Как держать форму. Массаж. Здоровье. Уход за волосами

Типы кристаллических решеток различных веществ. Строение вещества

Молекулярное и немолекулярное строение веществ. Строение вещества

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. По типу связи различают вещества молекулярного и немолекулярного строения . Вещества, состоящие из молекул, называются молекулярными веществами . Связи между моле­кулами в таких веществах очень слабые, намно­го слабее, чем между атомами внутри молекулы, и уже при сравнительно низких температурах они разрываются - вещество превращается в жид­кость и далее в газ (возгонка йода). Температуры плавления и кипения веществ, состоящих из мо­лекул, повышаются с увеличением молекулярной массы. К молекулярным веществам относятся веще­ства с атомной структурой (C, Si, Li, Na, K, Cu, Fe, W), среди них есть металлы и неметаллы. К веществам немолекулярного строения отно­сятся ионные соединения. Таким строением обла­дает большинство соединений металлов с неметал­лами: все соли (NaCl, K 2 SO 4), некоторые гидриды (LiH) и оксиды (CaO, MgO, FeO), основания (NaOH, KOH). Ионные (немолекулярные) вещества имеют высокие температуры плавления и кипения.


Твердые вещества: аморфные и кристаллические

Твердые вещества делятся на кристаллические и аморфные .

Аморфные вещества не имеют четкой температуры плавления - при нагревании они постепенно размягчаются и переходят в текучее состояние. В аморфном состоянии, например, находятся пластилин и различные смолы.

Кристаллические вещества характеризуются правильным расположением тех частиц, из которых они состоят: атомов, молекул и ионов - в строго определенных точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решеткой. Точки, в которых размещены частицы кристалла, называют узлами решетки. В зависимости от типа частиц, расположенных в узлах кристаллической решетки, и характера связи между ними, различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Ионными называют кристаллические решетки , в узлах которых находятся ионы. Их образуют ве­щества с ионной связью, которой могут быть свя­заны как простые ионы Na+, Cl — , так и сложные SO 4 2- , OH — . Следовательно, ионными кристалличе­скими решетками обладают соли, некоторые оксиды и ги­дроксиды металлов. Напри­мер, кристалл хлорида натрия построен из чередующихся положительных ионов Na + и отрицательных Cl — , образующих решетку в форме куба. Связи между ионами в таком кристалле очень устойчивы. Поэтому вещества с ионной решеткой отличаются сравнительно высокой твердостью и прочностью, они тугоплавки и нелетучи.

Кристаллическая решетка — а) и аморфная решетка — б).


Кристаллическая решетка — а) и аморфная решетка — б).

Атомные кристаллические решетки

Атомными называют кристаллические решетки, в узлах которых находятся отдельные атомы. В таких решетках атомы соединены между собой очень прочными ковалентными связями . Примером веществ с таким типом кристаллических решеток может служить алмаз - одно из аллотропных видоизменений углерода. Большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С), они прочны и тверды, практически нерастворимы.



Молекулярные кристаллические решетки

Молекулярными называют кристаллические решетки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и полярными (HCl, H 2 O), и неполярными (N 2 , O 2). Несмотря на то, что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения . По­этому вещества с молекуляр­ными кристаллическими ре­шетками имеют малую твер­дость, низкие температуры плавления, летучи. Большинство твердых ор­ганических соединений имеют молекулярные кристалличе­ские решетки (нафталин, глю­коза, сахар).


Молекулярная кристаллическая решетка(углекислый газ)

Металлические кристаллические решетки

Вещества с металлической связью имеют металлические кристаллические решетки. В узлах таких решеток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны «в общее пользование»). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, характерный металлический блеск.

Шпаргалки

Как мы знаем, все материальные вещества могут пребывать в трех базовых состояниях: жидком, твердом, и газообразном. Правда есть еще состояние плазмы, которое ученые считают ни много ни мало четвертым состоянием вещества, но наша статья не о плазме. Твердое состояние вещества потому твердое, так как имеет особую кристаллическую структуру, частицы которой находятся в определенном и четко заданном порядке, создавая, таким образом, кристаллическую решетку. Строение кристаллической решетки состоит из повторяющихся одинаковых элементарных ячеек: атомов, молекул, ионов, других элементарных частиц, связанных между собой различными узлами.

Виды кристаллических решеток

В зависимости от частиц кристаллической решетки существует четырнадцать типов оной, приведем наиболее популярные из них:

  • Ионная кристаллическая решетка.
  • Атомная кристаллическая решетка.
  • Молекулярная кристаллическая решетка.
  • кристаллическая решетка.

Ионная кристаллическая решетка

Главной особенностью строения кристаллической решетки ионов являются противоположные электрические заряды, собственно, ионов, вследствие чего образуется электромагнитное поле, определяющее свойства веществ, имеющих ионную кристаллическую решетку. А это тугоплавкость, твердость, плотность и возможность проводить электрический ток. Характерным примером ионной кристаллической решетки может быть поваренная соль.

Атомная кристаллическая решетка

Вещества с атомной кристаллической решеткой, как правило, имеют в своих узлах, состоящих собственно из атомов сильные . Ковалентная связь происходит, когда два одинаковых атома делятся друг с другом по-братски электронами, образуя, таким образом, общую пару электронов для соседних атомов. Из-за этого ковалентные связи сильно и равномерно связывают атомы в строгом порядке – пожалуй, это самая характерная черта строения атомной кристаллической решетки. Химические элементы с подобными связями могут похвастаться своей твердостью, высокой температурой плавления. Атомную кристаллическую решетку имеют такие химические элементы как алмаз, кремний, германий, бор.

Молекулярная кристаллическая решетка

Молекулярный тип кристаллической решетки характеризуется наличием устойчивых и плотноупакованных молекул. Они располагаются в узлах кристаллической решетки. В этих узлах они удерживаются такими себе вандервальсовыми силами, которые в десять раз слабее сил ионного взаимодействия. Ярким примером молекулярной кристаллической решетки является лед – твердое вещество, имеющее однако свойство переходить в жидкое – связи между молекулами кристаллической решетки совсем слабенькие.

Металлическая кристаллическая решетка

Тип связи металлической кристаллической решетки гибче и пластичнее ионной, хотя внешне они весьма похожи. Отличительной особенностью ее является наличие положительно заряженных катионов (ионов метала) в узлах решетки. Между узлами живут электроны, участвующие в создании электрического поля, эти электроны еще называются электрическим газом. Наличие такой структуры металлической кристаллической решетки объясняет ее свойства: механическую прочность, тепло и электропроводность, плавкость.

Кристаллические решетки, видео

И в завершение подробное видео пояснения о свойствах кристаллических решеток.

Cтраница 1


Молекулярные кристаллические решетки и соответствующие им молекулярные связи образуются преимущественно в кристал-дах тех веществ, в молекулах которых связи являются ковалент-ными. При нагревании связи между молекулами легко разрушаются, поэтому вещества с молекулярными решетками обладают низкими температурами плавления.  

Молекулярные кристаллические решетки образуются из полярных молекул, между которыми возникают силы взаимодействия, так называемые ван-дер-ваальсовы силы, имеющие электрическую природу. В молекулярной решетке они осуществляют довольно слабую связь. Молекулярную кристаллическую решетку имеют лед, природная сера и многие органические соединения.  

Молекулярная кристаллическая решетка иода показана на рис. 3.17. Большинство кристаллических органических соединений имеют молекулярную решетку.  


Узлы молекулярной кристаллической решетки образованы молекулами. Молекулярную решетку имеют, например, кристаллы водорода, кислорода, азота, благородных газов, диоксида углерода, органических веществ.  

Наличие молекулярной кристаллической решетки твердой фазы является здесь причиной незначительной адсорбции ионов из маточного раствора, а следовательно, и гораздо более высокой чистоты осадков по сравнению с осадками, для которых характерна ионная кристал. Поскольку осаждение в этом случае происходит в оптимальной области кислотности, различной для ионов, осаждаемых этим реактивом, оно находится в зависимости от значения соответствующих констант устойчивости комплексов. Этот факт позволяет, регулируя кислотность раствора, достигать селективного, а иногда даже специфического осаждения определенных ионов. Подобные результаты часто могут быть получены путем подходящего изменения доноркых групп в органических реактивах с учетом особенностей катионов-ком-плексообразователей, которые осаждаются.  


В молекулярных кристаллических решетках наблюдается локальная анизотропия связей, а именно: внутримолекулярные силы очень велики по сравнению с межмолекулярными.  

В молекулярных кристаллических решетках в узлах решетки находятся молекулы. Большинство веществ с ковалентной связью образуют кристаллы такого типа. Молекулярные решетки образуют твердые водород, хлор, двуокись углерода и другие вещества, которые при обычной температуре газообразны. Кристаллы большинства органических веществ также относятся к этому типу. Таким образом, веществ с молекулярно кристаллической решеткой известно очень много.  

В молекулярных кристаллических решетках составляющие их молекулы связаны между собой при помощи относительно слабых ван-дер-ваальсовых сил, тогда как атомы внутри молекулы связаны значительно более сильной ковалентной связью. Поэтому в таких решетках молекулы сохраняют свою индивидуальность и занимают один узел кристаллической решетки. Замещение здесь возможно в том случае, если молекулы сходны между собой по форме и по размерам. Поскольку силы, связывающие молекулы, относительно слабы, то и границы замещения здесь значительно шире. Как показал Никитин , атомы благородных газов могут изоморфно замещать молекулы СО2, SO2, CH3COCH3 и другие в решетках этих веществ. Сходство химической формулы здесь оказывается не обязательным.  

В молекулярных кристаллических решетках в узлах решетки находятся молекулы. Большинство веществ с ковалентной связью образуют кристаллы такого типа. Молекулярные решетки образуют твердые водород, хлор, двуокись углерода и другие вещества, которые при обычной температуре газообразны. Кристаллы большинства органических веществ также относятся к этому типу. Таким образом, веществ с молекулярной кристаллической решеткой известно очень много. Молекулы, находящиеся в узлах решетки, связаны друг с другом межмолекулярными силами (природа этих сил была рассмотрена выше; см. стр. Так как межмолекулярные силы значительно слабее сил химической связи, то молекулярные кристаллы легкоплавки, характеризуются значительной летучестью, твердость их невелика. Особенно низки температуры плавления и кипения у тех веществ, молекулы которых неполярны. Так, например, кристаллы парафина очень мягки, хотя ковалентные связи С-С в углеводородных молекулах, из которых состоят эти кристаллы, столь же прочны, как связи в алмазе. Кристаллы, образуемые благородными газами, также следует отнести к молекулярным, состоящим из одноатомных молекул, поскольку валентные силы в образовании этих кристаллов роли не играют, и связи между частицами здесь имеют тот же характер, что и в других молекулярных кристаллах; это обусловливает сравнительно большую величину межатомных расстояний в этих кристаллах.  

Схема регистрации дебаеграммм.  

В узлах молекулярных кристаллических решеток находятся молекулы, которые связаны друг с другом слабыми межмолекулярными силами. Такие кристаллы образуют вещества с ковалент-ной связью в молекулах. Веществ с молекулярной кристаллической решеткой известно очень много. Молекулярные решетки имеют твердые водород, хлор, диоксид углерода и другие вещества, которые при обычной температуре газообразны. Кристаллы большинства органических веществ также относятся к этому типу.  

Большинство твердых веществ имеют кристаллическую структуру , в которой частицы, из которых она «построена» находятся в определенном порядке, создавая тем самым кристаллическую решетку . Она строится из повторяющихся одинаковых структурных единиц - элементарных ячеек , которая связывается с соседними ячейками, образуя дополнительные узлы. В результате существует 14 различных кристаллических решеток.

Типы кристаллических решеток.

В зависимости от частиц, которые стоят в узлах решетки, различают:

  • металлическую кристаллическую решетку;
  • ионную кристаллическую решетку;
  • молекулярную кристаллическую решетку;
  • макромолекулярную (атомную) кристаллическую решетку.

Металлическая связь в кристаллических решетках.

Ионные кристаллы обладают повышенной хрупкостью, т.к. сдвиг в решетке кристалла (даже незначительный) приводит к тому, что одноименно заряженные ионы начинают отталкиваться друг от друга, и связи рвутся, образуются трещины и расколы.

Молекулярная связь кристаллических решеток.

Основная особенность межмолекулярной связи заключается в ее «слабости» (ван-дер-ваальсовые, водородные).

Это структура льда. Каждая молекула воды связана водородными связями с 4-мя окружающими ее молекулами, в результате структура имеет тетраэдрический характер.

Водородная связь объясняет высокую температуру кипения, плавления и малую плотность;

Макромолекулярная связь кристаллических решеток.

В узлах кристаллической решетки находятся атомы. Эти кристаллы разделяются на 3 вида:

  • каркасные;
  • цепочечные;
  • слоистые структуры.

Каркасной структурой обладает алмаз - одно их самых твердых веществ в природе. Атом углерода образует 4 одинаковые ковалентные связи, что говорит о форме правильного тетраэдра (sp 3 - гибридизация). Каждый атом имеет неподеленную пару электронов, которые также могут связываться с соседними атомами. В результате чего образуется трехмерная решетка, в узлах которой только атомы углерода.

Энергии для разрушения такой структуры требуется очень много, температура плавления таких соединений высока (у алмаза она составляет 3500°С).

Слоистые структуры говорят о наличии ковалентных связях внутри каждого слоя и слабых ван-дер-ваальсовых - между слоями.

Рассмотрим пример: графит. Каждый атом углерода находится в sp 2 - гибридизации. 4-ый неспаренный электрон образует ван-дер-ваальсовую связь между слоями. Поэтому 4ый слой очень подвижен:

Связи слабые, поэтому их легко разорвать, что можно наблюдать у карандаша - «пишущее свойство» - 4ый слой остается на бумаге.

Графит - отличный проводник электрического тока (электроны способны перемещаться вдоль плоскости слоя).

Цепочечными структурами обладают оксиды (например, SO 3 ), который кристаллизуется в виде блестящих иголок, полимеры, некоторые аморфные вещества, силикаты (асбест).