Как держать форму. Массаж. Здоровье. Уход за волосами

Снова про современные торпеды. Понятне об устройстве торпед

Осенью 1984 года в Баренцевом море произошли события, которые могли привести к началу мировой войны.

В район боевой подготовки советского северного флота неожиданно на полном ходу ворвался американский ракетный крейсер. Это произошло во время торпедометания звеном вертолетов Ми-14. Американцы спустили на воду скоростную моторную лодку, а в воздух подняли вертолет для прикрытия. Авиаторы североморцы поняли, что их целью является захват новейший советской торпеды .

Почти 40 минут длилась дуэль над морем. Маневрами и потоками воздуха от винтов советские летчики не давали назойливым янки приблизиться к секретному изделию, пока советский благополучно не поднял его на борт. Подоспевшие к этому времени корабли охранения вытеснили американский за пределы полигона.

Торпеды всегда считались наиболее эффективным оружием отечественного флота. Не случайно за их секретами регулярно охотятся спецслужбы НАТО. Россия продолжает оставаться мировым лидером по количеству ноу-хау в применении при создании торпед.

Современная торпеда грозное оружие современных кораблей и подводных лодок. Она позволяет быстро и точно наносить удары по противнику в море. По определению торпеда это автономный самодвижущийся и управляемый подводный снаряд, в котором запечатано около 500 кг взрывчатого вещества или ядерная боевая часть. Секреты разработки торпедного оружия являются наиболее охраняемыми, и число государств, владеющих этими технологиями даже меньше количества членов «ядерного клуба».

В период Корейской войны в 1952 году американцы планировали сбросить две атомные бомбы каждая весом 40 тонн. В это время на стороне корейских войск действовал советский истребительный авиаполк. Советский Союз также имел ядерное оружие, и локальный конфликт в любую минуту могут перерасти в настоящую ядерную катастрофу. Сведения о намерениях американцев применить атомные бомбы стали достоянием советской разведки. В ответ Иосиф Сталин приказал ускорить создание более мощного термоядерного оружия. Уже в сентябре того же года министр судостроительной промышленности Вячеслав Малышев представил на утверждение Сталину уникальный проект.

Вячеслав Малышев предложил создать для огромную ядерную торпеду Т-15. Этот 24-метровый снаряд калибра 1550 миллиметров должен был иметь вес 40 тонн, из которых только 4 тонн приходилось на боеголовку. Сталин одобрил создание торпеды , энергию для которой производили электрические аккумуляторы.

Это оружие могло бы уничтожать крупные военно-морские базы США. Из-за повышенной секретности строители и атомщики консультации с представителями флота не вели, поэтому никто не подумал как обслуживать такого монстра и стрелять, кроме того ВМС США имели всего лишь две базы доступные для советских торпед, поэтому от супергиганта Т-15 отказались.

В замена моряки предложили создать атомную торпеду обычного калибра, которая могла бы применяться на всех . Интересно, что калибр 533 миллиметра общепринятый и научно обоснован, так как калибр и длина это фактически потенциальная энергия торпеды. Скрытно наносить удары по вероятному противнику можно было только на большие дистанции, поэтому конструкторы и военные моряки отдали приоритет тепловым торпедам.

Десятого октября 1957 года в районе Новой Земли были проведены первые подводные ядерные испытания торпеды калибром 533 миллиметра. Новой торпедой стреляла подводная лодка С-144. С дистанции 10 километров подлодка выполнила одно торпедный залп. Вскоре на глубине 35 метров последовал мощный атомный взрыв, его поражающие свойства фиксировали сотни датчиков, размещенных на , находившихся в районе испытаний. Интересно, что экипажи во время этого опаснейшего элемента заменили животными.

По итогам этих испытаний, военный флот получил на вооружение первую атомную торпеду 5358 . Они относились к классу тепловых, так как их двигатели работали на парах газовой смеси.

Атомная эпопея это только одна страница из истории российского торпедостроения. Более 150 лет назад идея создать первую самодвижущую морскую мину или торпеду выдвинул наш соотечественник Иван Александровский. Вскоре под командованием впервые в мире была применена торпеда в бою с турками в январе 1878 года. А в начале Великой Отечественной войны советские конструкторы создали самую высокоскоростную торпеду в мире 5339, что значит 53 сантиметра и 1939 года. Однако подлинный рассвет отечественные школы торпедостроения произошел в 60-е годы прошлого века. Его центром стал ЦНИ 400, в последствие переименованный в «Гидроприбор». За прошедший период институт передал советскому флоту 35 различных образцов торпед .

Помимо подлодок торпедами вооружались морская авиация и все классы надводных кораблей, бурно развивающегося флота СССР: крейсеры, эсминцы и сторожевые корабли. Также продолжали строиться уникальные носители этого оружия торпедные катера.

В тоже время состав блока НАТО постоянно пополнялся кораблями с более высокими характеристиками. Так в сентябре 1960 года на воду был спущен первый в мире атомный «Энтерпрайз» водоизмещением 89000 тонн, с 104 единицами ядерных боеприпасов на борту. Для борьбы с авианосными ударными группами имеющих сильную противолодочную оборону, дальности существовавшего оружие было уже недостаточно.

Не замеченными к авианосцам могли подойти только подводные лодки, но вести прицельную стрельбу по прикрытого кораблями охранения было крайне сложно. Кроме того за годы Второй мировой войны американский флот научился противодействовать системе самонаведения торпеды. Чтобы решить эту проблему советские ученые впервые в мире создали новое торпедное устройство, которое обнаруживала кильватерную струю корабля и обеспечивала его дальнейшее поражение. Однако тепловые торпеды имели существенный недостаток их характеристики резко падали на большой глубине, при этом их поршневые двигатели и турбины издавали сильные шумы, что демаскировало атаковавшие корабли.

В виду этого конструкторам пришлось решать новые задачи. Так появились авиационная торпеда, которая размещались под корпусом крылатой ракеты. В результате время поражения субмарин сократилась в несколько раз. Первый такой комплекс получил название «Метель». Он был предназначен для стрельбы с подводными лодками со сторожевых кораблей. Позже комплекс научился поражать и надводные цели. Ракето-торпедами были вооружены и субмарины.

В 70-х годах ВМС США переквалифицировали свои авианосцы из ударных, в многоцелевые. Для этого был заменен состав базирующихся на них самолетов в пользу противолодочных. Теперь они могли не только наносить воздушные удары по территории СССР, но и активно противодействовать развёртыванию в океане советских подводных лодок. Для прорыва обороны и уничтожения многоцелевых авианосных ударных групп, советские подлодки стали вооружаться крылатыми ракетами, стартовавшими из торпедных аппаратов и летевших на сотни километров. Но даже это дальнобойное оружие не могло потопить плавучий аэродром. Требовались более мощные заряды, поэтому специально для атомоходов типа « » конструкторы «Гидроприбор» создали торпеду увеличенного калибра 650 миллиметров, которая несет более 700 килограммов взрывчатки.

Этот образец используется в так называемой мертвой зоне своих противокорабельных ракет. Он наводится на цель либо самостоятельно, либо получает информацию от внешних источников целеуказания. При этом торпеда может подойти к противнику одновременно с другими средствами поражения. Защититься от такого массированного удара практически невозможно. За это она получила прозвище «убийца авианосцев».

В повседневных делах и заботах советские люди не задумывались об опасностях связанных с противостоянием сверхдержав. А ведь на каждого из них было нацелено в эквиваленте около 100 тонн боевых средств США. Основная масса этого оружия была вынесена в мировой океан и размещена на подводных носителях. Главным оружием советского флота против были противолодочные торпеды . Традиционно для них использовались электрические двигатели, мощность которых не зависела от глубины хода. Такими торпедами вооружались не только подводные лодки, но и надводные корабли. Самыми мощными из них были . Долгое время наиболее распространенные противолодочные торпеды для субмарин были СЭТ-65, но в 1971 году конструкторы впервые применили телеуправление, которое осуществлялось под водой по проводам. Это резко увеличило точность стрельбы подлодок. А вскоре была создана универсальная электроторпеда УСЭТ-80, которая эффективно могла уничтожать не только

Быстрый поиск по тексту

История создания торпеды

В общем смысле, под торпедой мы понимаем металлический сигарообразный или бочкообразный боевой снаряд, движущийся самостоятельно. Такое название снаряд получил в честь электрического ската порядка двухсот лет назад. Особое место занимает именно морская торпеда. Она первая была придумана и первая была использована в военной промышленности. В общем смысле торпеда — это обтекаемый бочкообразный корпус, внутри которого находится двигатель, ядерный или неядерный боевой заряд и топливо. Снаружи корпуса установлено оперение и гребные винты. А команда торпеде дается через прибор управления.

Надобность в таком вооружении появилась после создания подводных лодок. В это время использовались буксируемые или шестовые мины, которые в подводной лодке не несли требуемого боевого потенциала. Поэтому перед изобретателями встал вопрос о создании боевого снаряда, плавно обтекаемого водой, способного самостоятельно передвигаться в водной среде, и который будет способен топить вражеские подводные и надводные суда.

Когда появились первые торпеды

Торпеда или как её называли в то время — самодвижущаяся мина, была придумала сразу двумя учеными, находящимся в разных частях мира, не имеющим друг к другу никакого отношения. Произошло это практически в одно и то же время.

В 1865 году, российский ученый И.Ф. Александровский, предложил свою модель самодвижущейся мины. Но воплотить в жизнь данную модель стало возможным лишь в 1874 году.

В 1868 году Уайтхед представил миру свою схему постройки торпеды. В тот же год патент на использование этой схемы приобретает Австро-Венгрия и становится первой страной, обладающей данной боевой техникой.

В 1873 году Уайтхед предложил приобрести схему российскому флоту. После испытаний торпеды Александровского, 1874 году было принято решение, приобрести боевые снаряды именно Уайтхеда, ведь модернизированная разработка нашего соотечественника значительно уступала по техническим и боевым характеристикам. Такая торпеда значительно увеличивала свое свойство плыть строго в одном направлении, не меняя курса, благодаря маятникам, а скорость торпеды увеличилась практически в 2 раза.

Таким образом, Россия стала лишь шестым по счету обладателем торпеды, после , Франции, Германии и Италии. Ограничением для покупки торпеды Уайтхед выдвинул лишь одно — хранить схему постройки снаряда втайне от государств не пожелавших купить ее.

Уже в 1877 году торпеды Уайтхеда были впервые использованы в бою.

Устройство торпедного аппарата

Как можно понять из названия, торпедный аппарат — это механизм, предназначенный для выстрела торпедами, а также для их перевозки и хранения в походном режиме. Этот механизм имеет форму трубы, идентичной размеру и калибру самой торпеды. Существует два способа стрельбы: пневматический (с использованием сжатого воздуха) и гидропневматический (с использованием воды, которая вытесняется сжатым воздухом из предназначенного для этого резервуара). Установленный на подводной лодке, торпедный аппарат представляет собой неподвижную систему, в то время как на надводных судах, аппарат возможно поворачивать.

Принцип работы пневматического торпедного аппарата такой: при команде “пуск”, первый привод открывает крышку аппарата, а второй привод открывает клапан резервуара со сжатым воздухом. Сжатый воздух выталкивает торпеду вперед, и в это же время срабатывает микровыключатель, который включает мотор самой торпеды.

Для пневматического торпедного аппарата ученые создали механизм, способный замаскировать место выстрела торпеды под водой — беспузырной механизм. Принцип его действия заключался в следующем: во время выстрела, когда торпеда прошла две трети своего пути по торпедному аппарату и приобретала необходимую скорость, открывался клапан, через который сжатый воздух уходил в прочный корпус подводной лодки, а вместо этого воздуха, за счет разности внутреннего и внешнего давления, аппарат заполнялся водой, до того момента, пока давление не уравновесится. Таким образом, воздуха в камере практически не оставалось, и выстрел проходил незамеченным.

Необходимость в гидропневматическом торпедном аппарате возникла, когда подводные лодки стали погружаться на глубину более 60 метров. Для выстрела было необходимо большое количество сжатого воздуха, а он на такой глубине был слишком тяжелый. В гидропневматическом аппарате выстрел совершается за счет водного насоса, импульс от которого и толкает торпеду.

Классификация

  1. В зависимости от типа двигателя: на сжатом воздухе, парогазовые, пороховые, электрические, реактивные;
  2. В зависимости от способности наведения: неуправляемые, прямоидущие; способные маневрировать по заданному курсу, самонаводящиеся пассивные и активные, телеуправляемые.
  3. В зависимости от назначения: противокорабельные, универсальные, противолодочные.

Одна торпеда включает в себя по одному пункту из каждого подразделения. Например, первые торпеды представляли собой неуправляемый противокорабельный боевой заряд с двигателем, работающим на сжатом воздухе. Рассмотрим несколько торпед из разных стран, разного времени, с разными механизмами действия.

В начале 90-ых годов, обзавелся первой лодкой, способной передвигаться под водой — “Дельфин”. Торпедный аппарат, установленный на этой подводной лодке, был самым простым — пневматическим. Т.е. тип двигателя, в этом случае, на сжатом воздухе, а сама торпеда, по способности наведения, была неуправляемая. Калибр торпед на этой лодке в 1907 году варьировался от 360 мм до 450 мм, с длинной 5,2 м и весом 641 кг.

В 1935-1936 годах российскими учеными был разработан торпедный аппарат с пороховым типом двигателя. Такие торпедные аппараты были установлены на эсминцах типа 7 и легких крейсерах типа “Светлана”. Боеголовки такого аппарата были 533 калибра, весом 11,6 кг, а вес порохового заряда составлял 900 г.

В 1940 году после десятилетия упорной работы был создан опытный аппарат с электрическим типом двигателя — ЭТ-80 или “Изделие 115”. Торпеда, выстрелянная из такого аппарата, развивала скорость до 29 узлов, с дальностью действия до 4 км. Кроме всего прочего, такой тип двигателя был гораздо тише его предшественников. Но после нескольких происшествий связанных с взрывом аккумуляторов, данным типом двигателя экипаж пользовался без особого желания и не пользовался спросом.

В 1977 году был представлен проект с реактивным типом двигателя — суперкавитационная торпеда ВА 111 “Шквал”. Торпеда предназначалась как для уничтожения подводных лодок, так и для надводных судов. Конструктором ракеты “Шквал”, под руководством которого проект был разработан и воплощен в жизнь, по праву считается Г.В. Логвинович. Данная ракета-торпеда развивала просто поразительную скорость, даже для настоящего времени, а внутри ее, в первое время, была установлена ядерный боевой заряд мощностью 150 кт.

Устройство торпеды шквал

Технические характеристики торпеды ВА 111 “Шквал”:

  • Калибр 533,4 мм;
  • Длина торпеды составляет 8,2 метра;
  • Скорость движения снаряда достигает 340 км/ч (190 узлов);
  • Вес торпеды — 2700 кг;
  • Дальность действия до 10 км.
  • Ракета-торпеда “Шквал” имела и ряд недостатков: она вырабатывала очень сильный шум и вибрацию, что негативно отражалось на ее способности к маскировке, глубина хода составляла лишь 30 м, поэтому торпеда в воде оставляла за собой четкий след, и ее легко было обнаружить, а на самой головке торпеды невозможно было установить механизм самонаведения.

Практически 30 лет не существовало торпеды способной противостоять в совокупности характеристикам “Шквала”. Но в 2005 году Германия предложила свою разработку — суперкавитационную торпеду под названием “Барракуда”.

Принцип ее действия был таким же, как у советского “Шквала”. А именно: кавитационный пузырь и движение в нем. Барракуда может достигать скорость до 400 км/ч и, согласно германским источникам, торпеда способна к самонаведению. К недостаткам так же можно отнести сильный шум и небольшую максимальную глубину.

Носители торпедного оружия

Как уже говорилось выше, первым носителем торпедного оружия является подводная лодка, но кроме нее, конечно, торпедные аппараты устанавливаются и на другой технике, такой как, самолеты, вертолеты и катера.

Торпедные катера представляют собой легкие маловесные катера, оснащенные торпедными установками. Впервые использовались в военном деле в 1878-1905 годах. Имели водоизмещение около 50 тонн, с вооружением в 1-2 торпеды 180 мм калибра. После этого развитие пошло в двух направлениях — увеличение водоизмещения и способности держать на борту большего количества установок, и увеличение маневренности и скорости небольшого судна с дополнительными боеприпасами в виде автоматического оружия до 40 мм калибра.

Легкие торпедные катера времен Второй мировой войны имели практически одинаковые характеристики. В пример поставим советский катер проекта Г-5. Это небольшой быстроходный катер с весом не более 17 тонн, имел на своем борту две торпеды 533 мм калибра и два пулемета 7,62 и 12,7 мм калибра. Длина его составляла 20 метров, а скорость достигала 50 узлов.

Тяжелые торпедные катера представляли собой большие военные корабли с водоизмещением до 200 тонн, которые мы привыкли называть эсминцами или минными крейсерами.

В 1940 году был представлен первый образец ракеты-торпеды. Самонаводящаяся ракетная установка имела 21 мм калибр и сбрасывалась с противолодочных самолетов на парашюте. Поражала эта ракета только надводные цели и поэтому оставалась на вооружение лишь до 1956 года.

В 1953 году в российский флот принял в свое вооружение ракету-торпеду РАТ-52. Ее создателем и конструктором считается Г.Я.Дилон. Эту ракету несли на своем борту самолеты типа Ил-28Т и Ту-14Т.

На ракете отсутствовал механизм самонаведения, но скорость поражения цели была довольно высока — 160-180 м/с. Ее скорость достигала 65 узлов, с дальностью хода 520 метров. Пользовался российский военно-морской флот данной установкой на протяжении 30-ти лет.

Вскоре после создания первого носителя самолета, ученые стали разрабатывать модель вертолета, способного вооружаться и атаковать торпедами. И в 1970 году на вооружение СССР был взят вертолет типа Ка-25ПЛС. Этот вертолет был оснащен устройством, способным спускать торпеду без парашюта под углом 55-65 градусов. Вертолет был вооружен авиационной торпедой АТ-1. Торпеда была 450 мм калибра, с дальностью управления до 5 км и глубиной ухода в воду до 200 метров. Тип двигателя представлял собой электрический одноразовый механизм. Во время выстрела электролит заливался сразу во все аккумуляторы из одной емкости. Срок хранения такой торпеды составлял не более 8 лет.

Современные виды торпед

Торпеды современного мира представляют собой серьезное вооружение подводных лодок, надводных судов и морской авиации. Это мощный и управляющийся снаряд, который содержит ядерную боевую часть и порядка полу тонны взрывчатого вещества.

Если рассматривать советские военно-морскую оружейную промышленность, то на данный момент, в плане торпедных установок, мы отстаем от мировых стандартов примерно на 20-30 лет. Со времен “Шквала”, созданного в 1970-ых годах, Россия не сделала никаких крупных сдвигов вперед.

Одной из самых современных торпед России является боеголовка, оснащенная электрическим двигателем — ТЭ-2. Ее масса порядка 2500 кг, калибр — 533 мм, масса боевого заряда — 250 кг, длина — 8,3 метра, а скорость достигает 45 узлов при дальности действия порядка 25 км. Помимо этого, ТЭ-2 оснащена системой самостоятельного наведения, а срок ее хранения составляет 10 лет.

В 2015 году российский флот получил в свое распоряжение торпеду под названием “Физик”. Данная боеголовка оснащена тепловым двигателем, работающем на однокомпонентном топливе. К одной из ее разновидностей относится торпеда под названием “Кит”. Эту установку российский флот принял на вооружение в 90-ых годах. Торпеду прозвали “убийцей авианосцев”, потому что ее боевая часть имела просто поразительную мощность. При калибре 650 мм, масса боевого заряда была порядка 765 кг тротила. А дальность действия достигала 50-70 км при 35 узлах скорости. Сам же “Физик” обладает несколько меньшими боевыми характеристиками и его снимут с производства, когда миру продемонстрируют его модифицированную версию — “Футляр”.

По некоторым данным торпеда “Футляр” должна поступить на вооружение уже в 2018 году. Все ее боевые характеристики не раскрываются, но известно, что дальность ее действия составит примерно 60 км при скорости в 65 узлов. Боеголовка будет оснащена тепловым пропульсивным двигателем — системой ТПС-53.

В это же время, самая современная американская торпеда Mark-48 развивает скорость до 54 узлов при дальности действия 50 км. Данная торпеда оснащена системой многократной атаки, если она потеряла цель. Mark-48 подвергался модификации с 1972 уже семь раз, и на сегодняшний момент, он превосходит торпеду “Физик”, но проигрывает торпеде “Футляр”.

Немного уступают по своим характеристика торпеды Германии — DM2A4ER, и Италии — Black Shark. При длине порядка 6 метров, они развивают скорость до 55 узлов при дальности действия до 65 км. Масса их составляет 1363 кг, а масса боевого заряда — 250-300 кг.

Парогазовые торпеды, впервые изготовленные во второй половине XIX столетия, стали активно использоваться с появлением подводных лодок. Особенно преуспели в этом германские подводники, потопившие только за 1915 год 317 торговых и военных судов с общим тоннажем 772 тыс. тонн. В межвоенные годы появились усовершенствованные варианты, которые могли применяться самолетами. В годы Второй мировой войны торпедоносцы сыграли огромную роль в противоборстве флотов воюющих сторон.

Современные торпеды оснащены системами самонаведения и могут оснащаться боеголовками с различным зарядом, вплоть до атомного. На них продолжают использоваться парогазовые двигатели, созданные с учетом последних достижений техники.

История создания

Идея атаки вражеских кораблей самодвижущимися снарядами возникла в XV веке. Первым задокументированным фактом стали идеи итальянского инженера да Фонтана. Однако технический уровень того времени не позволял создать рабочих образцов. В XIX веке идею доработал Роберт Фултон, который и ввел в использование термин «торпеда».

В 1865 году проект оружия (или как тогда называли «самодвижущегося торпедо») предложил российский изобретатель И.Ф. Александровский. Торпеда оборудовалась двигателем, работающим на сжатом воздухе.

Для управления по глубине использовались горизонтальные рули. Спустя год аналогичный проект предложил англичанин Роберт Уайтхед, который оказался проворнее российского коллеги и запатентовал свою разработку.

Именно Уайтхед начал использовать гиростат и соосную гребную установку.

Первым государством, взявшим на вооружение торпеду, стала Австро-Венгрия в 1871 году.

В течение последующих 3 лет торпеды поступили в арсеналы многих морских держав, в том числе и России.

Устройство

Торпеда представляет собой самоходный снаряд, движущийся в толще воды под воздействием энергии собственной силовой установки. Все узлы расположены внутри удлиненного стального корпуса цилиндрического сечения.

В головной части корпуса размещен заряд взрывчатого вещества с приборами, обеспечивающими подрыв боеголовки.

В следующем отсеке расположен запас топлива, вид которого зависит от типа установленного ближе к корме двигателя. В хвостовой части установлен гребной винт, рули глубины и направления, которые могут управляться автоматически или дистанционно.


Принцип работы силовой установки парогазовой торпеды основан на использовании энергии парогазовой смеси в поршневой многоцилиндровой машине или турбине. Возможно использование жидкого топлива (в основном керосин, реже спирт), а также твердого (пороховой заряд или любое вещество, выделяющее значительный объем газа при контакте с водой).

При использовании жидкого топлива на борту имеется запас окислителя и воды.

Горение рабочей смеси происходит в специальном генераторе.

Поскольку при сгорании смеси температура достигает 3,5-4,0 тыс. градусов, то имеется риск разрушения корпуса камеры сгорания. Поэтому в камеру подается вода, снижающая температуру горения до 800°C и ниже.

Основным недостатком ранних торпед с парогазовой силовой установкой стал хорошо различимый след выхлопных газов. Это стало причиной появления торпед с электрической установкой. Позднее в качестве окислителя стали использовать чистый кислород или концентрированную перекись водорода. Благодаря этому отработавшие газы полностью растворяются в воде и след от движения практически отсутствует.

При использовании твердого топлива, состоящего из одного или нескольких компонентов, не требуется использование окислителя. Благодаря этому факту снижается вес торпеды, а более интенсивное газообразование твердого топлива обеспечивает увеличение скорости и дальности хода.

В качестве двигателя применяются паротурбинные установки, оснащенные планетарными редукторами для снижения частоты вращения вала гребных винтов.

Принцип работы

На торпедах типа 53-39 перед применением следует вручную установить параметры глубины движения, курса и примерной дистанции до цели. После этого необходимо открыть предохранительный кран, установленный на магистрали подачи сжатого воздуха в камеру сгорания.

При прохождении торпедой трубы пускового аппарата происходит автоматическое открытие главного крана, и начинается подача воздуха непосредственно в камеру.

Одновременно начинается распыл керосина через форсунку и розжиг образовавшейся смеси при помощи электрического прибора. Установленная в камере дополнительная форсунка подает пресную воду из бортового резервуара. Смесь подается в поршневой двигатель, который начинает раскручивать соосные гребные винты.

Например, в германских парогазовых торпедах G7a использован 4-цилиндровый двигатель, оборудованный редуктором для привода соосных винтов, вращающихся в противоположном направлении. Валы полые, установлены один внутри другого. Применение соосных винтов позволяет уравновешивать отклоняющие моменты и поддерживается заданный курс движения.

Часть воздуха при пуске подается на механизм раскрутки гироскопа.

После начала контакта головной части с потоком воды начинается раскрутка крыльчатки предохранителя боевого отделения. Предохранитель оснащен прибором задержки, обеспечивающим взвод ударника в боевое положение через несколько секунд, за которые торпеда отойдет от места пуска на 30-200 м.

Отклонение торпеды от заданного курса корректируется ротором гироскопа, воздействующим на систему тяг, связанную с исполнительной машиной рулей направления. Вместо тяг могут использоваться электрические приводы. Ошибка в глубине хода определяется механизмом, уравновешивающим усилие пружины давлением столба жидкости (гидростат). Механизм связан с исполнительной машинкой руля глубины.


При ударе боевой части о корпус корабля происходит разрушение стержнями ударника капсюлей, которые вызывают детонацию боевой части. Немецкие торпеды G7a поздних серий оснащались дополнительным магнитным детонатором, срабатывавшим при достижении определенной напряженности поля. Аналогичный взрыватель использовался с 1942 года на советских торпедах 53-38У.

Сравнительные характеристики некоторых торпед подводных лодок периода Второй мировой войны приведены ниже.

Параметр G7a 53-39 Mk.15mod 0 Тип 93
Производитель Германия СССР США Япония
Диаметр корпуса, мм 533 533 533 610
Вес заряда, кг 280 317 224 610
Тип ВВ Тротил ТГА Тротил -
Предельная дальность хода, м до 12500 до 10000 до 13700 до 40000
Рабочая глубина, м до 15 до 14 - -
Скорость хода, уз до 44 до 51 до 45 до 50

Наведение на цель

Простейшей методикой наведения является программирование курса движения. Курс учитывает теоретическое прямолинейное смещение цели за время, необходимое для прохождения расстояния между атакующим и атакуемым кораблем.


Заметное изменение скорости хода или курса атакуемым кораблем приводит к прохождению торпеды мимо. Ситуацию отчасти спасает запуск нескольких торпед «веером», что позволяет перекрывать больший диапазон. Но подобная методика не гарантирует поражения цели и ведет к перерасходу боекомплекта.

До Первой мировой войны предпринимались попытки создания торпед с корректировкой курса по радиоканалу, проводам или иным способам, но до серийного производства дело не дошло. Примером может служить торпеда Джона Хаммонда Младшего, которая использовала для самонаведения свет прожектора вражеского корабля.

Для обеспечения наведения в 30-е годы стали разрабатываться автоматические системы.

Первыми стали системы наведения по акустическому шуму, издаваемому гребными винтами атакуемого судна. Проблемой являются малошумные цели, акустический фон от которых может оказаться ниже шума винтов самой торпеды.

Для устранения подобной проблемы создана система наведения по отраженным сигналам от корпуса корабля или создаваемой им кильватерной струи. Для корректировки движения торпеды могут применяться методики телеуправления по проводам.

Боевая часть

Боевой заряд, расположенный в головной части корпуса состоит из заряда взрывчатого вещества и взрывателей. На ранних моделях торпед, применявших в Первую мировую войну, использовалось однокомпонентное взрывчатое вещество (например, пироксилин).

Для подрыва применялся примитивный детонатор, установленный в носовой части. Срабатывание ударника обеспечивалось только в узком диапазоне углов, близком к перпендикулярному попаданию торпеды в цель. Позднее стали применятся усы, связанные с бойком, которые расширили диапазон этих углов.


Дополнительно стали устанавливаться инерционные взрыватели, срабатывавшие в момент резкого замедления движения торпеды. Использование таких детонаторов потребовало введения предохранителя, которым стала крыльчатка, раскручиваемая потоком воды. При использовании электрических взрывателей крыльчатка соединяется с миниатюрным генератором, заряжающим конденсаторную батарею.

Взрыв торпеды возможен только при определенном уровне заряда батареи. Подобное решение обеспечило дополнительную защиту атакующего корабля от самоподрыва. К моменту начала Второй мировой стали применяться многокомпонентные смеси, обладающие повышенной разрушающей способностью.

Так, в торпеде 53-39 используется смесь тротила, гексогена и алюминиевой пудры.

Применение систем защиты от подводного взрыва привело к появлению взрывателей, обеспечивавших подрыв торпеды вне зоны защиты. После войны появились модели, оснащенные ядерными боеголовками. Первая советская торпеда с ядерной боеголовкой модели 53-58 была испытана осенью 1957 года. В 1973 году ее сменила модель 65-73 калибра 650 мм, способная нести ядерный заряд мощностью 20 кт.

Боевое применение

Первым государством, применившим новое оружие в деле, стала Россия. Торпеды использовались во время русско-турецкой войны 1877-78 года и запускались с катеров. Второй крупной войной с использованием торпедного вооружения стала русско-японская война 1905 года.

В ходе Первой мировой войны оружие использовалось всеми воюющими сторонами не только в морях и океанах, но и на речных коммуникациях. Широкое использование подводных лодок Германией привело к большим потерям торгового флота Антанты и союзников. В ходе Второй мировой войны стали применяться усовершенствованные варианты вооружения, оснащенные электродвигателями, усовершенствованными системами наведения и маневрирования.

Любопытные факты

Были разработаны торпеды больших размеров, предназначенные для доставки крупных боеголовок.

Примером такого вооружения может служить советская торпеда Т-15, имевшая вес около 40 т при диаметре 1500 мм.

Оружие предполагалось использовать для атаки побережья США термоядерными зарядами мощностью 100 мегатонн.

Видео

Торпеда (от лат. torpedo narke - электрический скат , сокращённо лат. torpedo ) - самодвижущееся устройство, содержащее взрывчатый заряд и служащее для уничтожения надводных и подводных целей. Появление торпедного оружия в XIX веке коренным образом изменила тактику ведения боевых действий на море и послужило толчком для разработки новых типов кораблей , несущих торпеды в качестве главного вооружения .

Торпеды различных типов. Военный музей на батарее Безымянной, Владивосток.

История создания

Иллюстрация из книги Джованни де ла Фонтана

Как и множество других изобретений, изобретение торпеды имеет сразу несколько отправных точек. Впервые идея использовать специальные снаряды для уничтожения вражеских кораблей описана в книге итальянского инженера Джованни де ла Фонтана (итал. Giovanni de la Fontana ) Bellicorum instrumentorum liber, cum figuris et fictitys litoris conscriptus (рус. «Иллюстрированная и зашифрованная книга инструментов войны» или иначе «Книга о военных принадлежностях» ). В книге приведены изображения различных устройств военного назначения, передвигающихся по земле, воде и воздуху и приводимых в движение за счет реактивной энергии пороховых газов.

Следующим событием, предопределившем появление торпеды, стало доказательство Дэвидом Бушнеллом (англ. David Bushnell ) возможности горения пороха под водой. Позже Бушнелл попытался создать первую морскую мину, оснащенную изобретенным им же часовым взрывным механизмом, но попытка ее боевого применения (как и изобретенной Бушнеллом подводной лодки "Черепаха") оказалась безуспешной.
Очередной шаг по пути к созданию торпед был сделан Робертом Фултоном(англ. Robert Fulton ), создателем одного из первых пароходов. В 1797 году он предложил англичанам использовать дрейфующие мины, оснащенные часовым взрывным механизмом и впервые использовал слово торпе́до для описания устройства, которое должно было взрываться под днищем и таким образом уничтожать вражеские корабли. Это слово было использовано из за способности электрических скатов(лат. torpedo narke ) оставаться незамеченными, а затем стремительным броском парализовать свою жертву.

Шестовая мина

Изобретение Фултона не являлось торпедой в современной понимании этого слова, а являлось заградительной миной . Такие мины широко использовались российским флотом во время Крымской войны на Азовском, Черном и Балтийском морях. Но такие мины были оборонительным оружием. Появившиеся чуть позже шестовые мины стали оружием наступательным. Шестовая мина представляла из себя взрывчатку, закрепленную на конце длинного шеста, и скрытно доставлявшаяся с помощью лодки к вражескому кораблю.

Новым этапом стало появление буксируемых мин. Такие мины существовали как в оборонительном, так и в наступательном вариантах. Оборонительная мина Гарвея (англ. Harvey ) буксировалась с помощью длинного троса на расстоянии примерно 100-150 метров от корабля вне кильватерной струи и имела дистанционный взрыватель, который приводился в действие при попытке противника протаранить защищаемый корабль. Наступательный вариант, мина-крылатка Макарова также буксировалась на тросе, но при приближении вражеского корабля буксир шел курсом прямо на противника, в последний момент резко уходил в сторону и отпускал трос, мина же продолжала двигаться по инерции и взрывалась при столкновении с кораблем противника.

Последним шагом на пути к изобретению самодвижущейся торпеды стали наброски неизвестного австро-венгерского офицера, на которых был изображен некий снаряд, буксируемый с берега и начиненный зарядом пироксилина. Наброски попали к капитану Джованни Бьяджо Луппису (рус. Giovanni Biagio Luppis ), который загорелся идеей создать самодвижущийся аналог мины для береговой обороны (англ. coastsaver ), управляемой с берега с помощью тросов. Луппис построил макет такой мины, приводимой в движение пружиной от часового механизма, но наладить управление этим снарядом ему не удалось. В отчаянии Луппис обратился за помощью к англичанину Роберту Уайтхеду (англ. Robert Whitehead ), инженеру судостроительной компании Stabilimeno Technico Fiumano в Фиуме (в настоящее время Риека, Хорватия).

Торпеда Уайтхеда


Уайтхеду удалось решить две проблемы, стоявшие на пути его предшественников. Первая проблема заключалась в простом и надежном двигателе, который сделал бы торпеду автономной. Уайтхед решил установить на свое изобретение пневматический двигатель, работающий на сжатом воздухе и приводящий во вращение винт, установленный в кормовой части. Второй проблемой была заметность торпеды, движущейся по воде. Уайтхед решил сделать торпеду таким образом, чтобы она двигалась на небольшой глубине, но на протяжении длительного времени ему не удавалось добиться стабильности глубины погружения. Торпеды либо всплывали, либо уходили на большую глубину, либо вообще двигались волнами. Решить эту проблему Уайтхеду удалось с помощью простого и эффективного механизма - гидростатического маятника, который управлял рулями глубины. реагируя на дифферент торпеды, механизм отклонял рули глубины в нужную сторону, но при этом не позволял торпеде совершать волнообразные движения. Точность выдерживания глубины была вполне достаточной и составляла ±0,6 м.

Торпеды по странам

Устройство торпед

Торпеда состоит из корпуса обтекаемой формы, в носовой части которого находится боевая часть с взрывателем и зарядом взрывчатого вещества. Для приведения в движение самоходных торпед на них устанавливаются двигатели различных типов: на сжатом воздухе, электрические, реактивные, механические. Для работы двигателя на борту торпеды размещается запас топлива: баллоны со сжатым воздухом, аккумуляторы , баки с топливом. Торпеды, оборудованные устройством автоматического или дистанционного наведения оснащаются приборами управления, сервоприводами и рулевыми механизмами.

Классификация

Типы торпед Кригсмарине

Классификация торпед проводится по нескольким признакам:

  • по назначению: противокорабельные; противолодочные; универсальные, используемые против подводных лодок и надводных кораблей.
  • по типу носителя: корабельные ; лодочные ; авиационные ; универсальные; специальные (боевые части противолодочных ракет и самодвижущихся мин).
  • по типу заряда: учебные, без взрывчатого вещества; с зарядом обычного взрывчатого вещества; с ядерным боеприпасом;
  • по типу взрывателя: контактные; неконтактные; дистанционные; комбинированные.
  • по калибру: малого калибра, до 400 мм; среднего калибра, от 400 до 533 мм включительно; большого калибра, свыше 533 мм.
  • по типу движителя: винтовые ; реактивные; с внешним движителем.
  • по типу двигателя: газовые; парогазовые; электрические; реактивные.
  • по типу управления: неуправляемые; автономно управляемые прямоидущие; автономно управляемые маневрирующие; с дистанционным управлением; с ручным непосредственным управлением; с комбинированным управлением.
  • по типу самонаведения: с активным самонаведением; с пассивным самонаведением; с комбинированным самонаведением.
  • по принципу самонаведения: с магнитным наведением; с электромагнитным наведением; с акустическим наведением; с тепловым наведением; с гидродинамическим наведением; с гидрооптическим наведением; комбинированные.

Устройства пуска

Торпедные двигатели

Газовые и парогазовые торпеды

Двигатель Brotherhood

Первые массовые самоходные торпеды Роберта Уайтхеда использовали поршневой двигатель, работавший на сжатом воздухе. Сжатый до 25 атмосфер воздух из баллона через редуктор, понижающий давление, поступал в простейший поршневой двигатель, который, в свою очередь, приводил во вращение гребной винт торпеды. Двигатель Уайтхеда при 100 об/мин обеспечивал скорость торпеды 6,5 узла при дальности 180 м. Для увеличения скорости и дальности хода требовалось увеличивать давление и объема сжатого воздуха соответственно.

C развитием технологии и ростом давления возникла проблема обмерзания клапанов, регуляторов и двигателя торпед. При расширении газов происходит резкое понижение температуры, которое тем сильнее, чем выше разница давлений. Избежать обмерзания удалось в торпедных двигателях с сухим обогревом, которые появились в 1904 году. В трехцилиндровых двигателях Brotherhood, которыми оснащались первые торпеды Уайтхеда с подогревом, для снижения давления воздуха использовался керосин или спирт. Жидкое топливо впрыскивалось в воздух, поступавший из баллона и поджигалось. За счет сгорания топлива давление повышалось, а температура снижалась. Помимо двигателей с сжиганием топлива, позже появились двигатели, в которых в воздух впрыскивалась вода, благодаря чему менялись физические свойства газовоздушной смеси.

Противолодочная торпеда MU90 с водометным двигателем

Дальнейшее совершенствование было связано с появлением паровоздушных торпед (торпед с влажным обогревом), у которых вода впрыскивалась в камеры сгорания топлива. Благодаря этому можно было обеспечить сжигание большего количества топлива, а также использовать пар, образующийся при испарении воды для подачи в двигатель и увеличения энергетического потенциала торпеды. Такая система охлаждения впервые была использована на торпедах British Royal Gun в 1908 году.

Количество топлива, которое может быть сожжено, ограничено количеством кислорода, которого в воздухе содержится около 21%. Для увеличения количества сжигаемого топлива были разработаны торпеды, у которых вместо воздуха в баллоны закачивался кислород. В Японии в годы Второй мировой войны стояла на вооружении кислородная торпеда 61 см Type 93 , самая мощная, дальнобойная и скоростная торпеда своего времени. Недостатком кислородным торпед была их взрывоопасность. В Германии в годы Второй мировой войны велись эксперименты с созданием бесследных торпед типа G7ut на перекиси водорода и оснащенные двигателем Вальтера. Дальнейшим развитием применения двигателя Вальтера стало создание реактивных и водометных торпед.

Электрические торпеды

Электрическая торпеда МГТ-1

Газовые и парогазовые торпеды имеют ряд недостатков: они оставляют демаскирующий след и имеют сложности с длительным хранением в заряженном состоянии. Этих недостатков лишены торпеды с электроприводом. Впервые электродвигателем оснастил торпеду своей конструкции Джон Эрикссон в 1973 году. Питание электродвигателя осуществлялось по кабелю от внешнего источника тока. Аналогичные конструкции имели торпеды Симса-Эдисона и Нордфельда , причем у последней по проводам также осуществлялось управление рулями торпеды. Первой успешной автономной электрической торпедой, у которой электропитание на двигатель подавалось с бортовых аккумуляторных батарей, стала немецкая G7e , широко распространенная в годы Второй Мировой войны. Но эта торпеда имела и ряд недостатков. Ее свинцово-кислотный аккумулятор был чувствителен к ударам, требовал регулярного обслуживания и подзарядки, а так же подогрева перед использованием. Аналогичную конструкцию имела американская торпеда Mark 18 . Экспериментальная G7ep, ставшая дальнейшим развитием G7e, была лишена этих недостатков так как в ней аккумуляторы были заменены на гальванические элементы. В современных электрических торпедах используются высоконадежные не обслуживаемые литий-ионные или серебряные аккумуляторные батареи.

Торпеды с механическим двигателем

Торпеда Бреннана

Механический двигатель впервые был использован в торпеде Бреннана . Торпеда имела два троса, намотанные на барабаны внутри корпуса торпеды. Береговые паровые лебедки тянули троса, которые крутили барабаны и приводили во вращение гребные винты торпеды. Оператор на берегу контролировал относительные скорости лебедок, благодаря чему мог изменять направление и скорость движения торпеды. Такие системы были использованы для береговой обороны в Великобритании в период с 1887 по 1903 годы.
В США в конце XIX века на вооружении состояла торпеда Хауэлла , которая приводилась в движение за счет энергии раскручиваемого перед пуском маховика. Хауэлл также впервые использовал гироскопический эффект для управления курсом движения торпеды.

Торпеды с реактивным двигателем

Носовая часть торпеды М-5 комплекса Шквал

Попытки использовать реактивный двигатель в торпедах предпринимались еще во второй половине XIX века. После окончания Второй мировой войны был предпринят ряд попыток создания ракето-торпед, которые являлись комбинацией ракеты и торпеды. После запуска в воздух ракето-торпеда использует реактивный двигатель, выводящий головную часть - торпеду к цели, после падения в воду включается обычный торпедный двигатель и дальнейшее движение осуществляется уже в режиме обычной торпеды. Такое устройство имели ракето-торпеды воздушного базирования Fairchild AUM-N-2 Petrel и корабельные противолодочные RUR-5 ASROC , Grebe и RUM-139 VLA. В них использовались стандартные торпеды, совмещенные с ракетным носителем. В комплексе RUR-4 Weapon Alpha использовалась глубинная бомба, оснащенная ракетным ускорителем. В СССР на вооружении стояли авиационные ракето-торпеды РАТ-52 . В 1977 в СССР был принят на вооружение комплекс Шквал , оснащенный торпедой М-5. Эта торпеда имеет реактивный двигатель, работающий на гидрореагирующем твёрдом топливе. В 2005 году о создании аналогичной суперкавитирущей торпеды сообщила немецкая компания Diehl BGT Defence, а в США ведутся разработки торпеды HSUW. Особенностью реактивных торпед является их скорость, которая превышает 200 узлов и достигается благодаря движению торпеды в суперкавитирующей полости пузырьков газа, благодаря чему снижается сопротивление воды.

Кроме реактивных двигателей, в настоящее время используются также нестандартные торпедные двигатели от газовых турбин до двигателей на однокомпонентном топливе, например, на гексафториде серы, распыляемого над блоком твердого лития.

Приборы маневрирования и управления

Маятниковый гидростат
1. Ось маятника.
2. Руль глубины.
3. Маятник.
4. Диск гидростата.

Уже при первых экспериментах с торпедами стало ясно, что во время движения торпеда постоянно отклоняется от изначально заданного курса и глубины хода. Некоторые образцы торпед получили систему дистанционного управления, которая позволяла вручную задавать глубину хода и курс движения. Роберт Уайтхед на торпеды собственной конструкции установил специальный прибор - гидростат . Он состоял из цилиндра с подвижным диском и пружиной и размещался в торпеде так, что диск воспринимал давление воды. При изменении глубины хода торпеды диск перемещался вертикально и с помощью тяг и вакуумно-воздушного сервопривода управлял рулями глубины. Гидростат имеет значительное запаздывание срабатывания по времени, поэтому при его использовании торпеда постоянно меняла глубину хода. Для стабилизации работы гидростата Уайтхед использовал маятник, который был соединен с вертикальными рулями таким образом, чтобы ускорить работу гидростата.
Пока торпеды имели ограниченную дальность хода, мер по выдерживанию курса не требовалось. С увеличением дальности торпеды стали значительно отклоняться от курса, что потребовало использовать специальные меры и управлять вертикальными рулями. Наиболее эффективным прибором стал прибор Обри, который представлял из себя гироскоп, который при наклоне любой из его осей стремится занять первоначальное положение. С помощью тяг возвратное усилие гироскопа передавалось на вертикальные рули, благодаря чему торпеда выдерживала первоначально заданный курс с достаточно высокой точностью. Гироскоп раскручивался в момент выстрела с помощью пружины или пневматической турбины. При установке гироскопа на угол, не совпадающий с осью пуска, можно было добиться движения торпеды под углом к направлению выстрела.

Торпеды, оборудованные гидростатическим механизмом и гироскопом, в годы Второй мировой войны стали оборудоваться механизмом циркуляции . После пуска такая торпеда могла двигаться по любой заранее запрограммированной траектории. В Германии такие системы наведения получили название FaT (Flachenabsuchender Torpedo, горизонтально маневрирующая торпеда) и LuT - (Lagenuabhangiger Torpedo, торпеда с автономным управлением). Системы маневрирования позволяли задавать сложные траектории движения, благодаря чему повышалась безопасность стреляющего корабля и повышалась эффективность стрельбы. Циркулирующие торпеды были наиболее эффективны при атаке конвоев и внутренних акваторий портов, то есть при высоком скоплении кораблей противника.

Наведение и управление торпедами при стрельбе

Прибор управления торпедной стрельбой

Торпеды могут иметь различные варианты наведения и управления. Наибольшее распространение сначала имели неуправляемые торпеды, которые, подобно артиллерийскому снаряду, после пуска не оборудовались устройствами изменения курса. Существовали также торпеды, управляемые дистанционно по проводам и человекоуправляемые торпеды, управлявшиеся пилотом. Позже появились торпеды с системами самонаведения, которые самостоятельно наводились на цель используя различные физические поля: электромагнитное, акустическое, оптическое, а так же по кильватерному следу . Существуют также торпеды с дистанционным управлением по радиоканалу и использующие комбинацию различных типов наведения.

Торпедный треугольник

Торпеды Бреннана и некоторые другие типы ранних торпед имели дистанционное управление, в то время как наиболее распространенные торпеды Уайтхеда и их дальнейшие модификации требовали лишь первоначального наведения. При этом было необходимо учесть целый ряд параметров, влияющих на шансы поражения цели. С ростом дальности хода торпед решение задачи их наведения становилась все более сложной. Для наведения использовались специальные таблицы и приборы, с помощью которых рассчитывалось упреждение пуска в зависимости от взаимных курсов стреляющего корабля и цели, их скоростей, дистанции до цели, погодных условиий и других параметров.

Простейшие, но достаточно точные расчеты координат и параметров движения цели (КПДЦ), выполнялись вручную путем вычисления тригонометрических функций. Упростить расчет можно при использовании навигационного планшета или с помощью директора торпедной стрельбы .
В общем случае решение торпедного треугольника сводится к вычислению угла угла α по известным параметрам скорости цели V Ц , скорости торпеды V Т и курса цели Θ . Фактически за счет влияния различных параметров расчет производился, исходя их большего числа данных.

Панель управления Torpedo Data Computer

К началу Второй мировой войны появились автоматические электромеханические калькуляторы, позволяющие произвести расчет пуска торпед. На флоте США использовали Torpedo Data Computer (TDC) . Это был сложный механический прибор, в который перед пуском торпеды вводились данные о корабле-носителе торпеды (курс и скорость), о параметрах торпеде (тип, глубина, скорость) и данные о цели (курс, скорость, дистанция). По введенным данным TDC производил не только расчет торпедного треугольника, но и в автоматическом режиме производил сопровождение цели. Полученные данные передавались в торпедный отсек, где с помощью механического толкателя устанавливался угол гироскопа. TDC позволял вводить данные во все торпедные аппараты, учитывая их взаимное положение, в том числе для веерного пуска. Так как данные о носителе вводились автоматически с гирокомпаса и питометра , во время атаки подводная лодка могла вести активное маневрирование без необходимости повторных расчетов.

Устройства самонаведения

Значительно упрощают расчеты при стрельбе и повышают эффективность использования торпед использование систем дистанционного управления и самонаведения.
Впервые дистанционное механическое управление было применено на торпедах Бреннана, также управление по проводам использовалось на самых различных типах торпед. Радиоуправление впервые были использовано на торпеде Хаммонда в годы Первой Мировой войны .
Среди систем самонаведения наибольшее распространение сначала получили торпеды с акустическим пассивным самонаведением. Первыми поступили на вооружение в марте 1943 года торпеды G7e/T4 Falke, но массовой стала следующая модификация, G7es Т-5 Zaunkönig . В торпеде был использован метод пассивного наведения, при котором прибор самонаведения сначала анализирует характеристики шума, сравнивая их с характерными образцами, а затем формирует сигналы управления механизмом курсовых рулей, сравнивая уровни сигналов, поступающих на левый и правый акустический приемник. В США в 1941 была разработана торпеда Mark 24 FIDO , но из за отсутствия системы анализа шумов она применялась только для сброса с самолетов, так как могла навестись на стреляющий корабль. Торпеда после сброса начинала движение, описывая циркуляцию до момента приема акустических шумов, после чего происходило наведение на цель.
Активные акустические системы наведения содержат гидролокатор , с помощью которого производится наведение на цель по отраженному от нее акустическому сигналу.
Менее распространены системы, осуществляющие наведение по изменению магнитного поля, создаваемое кораблем.
После окончания Второй Мировой войны торпеды стали оборудоваться устройствами, производящими наведение по кильватерному следу, оставляемого целью.

Боевая часть

Pi 1 (Pi G7H) - взрыватель немецких торпед G7a и G7е

Первые торпеды снабжались боевой частью с зарядом пироксилина и ударным взрывателем. При ударе носовой части торпеды об борт цели, иглы ударника разбивают капсюли-воспламенители, которые, в свою очередь, вызывают подрыв взрывчатого вещества.

Срабатывание ударного взрывателя было возможно только при перпендикулярном попадании торпеды в цель. Если соударение происходило по касательной, ударник не срабатывал и торпеда уходила в сторону. Улучшить характеристики ударного взрывателя пытались с помощью специальных усов, расположенных в носовой части торпеды. Чтобы повысить вероятность подрыва, на торпеды стали устанавливать инерционные взрыватели. Инерционный взрыватель срабатывал от маятника, который при резком изменении скорости или курса торпеды освобождал боек, который, в свою очередь, под действием боевой пружины пробивал капсюли, воспламеняющие заряд взрывчатого вещества.

Головной отсек торпеды УГСТ с антенной системы самонаведения и датчиками неконтактных взрывателей

Позже, для повышения безопасности, взрыватели стали оборудовать предохранительной вертушкой, которая раскручивалась после набора торпедой заданной скорости и разблокировала ударник. Таким образом повышалась безопасность стреляющего корабля.

Кроме механических взрывателей, торпеды оборудовались электрическими взрывателями, подрыв которых происходил за счет разряда конденсатора. Конденсатор зарядался от генератора, ротор которого был связан с вертушкой. Благодаря такой конструкции предохранитель случайного подрыва и взрыватель конструктивно объединялись, что повышало их надежность.
Использование контактных взрывателей не позволяло реализовать весь боевой потенциал торпед. Применение толстой подводной брони и противоторпедных булей позволяло не только снизить урон при взрыве торпеды, но и в некоторых случаях избежать повреждений. Значительно повысить эффективность торпед можно было, обеспечив их подрыв не у борта, а под дном корабля. Это стало возможно с появлением неконтактных взрывателей. Такие взрыватели срабатывают под воздействием изменения магнитного, акустического, гидродинамического или оптического полей.
Неконтактные взрыватели бывают активного и пассивного типов. В первом случае взрыватель содержит излучатель, формирующий вокруг торпеды физическое поле, состояние которого контролируется приемником. В случае изменения параметров поля приемник инициирует подрыв взрывчатого вещества торпеды. Пассивные приборы наведения не содержат излучателей, а отслеживают изменения естественных полей, например магнитного поля Земли.

Средства противодействия

Броненосец Евстафий с противоторпедными сетями.

Появление торпед вызвало необходимость разработки и применения средств противодействия торпедным атакам. Так как первые торпеды имели невысокую скорость, с ними можно было бороться, обстреливая торпеды из стрелкового оружия и пушек малого калибра.

Проектируемые корабли стали оборудоваться специальными системами пассивной защиты. С внешней стороны бортов устанавливались противоторпедные були, которые представляли собой частично заполненные водой узконаправленных спонсоны . При попадании торпеды энергия взрыва поглощалась водой и отражалась от борта, снижая повреждения. После Первой Мировой войны также использовался противоторпедный пояс, который состоял из нескольких легкобронированных отсеков, расположенных напротив ватерлинии . Этот пояс поглощал взрыв торпеды и сводил к минимуму внутренние повреждения корабля. Разновидностью противоторпедного пояса являлась конструктивная подводная защита системы Пульезе, использованная на линкоре Giulio Cesare .

Реактивный комплекс противоторпедной защиты кораблей "Удав-1" (РКПТЗ-1)

Достаточно эффективными для борьбы с торпедами являлись противоторпедные сети, вывешенные с бортов корабля. Торпеда, попадая в сети, взрывалась на безопасном удалении от корабля либо теряла ход. Сети использовались так же для защиты корабельных стоянок, каналов и портовых акваторий.

Для борьбы с торпедами, использующими различные типы самонаведения, корабли и подводные лодки оборудуются имитаторами и источниками помех, усложняющими работу различных систем управления. Кроме того, принимаются различные меры, снижающие физические поля корабля.
Современные корабли оборудуются активными системами противоторпедной защиты. К таким системам относится, например, реактивный комплекс противоторпедной защиты кораблей "Удав-1" (РКПТЗ-1), в котором используются три вида боеприпасов (снаряд-отводитель, снаряд заградитель, глубинный снаряд), десятиствольная автоматизированная пусковая установка со следящими приводами наведения, приборов управления стрельбой, устройств заряжания и подачи. (англ.)

Видео


Торпеда Whitehead 1876 года


Торпеда Howell 1898 года

Первые торпеды отличались от современных не меньше, чем колесный пароходофрегат от атомного авианосца. В 1866 году «скат» нес 18 кг взрывчатки на расстояние 200 м со скоростью около 6 узлов. Точность стрельбы была ниже всякой критики. К 1868 году применение соосных винтов, вращающихся в разные стороны, позволило уменьшить рысканье торпеды в горизонтальной плоскости, а установка маятникового механизма управления рулями – стабилизировать глубину хода.

К 1876 году детище Уайтхеда плыло уже со скоростью около 20 узлов и преодолевало расстояние в два кабельтова (около 370 м). Через два года торпеды сказали свое слово на поле брани: русские моряки «самодвижущимися минами» отправили на дно батумского рейда турецкий сторожевой пароход «Интибах».

Торпедный отсек субмарины
Если не знать, какой разрушительной силой обладают лежащие на стеллажах «рыбки», то можно и не догадаться. Слева – два торпедных аппарата с открытыми крышками. Верхний из них пока не заряжен.

Дальнейшая эволюция торпедного оружия до середины XX века сводится к увеличению заряда, дальности, скорости и способности торпед держаться на курсе. Принципиально важно, что до поры общая идеология оружия оставалась ровно той же, что и в 1866 году: торпеда должна была попасть в борт цели и взорваться при ударе.

Прямоидущие торпеды сохраняются на вооружении и поныне, периодически находя применение в ходе всяческих конфликтов. Именно ими был в 1982 году потоплен аргентинский крейсер «Генерал Бельграно», ставший самой известной жертвой Фолклендской войны.

Английская АПЛ Conqueror тогда выпустила по крейсеру три торпеды Mk-VIII, состоящие на вооружении Королевского флота с середины 1920-х годов. Сочетание атомной субмарины и допотопных торпед выглядит забавно, но не будем забывать, что и крейсер постройки 1938 года к 1982-му имел скорее музейную, нежели военную ценность.

Революцию в торпедном деле произвело появление в середине XX века систем самонаведения и телеуправления, а также неконтактных взрывателей.

Современные системы самонаведения (ССН) делятся на пассивные – «ловящие» физические поля, создаваемые целью, и активные – ищущие цель обычно при помощи гидролокации. В первом случае речь идет чаще всего об акустическом поле – шуме винтов и механизмов.

Несколько особняком стоят системы самонаведения, лоцирующие кильватерный след корабля. Сохраняющиеся в нем многочисленные мелкие пузырьки воздуха меняют акустические свойства воды, и это изменение надежно «ловится» гидролокатором торпеды далеко за кормой прошедшего корабля. Зафиксировав след, торпеда поворачивает в сторону движения цели и ведет поиск, двигаясь «змейкой». Лоцирование кильватерного следа, основной способ самонаведения торпед в российском флоте, считается в принципе надежным. Правда, торпеда, вынужденная догонять цель, тратит на это время и драгоценные кабельтовы пути. А подлодке, чтобы выстрелить «по следу», приходится подбираться к цели ближе, чем это в принципе позволялось бы дальностью торпеды. Шансы на выживание при этом не увеличиваются.

Вторым важнейшим нововведением стали распространившиеся во второй половине XX века системы телеуправления торпедами. Как правило, управление торпедой осуществляется по кабелю, разматываемому по мере движения.

Сочетание управляемости с неконтактным взрывателем позволило радикально изменить саму идеологию применения торпед – теперь они ориентированы на то, чтобы нырнуть под киль атакуемой цели и взорваться там.

Противоминные сети
Эскадренный броненосец «Император Александр II» во время испытаний противоминной сети системы Булливанта. Крон-штадт, 1891 год

Поймай ее сетью!

Первые попытки оградить корабли от новой угрозы были предприняты в считанные годы после ее появления. Концепция выглядела незатейливо: на борту корабля крепились откидные выстрелы, с которых свешивалась вниз стальная сеть, останавливающая торпеды.

На испытаниях новинки в Англии в 1874 году сеть благополучно отразила все атаки. Аналогичные испытания, проведенные в России десятилетием позже, дали результат чуть похуже: сеть, рассчитанная на сопротивление на разрыв в 2,5 т, выдержала пять из восьми выстрелов, однако три пробившие ее торпеды запутались винтами и все равно были остановлены.

Наиболее яркие эпизоды биографии противоторпедных сетей относятся к русско-японской войне. Однако к началу Первой мировой скорость торпед перевалила за 40 узлов, а заряд достиг сотни килограммов. Для преодоления заграждений на торпеды начали устанавливать специальные резаки. В мае 1915 года английский броненосец «Триумф» (Triumph), обстреливавший турецкие позиции у входа в Дарданеллы, был, несмотря на опущенные сети, потоплен единственным выстрелом с немецкой подлодки – торпеда пробила защиту. К 1916 году опускаемая «кольчужка» воспринималась скорее как бесполезный груз, нежели как защита.

(IMG:http://topwar.ru/uploads/posts/2011-04/1303281376_2712117058_5c8c8fd7bf_o_1300783343_full.jpg) Отгородиться стенкой

Энергия взрывной волны быстро убывает с расстоянием. Логично было бы поставить на некотором расстоянии от наружной обшивки корабля броневую переборку. Если она выдержит воздействие взрывной волны, то повреждения корабля ограничатся затоплением одногодвух отсеков, а энергетическая установка, погреба боеприпасов и прочие уязвимые места не пострадают.

Видимо, первым идею конструктивной ПТЗ выдвинул бывший главный строитель английского флота Э.Рид в 1884 году, но его мысль не была поддержана Адмиралтейством. Англичане предпочли в проектах своих кораблей следовать традиционному на тот момент пути: делить корпус на большое число водонепроницаемых отсеков и прикрывать машинно-котельные отделения расположенными по бортам угольными ямами.
Такая система защиты корабля от артиллерийских снарядов неоднократно испытывалась в конце XIX века и в целом выглядела эффективной: сложенный в ямах уголь исправно «улавливал» снаряды и не загорался.

Система противоторпедных переборок была впервые реализована во французском флоте на экспериментальном броненосце «Анри IV», построенном по проекту Э.Бертена. Суть замысла сводилась к тому, чтобы плавно закруглить скосы двух броневых палуб вниз, параллельно борту и на некотором расстоянии от него. Кон-струкция Бертена не побывала на войне, и вероятно, это было к лучшему – построенный по этой схеме кессон, имитировавший отсек «Анри», был при испытаниях разрушен взрывом прикрепленного к обшивке торпедного заряда.

В упрощенном виде этот подход был реализован на русском броненосце «Цесаревич», строившемся во Франции и по французскому же проекту, а также на ЭБР типа «Бородино», копировавших тот же проект. Корабли получили в качестве противоторпедной защиты продольную броневую переборку толщиной 102 мм, отстоявшую от наружной обшивки на 2м. «Цесаревичу» это не слишком помогло– получив японскую торпеду при нападении японцев на Порт-Артур, корабль провел в ремонте несколько месяцев.

Английский флот полагался на угольные ямы примерно до строительства «Дредноута». Однако попытка испытать данную защиту в 1904 году закончилась провалом. В качестве «подопытного кролика» выступил древний броненосный таран «Бельайл». Снаружи к его корпусу пристроили коффердам шириной 0,6 м, заполненный целлюлозой, а между наружной обшивкой и котельным отделением возвели шесть продольных переборок, пространство между которыми заполнили углем. Взрыв 457-мм торпеды проделал в этой конструкции дыру 2,5х3,5 м, снес коффердам, разрушил все переборки, кроме последней, и вспучил палубу. В результате «Дредноут» получил броневые экраны, прикрывавшие погреба башен, а последующие линкоры строились уже с полноразмерными продольными переборками по длине корпуса– конструкторская мысль пришла к единому решению.

Постепенно конструкция ПТЗ усложнялась, а ее размеры увеличивались. Боевой опыт показал, что главное в конструктивной защите – глубина, то есть расстояние от места взрыва до прикрываемых защитой корабельных внутренностей. На смену одиночной переборке пришли затейливые конструкции, состоявшие из нескольких отсеков. Чтобы отодвинуть «эпицентр» взрыва как можно дальше, широко применялись були – продольные наделки, монтируемые на корпусе ниже ватерлинии.

Одной из самых мощных считается ПТЗ французских линкоров типа «Ришелье», состоявшая из противоторпедной инескольких разделительных переборок, образовывавших четыре ряда защитных отсеков. Наружный, имевший почти 2-метровую ширину, заполнялся пенорезиновым наполнителем. Затем следовал ряд пустых отсеков, за ним – топливные баки, затем еще один ряд пустых отсеков, предназначенный для сбора разлившегося при взрыве топлива. Только после этого взрывной волне предстояло наткнуться на противоторпедную переборку, после которой следовал еще один ряд пустых отсеков – чтобы уж точно поймать все просочившееся. На однотипном линкоре «Жан Бар» ПТЗ была усилена булями, в результате чего ее общая глубина достигла 9,45 м.

На американских линкорах типа «Норт Кэролайн» систему ПТЗ образовывали буль и пять переборок – правда, не из брони, а из обычной судостроительной стали. Полость буля и следующий за ним отсек были пустыми, два следующих отсека заполнялись топливом или забортной водой. Последний, внутренний, отсек снова был пустым.
Помимо защиты от подводных взрывов многочисленные отсеки можно было использовать для выравнивания крена, затапливая их по мере надобности.

Излишне говорить о том, что такой расход пространства и водоизмещения был роскошью, допустимой только на самых крупных кораблях. Следующая серия американских линкоров (South Dacota) получила котлотурбинную установку иных габаритов – короче и шире. А увеличить ширину корпуса было уже невозможно – иначе корабли не прошли бы через Панамский канал. Итогом стало уменьшение глубины ПТЗ.

Несмотря на все ухищрения, защита все время отставала от вооружения. ПТЗ тех же американских линкоров рассчитывалась на торпеду с 317-килограммовым зарядом, однако уже после их постройки у японцев появились торпеды с зарядами в 400 кг ТНТ и больше. В результате командир «Норт Кэролайн», получившей осенью 1942 года попадание японской 533-мм торпеды, в своем рапорте честно писал, что никогда не считал подводную защиту корабля адекватной современной торпеде. Впрочем, поврежденный линкор тогда остался на плаву.

Не дать дойти до цели

Появление ядерного оружия и управляемых ракет радикально изменило взгляды на вооружение и защиту боевого корабля. Флот расстался с многобашенными линкорами. На новых кораблях место орудийных башен и броневых поясов заняли ракетные комплексы и локаторы. Главным стало не выдержать попадание вражеского снаряда, но просто его не допустить.

Сходным образом поменялся подход к противоторпедной защите – були с переборками хоть и не исчезли совершенно, но явно отошли на задний план. Задача сегодняшней ПТЗ – сбить торпеду справильного курса, запутав ее систему самонаведения, либо просто уничтожить на подходе к цели.

«Джентльменский набор» современной ПТЗ включает несколько общепринятых устройств. Важнейшие из них – средства гидроакустического противодействия, как буксируемые, так и выстреливаемые. Плавающее в воде устройство создает акустическое поле, попросту говоря – шумит. Шум от средств ГПД может сбивать систему самонаведения с толку, либо имитируя шумы корабля (значительно громче его самого), либо «забивая» вражескую гидроакустику помехами. Так, американская система AN/SLQ-25 «Никси» включает буксируемые со скоростью до 25 узлов отводители торпед и шестиствольные пусковые установки для стрельбы средствами ГПД. К этому прилагается автоматика, определяющая параметры атакующих торпед, генераторы сигналов, собственные гидроакустические комплексы и много чего еще.

В последние годы появляются сообщения о разработке системы AN/WSQ-11, которая должна обеспечить не только подавление устройств самонаведения, но и поражение противоторпедами на дистанции от 100 до 2000 м). Небольшая противоторпеда (калибр 152 мм, длина 2,7 м, масса 90 кг, дальность хода 2–3 км) оснащена паротурбинной энергоустановкой.

Испытания опытных образцов проводятся с 2004 года, а принятие на вооружение ожидается в 2012-м. Есть также сведения о разработке суперкавитирующей противоторпеды, способной развивать скорость до 200 узлов, аналогично российскому «Шквалу», но рассказать о ней практически нечего – все бережно укрыто завесой секретности.

Разработки других стран выглядят похоже. Французские и итальянские авианосцы оснащены системой ПТЗ SLAT совместной разработки. Основным элементом системы является буксируемая антенна, включающая 42 излучающих элемента и побортно устанавливаемые 12-трубные аппараты для стрельбы самоходными или дрейфующими средствами ГПД «Спартакус». Известно также о разработке активной системы, стреляющей противоторпедами.

Примечательно, что в череде сообщений о различных разработках пока не появлялось информации о чем-то, способном сбить с курса торпеду, идущую по кильватерному следу корабля.

На вооружении российского флота кнастоящему времени находятся противоторпедные комплексы «Удав-1М» и «Пакет-Э/НК». Первый из них предназначен для поражения или отведения торпед, атакующих корабль. Комплекс может стрелять снарядами двух типов. Снаряд-отводитель 111СО2 предназначен для отведения торпеды от цели.

Заградительно-глубинные снаряды 111СЗГ позволяют сформировать своего рода минное поле на пути атакующей торпеды. При этом вероятность поражения прямоидущей торпеды одним залпом составляет 90%, а самонаводящейся – около 76. Комплекс «Пакет» предназначен для уничтожения атакующих надводный корабль торпед противоторпедами. В открытых источниках говорится о том, что его применение снижает вероятность поражения корабля торпедой примерно в 3–3,5 раза, но кажется вероятным, что в боевых условиях эта цифра не проверялась, как, впрочем, и все остальные.