные мероприятия способствовали освоению и соблюдению норм общения, поведения, общепринятых ценностей человеческого общества, созданию положительной мотивации и стремления к успеху, творчеству.

Результаты моей работы над курсом «Образовательная робототехника» рассмотрены на школьном, районном, республиканском и федеральном уровне.

VI . Заключение.

Привлечение школьников к исследованиям в области робототехники, обмену технической информацией и начальными инженерными знаниями, развитию новых научно-технических идей позволит создать необходимые условия для высокого качества образования, за счет использования в образовательном процессе новых педагогических подходов и применение новых информационных и коммуникационных технологий. Понимание феномена технологии, знание законов техники, позволит выпускнику школы соответствовать запросам времени и найти своё место в современной жизни. Для того, чтобы сегодня у ученика формировалась учебная успешность, нужно добиться, прежде всего, чтобы школьник осознавал, что учебная деятельность, которой он занят в данный момент в школе повлечет за собой успех в его дальнейшей деятельности. Процессы обучения и воспитания не сами по себе развивают человека, а лишь тогда, когда они имеют деятельностные формы и способствуют формированию тех или иных типов деятельности.

Есть много образовательных технологий развивающих критическое мышление и умение решать задачи, однако существует очень мало привлекательных образовательных сред, вдохновляющих следующее поколение к новаторству через науку, технологию, математику, поощряющих детей думать творчески, анализировать ситуацию, критически мыслить, применять свои навыки для решения проблем реального мира.

Робототехника в школе представляет учащимся технологии 21 века, способствует развитию их коммуникативных способностей, развивает навыки взаимодействия, самостоятельности при принятии решений, раскрывает их творческий потенциал. Ученики лучше понимают, когда они что-либо самостоятельно создают или изобретают. При проведении занятий и мероприятий по робототехнике этот факт не просто учитывается, а реально используется.

Однако данный курс не является чем–то однажды написанным и далее живущим в законченном виде. Он может видоизменяться из года в год, от урока к уроку, корректироваться, дописываться, иногда исчезать целыми фрагментами. Непрерывность модификации материалов этого курса – естественный процесс. Это требования времени, ведь информационные и компьютерные технологии, все, что с ними связано, переживают взрывообразное развитие. Поэтому изменения и дополнения в эти материалы вносятся, и будут вноситься, постоянно.

Тем не менее, данный курс это задуманный, сформированный и отрабатываемый на практике в учебном процессе. Это реальный опыт и его может использовать в своей работе любой преподаватель. Его можно использовать как руководство к собственному действию, опираясь на эти разработки, самостоятельно модифицировать курс под себя, свой инструментарий, свое видение, текущий момент.

В заключении отметим, что внедрение единой системы обучения основам робототехнике в школе будет являться важным этапом развития технических навыков и умений школьников. «Основы робототехники» в школе позволят привить интерес школьников к техническому творчеству, тем самым раскрыть таланты тех учеников, которые в дальнейшем могут стать первоклассными инженерами и технологами. Именно поэтому внедрение образовательной робототехники в школу - большой шаг в сторону начального инженерного образования и начальной профориентации.

VII .Литература:

    Беспалько В.П. Основы теории педагогических систем. - Воронеж: изд-во воронежского университета, 1977 г.

    Д.Г. Копосов. Первый шаг в робототехнику. Практикум для 5-6 классов.М.Бином, 2012

    Д.Г. Копосов. Первый шаг в робототехнику. Рабочая тетрадь по робототехнике. М.Бином,2012

    Интернет – ресурс .

Сообщество увлеченных робототехникой.

    Интернет – ресурс . Техническая

поддержка для роботов NXT .

    Интернет – ресурс . Современные

модели роботов . net . ru , Развитие технологического образования школьников средствами робототехники.

Копытова О.Г.Внедрение робототехники в образовательное пространство школы.Трехгорный,2010

Руководство «ПервоРобот NXT . Введение в робототехнику»

VIII. Приложения.

        1. Фотографии.



Внедрение робототехники в образовательное пространство школы


2014

Ефремов Виктор Петрович- учитель физики, технологии высшей категории

МОУ «Колесурская СОШ

МОУ «Колесурская СОШ»

Робототехник одновременно является инженером, программистом и кибернетиком, должен иметь знания в области механики, теории проектирования и управления автоматическими системами. Поэтому, чтобы стать квалифицированным специалистом в этой области, нужно иметь колоссальные знания и практические навыки в разных областях.

Самые востребованные специальни будущего, связанных с робототехникой

Инженеры-робототехники занимаются созданием роботов. Исходя из целей проекта, они продумывают электронную начинку, механику движения, программируют машину на определённые действия. Причём работа по созданию робота обычно ведётся целой командой разработчиков.

Однако недостаточно создать инновационную автоматизированную технику, нужно управлять её работой, проводить регулярный осмотр и ремонт. Этим, как правило, занимается обслуживающий персонал.

Кроме того, робототехника постоянно развивается. Начинает процветать кибернетика, которая подразумевает сочетание био- и нанотехнологий. Квалифицированные специалисты этой области регулярно занимаются исследованиями и совершают революционные открытия .

В робототехнике можно выделить 7 востребованных специальностей:

1. Инженер-электроник – разрабатывает робототехнику, ремонтирует оборудование и обеспечивает надёжность электронных элементов управления.

2. Сервисный инженер – занимается техническим обслуживанием и ремонтом робототехники, производит диагностику оборудования, а также проводит обучение и консультации операторов, которые будут управлять роботами.

3. Электротехник – универсальный специалист по электронным приборам, который отвечает за корректное генерирование, преобразование и формирование электрических сигналов, а также обеспечивает проведение многих других процессов. Должен иметь обширные знания в области физики, математики и химии.

4. Программист робототехники – разрабатывает программное обеспечение для роботов, согласно их назначению. Также участвует в сервисном обслуживании, осуществляет запуск и отладку инновационных механизмов.

5. Специалист 3D-моделирования – совмещает в себе навыки визуализатора и модельера. В обязанности специалиста входит разработка трёхмерных моделей робототехники.

6. Разработчик приложений – занимается созданием функциональных приложений для дистанционного управления робототехникой.

7. Педагог специальности «Робототехника» – может заниматься обучением школьников, студентов профильных вузов, преподавать на продвинутых или подготовительных курсах, вести курсы повышения квалификации, участвовать в семинарах и лекциях.

Где обучают робототехнике в России?

Вузы, готовящие специалистов по робототехнике:

1. Московский технологический университет (МИРЭА, МГУПИ, МИТХТ) – www.mirea.ru

2. Московский государственный технологический университет «Станкин» – www.stankin.ru

3. Московский государственный технический университет им. Н. Э. Баумана – www.bmstu.ru

4. Национальный исследовательский университет «МЭИ» – mpei.ru

5. Сколковский институт науки и технологий – sk.ru

5. Московский государственный университет путей сообщения Императора Николая II – www.miit.ru

6. Московский государственный университет пищевых производств – www.mgupp.ru

7. Московский государственный университет леса – www.mgul.ac.ru

Дистанционные курсы:

Первый российский вуз, запустивший онлайн-курсы обучения робототехнике. На данный момент студенты и ученики старших классов могут записаться на два потока: «Практическая робототехника» и «Основы робототехники».

2. Просветительский проект «Лекториум» – www.lektorium.tv

Проводит онлайн-курсы по основам робототехники для старшеклассников, студентов и специалистов.

3. Образовательная программа Intel – www.intel.ru

Клубы и кружки для подростков:

Университет Innopolis запустил в трёх регионах России программу обучения школьников.

2. Клуб «РОБОТРЕК» в Саратове – робототехника-саратов.рф

3. «Лига роботов» в Москве – obraz.pro

4. Учебный центр Edu Craft в Москве – www.edu-craft.ru

5. Клубы My Robot в Санкт-Петербурге – hunarobo.ru

6. Академия робототехники в Краснодаре – www.roboticsacademy.ru

7. Лаборатория робототехники Политехнического музея Москвы – www.roboticsacademy.ru

Полный список кружков и клубов во всех городах России можно найти на сайте: edurobots.ru .

Таким образом, люди любого возраста и специальности имеют возможность в кратчайшие сроки освоить навыки создания автоматизированных систем. Практически на всех курсах обучения выдают сертификат, подтверждающий факт приобретения слушателем теоретических и практических знаний по разработке робототехники.

Кратко о себе:

Я не являюсь специалистом в области педагогики и образования, к детям отношусь сугубо как личностям в начале жизненного пути, а не к «цветам жизни» и преследую цель заинтересовать их и передать им свой опыт. В робототехнике работаю уже несколько лет и имею неподдельный интерес к этой сфере.

Кружков робототехники в России становится всё больше, однако мало кто из родителей понимает, что именно из себя представляет это направление. Большинство относится к нему скептически, считая что всё завязано на обычном LEGO, в которое можно поиграть и дома или же считают что это оторванный от жизни предмет, на который можно отправить ребенка ради его развлечения и отдыха. С другой стороны, некоторые считают это занятие уделом гениев или ботаников. Ну, или что оно способно сделать гения из их ребенка.


На самом же деле, образовательная робототехника не является ни заумным предметом, ни профессией будущего, ни беззаботным развлечением. А является она базой для серьезного изучения прикладных технических навыков, необходимых для будущего технаря уже сейчас.

Безусловно, это занятие не для всех - многие дети не горят желанием изучать «скучную» теорию вместо того чтобы, условно, порезвиться в спортивной секции. Однако, тех, кто любит всё время что-то создавать своими руками, интересуется компьютерной техникой или просто проявляет интерес к любой технике, образовательная робототехника способна обучить многим навыкам, например:

  • Самостоятельному проектированию конструкций
  • Пониманию принципов работы различных механизмов
  • Основам компьютерной грамотности
  • Принципам программирования
  • Оптимизации процессов и поисках альтернативных решений
  • Применению английского языка (стандарт в технической отрасли)
  • Пониманию «для чего нужна математика»
  • Взаимодействию программной части с конструкцией
  • Работе в составе команды и общей социализации
Конечно, всё это при условии достаточной оснащенности отдельно взятого кружка, профессиональной подготовке преподавателя и живому интересу с его стороны, а также некоторых других индивидуальных факторов.

Самое главное - не стоит нацеливаться на конкретные результаты, вроде занятия призовых мест на различных соревнованиях по робототехнике. Они нужны в первую очередь для социализации, созданию интереса к отрасли и духа соревнования. Это тот самый случай, когда во всех смыслах участие важнее победы. Здесь робототехника ближе к художественной школе с её выставками, где главное - на других посмотреть, да себя показать.

В качестве результата обучения можно рассматривать постепенное увеличение сложности создаваемых проектов (как в кружке, так и дома), однако тут всё индивидуально.

Перейдем к наиболее часто задаваемым вопросам:

Чем мы занимаемся на робототехнике?

Строим роботов, конечно! Интересных и разных. Из LEGO. Изучаем, что такое датчики, шестеренки, гусеницы, для чего это нужно и как это использовать. Воспроизводим некоторые приборы из «взрослого мира», вроде парктроника или охранной системы, а еще строим всякие гусеничные вездеходы.

Для всего этого нам часто приходится использовать математику и банальную интуицию. А логическое мышление - вообще наше всё.

Почему «LEGO»?

Образовательные наборы LEGO Mindstorms EV3 являются международным стандартом для образовательной робототехники, так как ни один другой набор не обладает таким уровнем стандартизации, простоты использования и глубины проработки. Выпущенное в 2013-м году третье поколение образовательного робототехнического набора от LEGO, EV3 (в народе «Ева») обладает поистине необъятной широтой возможностей, заложенных в программное обеспечение и аппаратную составляющую, а совместимость с любыми другими наборами LEGO даже 40-летней давности дает очевидную возможность использовать любые детали для строительства конструкций. Кстати, у LEGO в наборах есть шикарно реализованные механические узлы (дифференциалы, элементы различных типов передач, элементы подвески и тд) и даже внятная пневматика. Ни один другой набор не имеет ничего подобного на том же уровне реализации. Есть еще fischertechnik но он относительно редко мне встречался, а цена та-же.

У скептицизма в сторону LEGO есть две причины:

1. Поверхностное знакомство с этим набором. Многие преподаватели из кружков робототехники (даже ВУЗовских!) грешат тем, что плохо знают то, на чем они работают. Будучи не сильно знакомы с основами конструирования механизмов и программирования, они не в состоянии оценить все возможности инструмента, а тем более задействовать их в образовательных целях.

2. Высоко задранный нос у адептов «старой школы». Это о тех, кто заявляет, что те, кто занимаются на LEGO не знают ни о транзисторах-резисторах, и вообще мы тут из готовых блоков всё делаем и блоками-же программируем. Всё они верно говорят. Не знаем. Только робототехника не про электронику и пайку, а про решение практических задач и автоматизацию. Есть еще вариация с «крутыми программистами», которые сходу занимаются программированием микроконтроллеров и миганием светодиодами, напрочь забывая про механическую часть.

В реальности у LEGO Mindstorms всего 2 существенных минуса:

  • Низкая жесткость больших конструкций
  • Большой размер и вес главного модуля и двигателей (миниатюрных сервоприводов в наборе нет)
Но для образовательного процесса это редко бывает помехой.

Для какого возраста подходит робототехника?

Примерно от 6-7 и до 67 лет:)

На самом деле всё очень индивидуально. В возрасте 5-6 лет большинство детей еще остаются в фазе «игра - основа обучения». В этом возрасте главное - приобрести навык созидания, то есть научиться собирать из конструктора самостоятельно, без инструкций и подсказок, по своему разумению. Примерно с 5,5 лет я беру детей на занятия, где у них, по сути, проходят «прописи» - мы собираем из кубиков машинки, самосвалы, самолёты и вертолеты, и оснащаем эти постройки двигателями, чтобы у них крутились колёса и винты (занимаемся на LEGO WEDO 2.0). Программирование даю только тем, кто сам тянется узнать «как оно там происходит».

С 7 лет обычно ребёнок достаточно созревает, чтобы осознанно вникать в сложные вещи без потери интереса. В этом возрасте занимаемся уже на «Еве», осваивая такие понятия как «градус угла, процент, десятичная дробь» (ну а как иначе, тут мы уже с датчиками вплотную работаем). Обычно ни у кого особенных проблем с этим не возникает, если есть интерес к познанию. Проблемы возникают только тогда, когда нам уже нужно что-нибудь делить-умножать, а в школе этого еще не проходили.

10-14 лет - самый эффективный возраст для обучения, поскольку отношение к предмету обычно более серьезное, интерес более профессиональный, и нет страха перед математикой уровня шестого класса. К тому же можно рассказать, для чего нужны эти пресловутые синусы-косинусы, прикладной смысл которых в школе остаётся неизученным.

Также, спустя год обучения, можно перейти с LEGO на свободную элементную базу (одноплатные компьютеры и датчики из китая + алюминиевые профили из строительного магазина).

А что, если купить такое LEGO домой и заниматься самим?

Это вполне здравая идея, если:

Вы обладаете хотя бы минимальными знаниями о механизмах и программировании и способны изучить набор в полной мере самостоятельно. У вас есть лишние ~40 т.р. на покупку набора и некоторых дополнительных модулей. Однако даже в этом случае лучше параллельно учиться в кружке, развивая дома те идеи, которые пришли в голову после изучения новой темы.

Почему мы не используем инструкции?

Инструкции - от лукавого:)

Когда ребенок что-то строит по инструкции, он просто повторяет, не вникая в суть того, для чего та или иная деталь или узел нужен. Безусловно, купить дорогой набор LEGO Tehnic с кучей механики, пневматикой, и не построить предлагаемые модели по инструкции хотя бы ради изучения принципа работы - плохая идея. Эти модели очень сложные и интересные для изучения. Однако у нас в кружке главное - реализовать какой-либо принцип. А вот каким путем - уже проблема учащегося, которую он должен решить, используя свою голову. Пусть даже неправильно, с ошибками, но - сам. Инструкции у нас используются только когда мы собираем модель с очень сложной механикой и/или программой для изучения принципа работы.

Если в кружке собирают по инструкциям постоянно - это свидетельство профессиональной некомпетентности преподавателя. Такое часто наблюдается в кружках по франшизе и при школах.

Как происходит процесс программирования?

Для LEGO Mindstorms EV3 есть несколько вариантов:
  1. Встроенная среда для программирования прямо в главном модуле. Оттуда можно программировать простые линейные алгоритмы типа «сначала едь вперед до стены, потом поверни ровно налево». С этого мы начинаем. Это позволяет нам отложить изучение программирования с компьютера, и сосредоточиться на основах.
  2. Специальное программное обеспечение для компьютеров и планшетов, основанное на «взрослой» системе визуального программирования LabView. Программа собирается из блоков-функций. Это позволяет избежать проблем с изучением синтаксиса и по функционалу ничем не уступает взрослому текстовому программированию. Правда, выглядит громоздко, да. Но зато наглядно. Циклы, условные операторы, переменные, функции и всё вот это вот - в наличии. Это наш основной инструмент.
  3. При желании можно использовать Си или другой язык программирования, но если встал такой вопрос, то для этого лучше использовать Arduino и вообще это уже совсем другая история.

На этом я закончу, спасибо за чтение!

Робототехника в образовании

Существует множество важных проблем, на которые никто не хочет обращать внимания до тех пор, пока ситуация не становится катастрофической.

Одной из таких проблем в России становится её недостаточная обеспеченность инженерными кадрами. Все чаще падают космические ракеты и спутники, происходят техногенные катастрофы, обусловленные недостаточным профессионализмом обслуживающего персонала, разработчиков и проектировщиков.

Это вызвано, конечно, целым рядом причин. Однако, все, связанные с образовательной средой, единодушно отмечают, что в последние несколько лет наблюдается снижение интереса учащихся к изучению физики, математики, астрономии (которую, кстати, вообще вынесли за пределы школьного курса) и прочих точных наук, и, как следствие, падение качества образования в целом.

Например, А.М. Рейман, старший научный сотрудник Института прикладной физики Российской академии наук, считает: «У меня общее ощущение деградации образования в среднем звене, приводящей к уменьшению числа заинтересованных в учебе старшеклассников.... Физика воспитывать можно и нужно. И делать это надо рано, пока у ребенка горят глаза и не развился утилитарный подход к жизни. ... А еще они будут знать кое-что о современной науке, и им нельзя будет вешать лапшу...»

Работу по мотивации детей к занятиям серьезной наукой нужно начинать как можно раньше, желательно в начальной школе! Откуда такой вывод? При анкетировании детей на предмет, желают ли они заниматься в кружках технической направленности, определилась следующая картина: в девятых и более старших классах практически никакого интереса, в 6-8-х классах интерес проявился в основном у тех детей, которые самостоятельно дома или в организациях дополнительного образования занимаются лего-конструированием, радиоэлектроникой, программированием. А вот у учащихся четвертого класса интерес оказался просто огромен. То есть, если дети до 11-12 лет не касались технического творчества, то с возрастом у них интерес к этому занятию возбудить достаточно сложно. Поэтому работу по пропедевтике робототехники, физики, знакомству с началами программирования необходимо проводить в начальной школе и пятых классах. В результате в среднюю школу придут дети, у которых прилично развиты конструкторские навыки, сформировано алгоритмическое мышление, привит интерес к экспериментированию.

Таким образом, необходимо активно начинать пробуждение интереса к точным наукам и массовую популяризацию профессии инженера, причем предпринимать такие шаги необходимо для детей с достаточно раннего возраста. Необходимо вернуть в общество массовый интерес к научно-техническому творчеству.

На настоящий момент существует достаточное количество образовательных технологий, которые способствуют развитию критического мышления и умения решать задачи, однако в образовательных средах, вдохновляющих к новаторству через науку, технологию, математику, способствующих творчеству, умению анализировать ситуацию, применить теоретические познания для решения проблем реального мира, сегодня наблюдается определенный дефицит.

Наиболее перспективный путь в этом направлении – это робототехника, позволяющая в игровой форме знакомить детей с наукой. Робототехника является эффективным методом для изучения важных областей науки, технологии, конструирования, математики и входит в новую международную парадигму: STEM-образование (Science, Technology, Engineering, Mathematics).

Организация лаборатории робототехники в школе или учреждении дополнительного образования – это:

  • внедрение современных научно-практических технологий в образовательный процесс;
  • содействие развитию детского научно-технического творчества;
  • популяризация профессии инженера и достижений в области робототехники;
  • новые формы работы с одаренными детьми;
  • эффективные формы работы с проблемными детьми;
  • возможности инновационного обучения;
  • игровые технологии в обучении;
  • популяризация профессий научно-технического направления.