Как держать форму. Массаж. Здоровье. Уход за волосами

Фракционный состав нефти и нефтепродуктов. Перегонка нефти


При перегонке нефти, основанной на разнице температур кипения отдельных компонентов, получают фракции или дистил- латы.
Каждая из фракций может быть разогнана в более узких интервалах температур. Перегонка нефти производится при атмосферном давлении. Остаток после перегонки нефти - мазут - может быть подвергнут фракционированию под вакуумом.
В табл. 9.1 приведены основные фракции перегонки нефти при атмосферном давлении.
Бензиновая фракция используется как топливо, может служить сырьем для производства индивидуальных углеводородов.
Таблица 9.1. Фракции (дистилляты) нефти

Керосиновую фракцию применяют в качестве топлива для реактивных двигателей в виде осветленного керосина и как сырье для производства лаков и красок.
Соляровое масло и дизельные фракции служат дизельным топливом и сырьем для получения жидких парафинов путем депарафинизации.
Мазут находит применение как котельное топливо и в качестве сырья во вторичных процессах переработки. После вакуумной перегонки мазута получают газойлевые, масляные фракции и гудрон. Масляные фракции используют в качестве сырья для вторичной переработки нефти в целях получения смазочных масел, кокса и битума. Гудрон применяют при подготовке асфальтовых смесей и в производстве битума.
Физические и химические процессы перегонки включают два основных этапа: нагревание до высоких температур; разделение продуктов.
Основное оборудование для нагревания - печи для нагрева сырья и промежуточных продуктов, а также различные теплообменники.
Разделение продуктов нефтеперегонки проводят в ректификационных колоннах.
Трубчатые печи являются аппаратами, предназначенными для передачи теплоты, выделяемой при сжигании топлива, нагреваемому продукту. Имеется много разновидностей трубчатых печей, используемых на установках первичной переработки, каталитического крекинга, каталитического риформинга, гидроочистки и других процессов.
На рис. 9.2 и 9.3 приведены некоторые характерные типы печей, применяемых на установках нефтеперерабатывающих заводов.
На рис. 9.2 представлена типовая трубчатая печь шатрового типа, имеющая две топочные камеры, разделенные перевальными стенками. В топочных камерах сжигается топливо. По стенкам камеры размещены трубы в виде потолочных и подовых экранов. Здесь теплота сжигаемого топлива передается трубам за счет радиации от факела, образующегося при сжигании топлива. Между перевальными стенками расположена камера конвекции, в которой теплота передается продукту, находящемуся в трубах, непосредственным соприкосновением дымовых газов. Передача теплоты в камерах конвекции тем эффективнее, чем выше скорость дымовых газов в печи и чем больше поверхность труб конвекционного пучка. Сырье в печи сначала направляется в конвекционную камеру, а затем - в камеру радиации. Основная доля теплоты нагреваемому сырью или продукту передается в камере радиации (70 - 80 %), на долю конвекционной камеры приходится 20-25 %. В топочные камеры с помощью форсунок подают распыленное топ-

Рис. 9.2. Типовая двухкамерная трубчатая печь шатрового типа:
1- потолочный экран; 2- конвективный пучок труб; 3- трубная решетка конвективного пучка; 4- взрывное окно; 5- трубная подвеска; 6- каркас печи; 7- смотровой люк; 8- подвесная кладка; 9- туннель для форсунки;
10- подовый экран

ливо, а также необходимый для горения воздух. Топливо интенсивно перемешивается с воздухом, что обеспечивает его эффективное горение.
Температура на входе сырья в печь зависит от степени использования теплоты отходящих горячих продуктов из ректификационных колонн и составляет обычно 180 - 230 °С. Температура выхода сырья из печи зависит от фракционного состава сырья. При атмосферной перегонке нефти температура поддерживается на уровне 330-360 °С, а при вакуумной перегонке - 410 - 450 °С. Температура дымовых газов, покидающих печь и направляемых в дымовую трубу, зависит от температуры поступающего в печь сырья и превышает ее на 100-150 °С. В отдельных случаях отходящие газы направляют в теплообменник для использования их тепловой энергии.
Теплообменники выполняют различные функции и используют разные теплоносители. На долю теплообменников приходится до 40 % металла всего оборудования технологических установок.
На рис. 9.4 представлен теплообменник-испаритель. Теплообменники такого типа применяют для внесения тепла в нижнюю

а - двухкамерная коробчатого типа с излучающими стенками; б- двухкамерная коробчатого типа с верхним отводом газов сгора-
ния и с экранами двухстороннего облучения; в - с объемно-настильным сжиганием топлива


Рис. 9.4. Теплообменник с паровым пространством (испаритель):
1- штуцер для удаления трубного пучка; 2 - днише; 3 - люк-лаз; 4- корпус; 5- сливная пластина; б- «плавающая головка»; 7- трубный пучок; 8- распределительная камера

часть ректификационной колонны тех технологических установок, где не требуется подогрев до высоких температур.
Теплообменник-испаритель состоит из корпуса 4, в котором находится трубный пучок 7 с «плавающей головкой» 6. Внутри корпуса установлена сливная пластина 5. Трубный пучок одной стороной соединен с распределительной камерой, имеющей внутри сплошную горизонтальную перегородку. Камера имеет два штуцера для входа и выхода теплоносителя (пара или горячего нефтепродукта). На корпусе расположено три штуцера: один - для входа нагреваемого углеводородного продукта, второй - для выхода отпаренного нефтепродукта после сливной пластины и третий - для выхода паров и направления их в ректификационную колонну.
Уровень продукта в испарителе поддерживается сливной перегородкой 5 так, что при нормальной работе пучок 7 полностью покрыт отпариваемым нефтепродуктом. По трубному пучку направляют теплоноситель (насыщенный пар или горячий нефтепродукт). Отдав свое тепло нагреваемой среде, теплоноситель выходит через другой штуцер.
С начала 80-х годов XX в. на НПЗ началась массовая замена водяных холодильников конденсаторами воздушного охлаждения. Их применение позволило снизить затраты на эксплуатацию теплообменников и решить ряд экологических проблем. Аппараты воздушного охлаждения (АВО) (рис. 9.5) оборудованы плоскими трубными пучками, по которым проходит охлаждаемый поток
нефтепродуктов. Через этот пучок направляют поток воздуха, нагнетаемый вентилятором.
Ректификационные колонны представляют собой аппараты для разделения продуктов, имеющих различную температуру кипения. Чаще всего они оборудованы барботажными колпаками. Ректификационная колонна представляет собой как бы несколько самостоятельных установок, поставленных друг на друга, с отбором проб по высоте колонны. Процесс перегонки ведут в ректификационных колоннах под давлением (рис. 9.6).
Сырую нефть нагревают первоначально в теплообменнике до температуры 170- 180 °С и направляют в трубчатую печь, где нефть находится под некоторым избыточным давлением и нагревается до 300 - 350 °С. Нагретая парожидкостная смесь подается в нижнюю часть ректификационной колонны. Давление снижается, происходит испарение легких фракций и отделение их от жидкого остатка - мазута. Пары поднимаются в верхнюю часть колонны, контактируя с нисходящим потоком (флегмой). В результате этого наиболее легкие вещества концентрируются в верхней части колонны, наиболее тяжелые - в нижней части, а промежуточные продукты - между ними. По ходу движения продуктов идет их отбор.
Так как более легкие продукты (пар) должны проходить через более тяжелые продукты (жидкость) и находиться с ними в равновесии в любом месте колонны, то в каждом потоке присутству-

Рис. 9.5. Аппарат воздушного охлаждения с горизонтальным расположением секций


Рис. 9.6. Ректификационная колонна с боковой отпарной секцией:
I - печь для подогрева; 2- ректификационная колонна

ют очень летучие компоненты, так называемые головные погоны нефти.
Для удаления легких фракций из бокового погона иногда предусматривается отпарная колонна (секция). Боковой погон поступает в верхнюю часть отпарной секции, легкие фракции отгоняются паром в противотоке и вновь направляются в основную колонну.
Имеются три вида отходов фракционирования сырой нефти: вода, отводимая из верхнего сборника перед рециркуляцией, содержит сульфиды, хлориды, меркаптаны и фенол; слив из линий для отбора проб нефти. Эта вода содержит повышенную концентрацию нефти, иногда - в виде эмульсий; устойчивая нефтяная эмульсия, образующаяся в барометрических конденсаторах, используемых для создания вакуума.
На современных нефтеперерабатывающих заводах вместо барометрических конденсаторов применяют поверхностные конденсаторы, состоящие из ряда последовательно установленных кожухотрубных теплообменников, в которых охлаждаются конденсирующиеся вещества, а вода для охлаждения не имеет прямого контакта с конденсатором.

Муниципальное бюджетное общеобразовательное учреждение

"Средняя общеобразовательная школа № 3"

Реферат

на тему: "Нефть"

Выполнила: Рыбалкина Дарья

Ученица 10 Б класса

Проверила: Мухамадиева А.З.

Стерлитамак

Метаморфозы

Привычно называя нефть "чёрным золотом", мы не всегда задумываемся над тем, насколько верно это ставшее уже штампом определение. А между тем нефть и в самом деле важнейшее полезное ископаемое. Это настоящая кладовая природы, главная "стратегическая жидкость" наших дней, на протяжении всего ХХ в. нередко ссорившая и мирившая целые государства. Знакомство человека с ней состоялось несколько тысячелетий назад.

Упоминания о сочащейся из горных пород коричневой либо тёмно-бурой маслянистой жидкости со специфическим запахом встречаются в трудах древних историков и географов - Геродота, Плутарха, Страбона, Плиния Старшего.

Уже в те давние времена люди научились использовать "каменное масло" (лат. petroleum), как назвал нефть Агрикола. Наиболее широкое применение в древности нашли тяжёлые нефти - твёрдые либо вязкие вещества, которые сейчас называют асфальтами и битумами.

Асфальт издавна использовали при мощении дорог, для промазывания стенок водных резервуаров и днищ кораблей. Вавилоняне смешивали его с песком и волокнистыми материалами и приняли при сооружении зданий.

Жидкая нефть в Египте и Вавилоне употреблялась в качестве дезинфицирующей мази, а также как бальзамирующее вещество. Народы Ближнего Востока использовали её в светильниках вместо масла. А византийцы обстреливали вражеские корабли горшками, наполненными смесью нефти и серы, как зажигательными снарядами. Это грозное оружие вошло в историю под названием "греческий огонь".

Однако лишь в ХХ столетии нефть стала основным сырьём для производства топлива и множества органических соединений.

Под действием ряда бактерий происходит разложение органических веществ и выделяется водород, необходимый для превращения органического материала в нефть…

Академиком Н.Д. Зелинским, профессором В.А. Соколовым и рядом других исследователей большое значение в процессе нефтеобразования придавалось радиоактивным элементам. Действительно, доказано, что органические вещества под действием альфа-лучей распадаются быстрее и при этом образуются метан и ряд нефтяных углеводородов.

Академик Н.Д. Зелинский и его ученики установили, что большую роль в процессе нефтеобразования играют катализаторы.

В более поздних работах академик Зелинский доказал, что входящие в состав животных и растительных остатков пальмитовая, стеариновая и другие кислоты при воздействии хлористого алюминия в условиях сравнительно невысоких температур (150-400 0) образуют продукты, по химическому составу, физическим свойствам и внешнему виду похожие на нефть. Профессор А.В. Фрост установил, что вместо хлористого алюминия - катализатора, отсутствующего в природе, - его роль в процессе нефтеобразования играют обыкновенные глины, глинистые известняки и другие породы, содержащие глинистые минералы.

Перегонка нефти

При постепенном нагревании нефти можно последовательно выделять продукты, у которых температура кипения будет все выше и выше. Соединения, кипящие в определенных интервалах температур, объединяются в группы - фракции.

Перегонкой нефти занимались уже в Средние века в Закавказье, на Западной Украине, в Малой Азии. А пионерами тут были, по-видимому, древние арабы, которые использовали получаемые таким образом нефтепродукты в качестве осветительного "масла". Первую в мире заводскую нефтеперегонную установку соорудил в начале ХVIII в., когда появилась необходимость в горючем для бытовых керосиновых ламп. Первое время в них просто заливали нефть, Больше всего ценились так называемые легкие нефти, содержащие в основном углеводороды с низкой температурой кипения. Но их не хватало, и с каждым годом все острее становилась потребность в других нефтепродуктах с аналогичными свойствами.

В 1823 г. на Северном Кавказе, в районе города Моздока, была сооружена промышленная установка для перегонки нефти. В Англии подобный процесс начали осваивать лишь с 1848 г. по технологии, предложенной инженером Джеймсон Янгом. А в 1853 г. канадский химик и геолог Абрахам Геснер получил патент на производство из нефти топлива, которое он назвал керосином.

Первое подробное исследование перегонки нефти было произведено американским химиком Бенджамином Саллиманом, а первую в США промышленную установку построили в 1859 г. в городе Титусвилл (штат Пенсильвания).

Сначала в таких установках использовали перегонный куб, а в середине 80-х гг. ХIХ в. на смену ему пришли кубовые батареи, Если в куб после завершения цикла перегонки нужно было заливать новую порцию нефти, то батареи действовали непрерывно подача нефти в них шла постоянно.

Первый завод для очистки нефти был построен в России на Ухтинском нефтяном промысле. В период царствования Елизаветы Петровны. В Петербурге и в Москве тогда для освещения пользовались свечами, а в малых городах и в деревнях - лучинами. Но уже и тогда во многих церквях горели "неугасимые" лампады. В лампады наливалось гарное масло, которое было не чем иным, как смесью очищенной нефти с растительным маслом.

С появлением ламп увеличился спрос на керосин.

Шаг первый. Термический крекинг.

С появлением в конце 19 века двигателей внутреннего сгорания, топливом для которых служил бензин, начался настоящий нефтяной бум. Стремительно расширяющийся парк автомобилей, самолетов требовал все больше и больше горючего, представляющего собой низкокипящие легкие углеводороды нефти. Между тем бензин тогда получали путем простой перегонки сырой нефти (он так и назывался - прямогонный), и его не хватало, да и качества он был невысокого.

Начался поиск новых процессов превращения фракций прямой перегонки нефти в бензин. В конце концов исследования показали, что при нагревании нефти до 450 - 550 С под давлением в несколько атмосфер часть тяжелых углеводородов расщепляется, превращаясь в более легкие, как правило неопределенного строения, При этом ароматические и насыщенные циклические углеводороды, имеющие длинные боковые цепи, теряют их. В результате продуктом перегонки оказывается широкий спектр углеводородов, из которых основную часть составляет бензиновая фракция.

В 1913 году американец Уильям Бертон разработал технологию термического крекинга. Первая промышленная установка, основанная на этом методе, была создана компанией "Стэндард Ойл" в 1916 г. Так дешевые тяжелые фракции стали источником бензина, и эффективность использования "черного золота" возросла, Если в 1909 г. из 100 литров перерабатываемой нефти получали только 11 л бензина, то 1929 г. - уже 44 л.

Шаг второй. Каталитический крекинг.

Совершенствование двигателей внутреннего сгорания требовало бензина, который обладал бы надежной детонационной стойкостью - не взрывался при сжатии внутри камеры. Такой показатель характеризуется октановым числом: чем оно выше, тем лучше детонационная стойкость, при термическом же крекинге октановое число: чем оно выше, тем лучше детонационная стойкость, При термическом же крекинге октановое число получающегося бензина было невысоким, да и выход горючего оставлял желать лучшего.

Решение было найдено после открытия франко - американским инженером и автогонщиком Эженом Гудри (1892 - 1962) в 1936 г. процесса крекинга углеводородов на катализаторе, Таким катализатором оказался алюмосиликат - соединение, содержащее смесь оксидов алюминия и кремния, Используя его при переработке тяжелых газойлей и мазута, можно увеличить выход бензина и легких газойлей до 80%.

Несмотря на то что основу как термического, так и каталитического крекинга составляет разрушение сложных органических молекул до более простых, происходящие при этом реакции и получаемые продукты существенно различаются. При каталитическом крекинге большие углеводородные молекулы распадаются на части под действием не только температуры, но и катализатора, благодаря которому процесс идет при более низкой температуре (450 - 500 С). При этом, в отличие от термического крекинга, образуется больше изомерных разветвленных углеводородов, а значит, повышается октановое число бензина; алициклические углеводороды превращаются в ароматические (происходит так называемая ароматизация нефти). Качество, в том числе детонационная стойкость, бензина, полученного методом каталитического крекинга, значительно повышается.

Первые установки каталитического крекинга были созданы компаниями "Сан Ойл" и "Сокони - Вккум"

К концу 30 - х гг. в Соединенных Штатах, а после Второй мировой войны - в нашей стране и в Европе этот процесс стал одним из основных.

Сначала катализаторами крекинга служили обыкновенные природные глины, Затем они были заменены синтетическими аморфными алюмосиликатами, которые использовались вплоть до начала 70 -х гг. А позднее на смену им пришли катализаторы на основе цеолитов - кристаллических, не аморфных силикатов. Ныне известно более 100 модификаций таких промышленных катализаторов.

Шаг третий. Риформинг.

Потребность в высококачественным топливе для транспорта стимулировала разработку еще одного процесса "облагораживания" бензиновых фракций. Было установлено, что октановое число бензина тем выше, чем больше в нем содержится ароматических углеводородов.

В основе нового технологического процесса, ставшего мощным рывком вперед, лежит открытая и исследованная в 20 -х годов Н.Д. Зелинским реакция ароматизации насыщенных углеводородов в присутствии катализаторов на основе благородных металлов. Металлы платиновой группы совершают настоящие чудеса: в их присутствии насыщенные углеводороды при повышенных температурах превышаются в изоалкены и циклические алканы (нафтены), а последние - в соответствующие ароматические соединения.

Тема 9 «ОСНОВЫ ТЕХНОЛОГИИ ПЕРЕРАБОТКИ НЕФТИ И НЕФТЕПРОДУКТОВ»

1. Происхождение и состав нефти. Добыча и подготовка нефти к переработке.

3. Основы технологии производства и переработки полимерных материалов.

4. Основы технологии производства резинотехнических изделий.

Происхождение и состав нефти. Добыча и подготовка нефти к переработке

Из всех известных видов топлива наибольшее значение имеет органическое топливо, сжиганием которого получают тепловую энергию, а переработкой ‑ сырье для химической промышленности.

В настоящее время наиболее широко применяются продукты переработки нефти (нефтепродукты). Их производство осуществляется и в нашей стране, поэтому подробно рассмотрим технологии переработки нефти.

Нефть является жидким горючим ископаемым. Она залегает обычно на глубине 1,2 ‑2 км и более в пористых или трещиноватых горных породах (песках, песчаниках, известняках). Нефть представляет собой маслянистую жидкость от светло-коричневого до темно-бурого цвета со специфическим запахом, плотностью 0,65‑1,05 г/см 3 . По составу нефть представляет собой сложную смесь углеводородов, главным образом парафиновых и нафтеновых, в меньшей степени ‑ ароматических. Ее элементный состав (массовая доля, %): углерод (С) ‑ 82‑87, водород (Н) ‑ 11‑14, сера (S) ‑ ОД‑5,5.

В зависимости от получаемых из нефти продуктов существует три варианта ее переработки:

топливный , применяемый для получения моторного и котельного топлива;

топливно-масляный , которым вырабатывают топливо и смазочные масла;

нефтехимический (комплексный), продуктами которого являются не только топливо и масла, но и сырье для химической промышленности (олефины, ароматические и предельные углеводороды и др.).

Жидкое топливо, полученное из нефти, в зависимости от использования делят на:

карбюраторное (авиационные и автомобильные бензины) ‑ для двигателей внутреннего сгорания;

реактивное (керосин) ‑ для реактивных и газотурбинных двигателей;



Дизельное (газойль, соляровый дистиллят) ‑ для дизельных двигателей.

котельное (мазут) ‑ для топок паровых котлов, генераторных установок, металлургических печей. В общем случае переработка нефти на нефтепродукты включает ее добычу, подготовку и процессы первичной и вторичной переработки.

Добыча нефти осуществляется посредством бурения скважин.

Подготовка извлеченной из недр нефти заключается в удалении из нее примесей (попутного газа, пластовой воды с минеральными солями, механических включений) и стабилизации по составу. Эти операции проводят как непосредственно на нефтяных промыслах, так и на нефтеперерабатывающих заводах.

Первичная переработка нефти , осуществляемая физическими методами (главным образом прямой перегонкой), состоит в разделении ее на отдельные фракции (дистилляты), каждая из которых является смесью углеводородов.

Вторичная нефтепереработка представляет собой разнообразные процессы переработки нефтепродуктов, полученных в результате первичной переработки. Эти процессы сопровождаются деструктивными превращениями содержащихся в нефтепродуктах углеводородов и являются по своей сути химическими процессами.

Прямая перегонка нефти. Крекинг нефтепродуктов

Процесс прямой перегонки основан на явлениях испарения и конденсации смеси веществ с различными температурами кипения.

Кипение смеси начинается при температуре, равной средней температуры кипения составных частей. При этом в парообразную фазу переходят преимущественно легкие низкокипящие компоненты (имеющие меньшую плотность и кипящие при более низких температурах), а в жидкой фазе остаются высококипящие (имеющие большую плотность и кипящие при более высоких температурах). Если образовавшуюся парообразную фазу отвести и охладить, из нее конденсируется жидкая. В нее перейдут главным образом высококипящие (тяжелые) компоненты, а в парообразной фазе останутся легкие.

Таким образом, из исходной смеси получают три фракции. Одна из них, оставшаяся жидкой при кипении, содержит преимущественно высококипящие компоненты; вторая, сконденсировавшаяся, имеет состав, близкий к составу исходной смеси; третья, парообразная, содержит в основном низкокипящие компоненты.

За счет однократных (перегонка) либо многократных (ректификация) процессов кипения и конденсации полученных фракций можно добиться достаточно полного разделения низко- и высококипящих компонентов.

Технологический процесс прямой перегонки нефти состоит из четырех основных операций: нагрева смеси, испарения, конденсации и охлаждения полученных фракций.

В зависимости от глубины переработки нефти установки перегонки подразделяются на два вида:

Одноступенчатые, работающие при атмосферном давлении (AT);

Двухступенчатые (атмосферно-вакуумные) (АВТ), в которых первая ступень, как правило, работает при атмосферном давлении, а другая ‑ при давлении ниже атмосферного (5‑8 кПа)-

При двухступенчатой перегонке нефть предварительно обессоливают и обезвоживают, затем нагревают в трубчатой печи первой ступени до температуры 300 ‑ 350 ° С (на 25 ‑ 30 ° С выше температуры кипения). Разделение нефти на фракции производят в ректификационной колонне, которая представляет собой цилиндрический аппарат высотой 25 ‑ 55 м и диаметром 5 ‑ 7 м. Предварительно нагретую нефть подают в нижнюю часть колонны- Здесь нефть закипает и разделяется на две фазы: парообразную и жидкую. Жидкие продукты стекают вниз, а пары поднимаются вверх по колонне. В верхнюю часть колонны подается орошающая жидкость (флегма). Поднимающиеся снизу пары многократно контактируют по высоте колонны со стекающей жидкой фазой. Встречаясь с поднимающимися горячими парами, орошающая колонну жидкость нагревается и частично испаряется. Пары, отдавая ей теплоту, конденсируются, и конденсат стекает в нижнюю часть колонны. По мере подъема паров их температура уменьшается, при этом стекающая вниз флегма все более обогащается тяжелыми фракциями, поднимающиеся пары ‑ легкими. Внизу колонны собирается жидкость, содержащая наиболее тяжелые фракции (мазут). Мазут сливается из нижней части колонны и охлаждается в теплообменниках, нагревая при этом подаваемую в колонну нефть.

Для поддержания процесса кипения в ректификационную колонну подается перегретый пар, который уносит с собой остатки легких фракций, не испарившихся ранее. Самая легкая бензиновая фракция при температуре 180 ‑ 200 ° С отводится из колонны в виде паров в конденсатор и отделяется от воды в сепараторе. Часть бензиновой фракции возвращается в колонну для орошения.

С промежуточных зон колонны отводятся так называемые средние фракции: керосиновая, кипящая при температуре 200 ‑ 300 °С, и газойлевая (температура кипения 300 ‑ 350 °С). Иногда отводят также другие фракции, например лигроин (160‑200 °С), керосиногазойлевую фракцию (270-320 °С).

Полученный после первоначальной перегонки мазут (его выход ‑ около 55 % исходной нефти) из первой ректификационной колонны перекачивается в трубчатую печь второй ступени, где нагревается до 400 ‑ 420 °С. Из печи мазут поступает во вторую ректификационную колонну, работающую при давлении ниже атмосферного (остаточное давление ‑ 5 ‑ 8 кПа). Из Нижней части этой колонны выводится гудрон, а по высоте отбираются масляные дистилляты.

Производительность двухступенчатых установок составляет 8 ‑ 9 тыс. т нефти в сутки. Выход бензина при прямой перегонке зависит от фракционного состава нефти и колеблется от 3 до 1 5 % .

Основы технологии крекинга нефтепродуктов. Сравнительно малый выход бензина (до 15 %)при прямой перегонке вызывает необходимость переработки других, менее ценных фракций, получаемых при прямой перегонке нефти и содержащих тяжелые молекулы углеводородов. Такая переработка называется крекингом.

Крекинг (англ, to creak ‑ раскалывать, расщеплять) – расщепление длинных молекул тяжелых углеводородов входящих в состав, например мазута, на более короткие легких молекулы легких низкокипящих продуктов.

Главными факторами, влияющими на протекание процесса крекинга, являются температура и продолжительность выдержки: чем выше температура и больше продолжительность выдержки, тем полнее идет процесс и больше выход продуктов крекинга. Большое влияние на ход и направление процесса крекинга оказывают катализаторы. При соответствующем подборе катализатора можно проводить реакцию при меньших температурах, обеспечивая получение необходимых продуктов и увеличение их выхода.

Исходя из вышеизложенного, различают две разновидности крекинга: термический и каталитический.

Термический крекинг ведут при повышенных температурах под высоким давлением (температура 450‑500 °С и давление 2‑7 МПа). Основной целью термического крекинга является получение светлого топлива из мазута или гудрона.

Термический крекинг осуществляется в трубчатых печах, в которых происходит расщепление тяжелых углеводородов.

Далее смесь продуктов крекинга и непрореагировавшего сырья проходит через испаритель, в котором отделяется креаток, т.е. вещества, не поддающиеся крекингу. Легкие продукты поступают в ректификационную колонну для разделения и получения легких товарных фракций. При термическом крекинге, например мазута, примерный состав продуктов следующий: крекинг-бензина ‑ 30‑35 %, крекинг-газов ‑ 10‑15, крекинг-остатка ‑ 50‑55 %. Крекинг-бензины применяются как компоненты автомобильных бензинов, крекинг-газы используются как топливо или сырье для синтеза органических соединений; крекинг-остаток, представляющий собой смесь смолистых, асфальтеноновых веществ, применяется как котельное топливо или сырье дяля производства битумов.

Термический крекинг может быть двух видов: низкотемпературный (висбрекинг) и высокотемпературный (пиролиз).

Низкотемпературный к р е к и н г осуществляется при температуре 440‑500 °С и давлении 1,9‑3 МПа, при этом длительность процесса составляет 90‑200 с. Он используется в основном для получения котельного топлива из мазута и гудрона.

Высокотемпературный крекинг протекает при температуре 530‑600 °С и давлении 0,12‑0,6 МПа и длится 0,5‑3 с. Его основное назначение ‑ получение бензина и этилена. В качестве побочных продуктов образуются пропилен, ароматические углеводороды и их производные.

Каталитический крекинг ‑ переработка нефтепродуктов в присутствии катализатора. В последнее время этот метод находит все большее применение для получения светлых нефтепродуктов, в том числе бензинов. К его достоинствам относят:

Высокую скорость процесса, в 500‑4000 раз превышающую скорость термического крекинга, и как следствие, ‑ более мягкие условия процесса и меньшие энергозатраты;

Увеличение выхода товарных продуктов, в том числе бензинов, характеризующихся высоким октановым числом и большей стабильностью при храпении;

Возможность ведения процесса в нужном направлении и получение продуктов определенного состава;

большой выход газообразных углеводородов, являющихся сырьем для органического синтеза;

использование сырья с высоким содержанием серы вследствие гидрирования сернистых соединений и выделения их в газовую фазу с последующей утилизацией.

В качестве катализаторов на установках каталитического крекинга используются синтетические алюмосиликаты.

Продукты каталитического крекинга из реактора поступают в ректификационную колонну, где разделяются на газы, бензин, легкий и тяжелый каталитические газойли. Непрореагировавшее сырье из нижней части колонны возвращается в реактор.

Примерный выход продуктов при каталитическом крекинге следующий: крекинг-бензин ‑ 35 ‑ 40 % ; крекинг-газ ‑ 15 % легкий крекинг-газойль ‑ 35 ‑ 40 % , тяжелый крекинг-газойль ‑ 5‑8 % .

Бензин каталитического крекинга характеризуется хорошими эксплуатационными свойствами. Газы каталитического крекинга выгодно отличаются высоким содержанием изобутана и бутилена, используемых в производстве синтетических каучуков.

Разновидностью каталитического крекинга является риформинг, ход реакций в котором направлен главным образом на образование ароматических углеводородов и изомеров. В зависимости от катализатора различают следующие разновидности риформинга:

Платформинг (катализатор на основе платины);

Рениформинг (катализатор на основе рения).

На практике наибольшее распространение получил платформинг, представляющий собой каталитический процесс переработки бензино-лигроиновых фракций прямой перегонки, осуществляемый в присутствии водорода. Если платформинг проводится при 480 ‑ 510 °С и давлении от 15- 10 5 до 3 10 6 Па, то в результате образуются бензол, толуол и ксилол. При давлении 5 10 6 Па получаются бензины, отличающиеся наивысшей стабильностью и малым содержанием серы.

Наряду с жидкими продуктами при всех способах каталитическогориформинга образуются газы, содержащие водород, метан, пропан и бутан. Газы риформинга используют как сырье для органического и неорганического синтеза: метанола (этилового спирта), аммиака и других соединений. Выход газов каталитического риформинга составляет 5‑15 % массы сырья. Завершающей стадией нефтепереработки является очистка нефтепродуктов , которая осуществляется химическими и физико-химическими способами. К химическим методам очистки нефтепродуктов относятся очистка серной кислотой и с помощью водорода (гидроочистка,) к физико-химическим ‑ адсорбционные и абсорбционные способы очистки.

Сернокислотная очистка заключается в том, что продукт смешивают с небольшим количеством 90‑93 % Н 2 SО 4 при обычной температуре. В результате химических реакций получаются очищенный продукт и отходы, которые можно использовать для производства серной кислоты.

Гидроочистка заключается во взаимодействии водорода с очищаемым продуктом в присутствии алюмокобальтмолибденовых катализаторов при температуре 380‑420 °С и давлении от 35 10 5 до 4 10 6 Па и удалении сероводорода, аммиака и воды.

При адсорбционном методе очистки нефтепродукты обрабатывают отбеливающими глинами или силикагелем. В этом случае адсорбируются сернистые, кислородосодержащие соединения, смолы и легкоминерализующиеся углеводороды.

Абсорбционные методы очистки заключаются в избирательном (селективном) растворении вредных компонентов нефтепродуктов. В качестве селективных растворителей как правило используются жидкая двуокись серы, фурфурол, нитробензол, дихлорэтиловый эфир и др.

После очистки нефтепродукты не всегда остаются стабильными. В этих случаях к ним добавляются в очень небольших количествах антиокислители (ингибиторы), резко замедляющие реакции окисления смолистых веществ, входящих в состав нефтепродуктов. В качестве ингибиторов применяют фенолы, ароматические амины и другие соединения. Переработка нефти характеризуется высоким уровнем затрат на сырье (50-75 % себестоимости продуктов нефтепереработки)электрическую и тепловую энергию, а также на основные фонды. Уровень затрат в нефтепереработке существенно зависят от состава нефти, предопределяющего глубину ее переработки, технологической схемы переработки, степени подготовки сырья к переработке и т.д. Так, при переработке высокосернистой нефти дополнительные капитальные и эксплуатационные затраты на ее перекачку и подготовку примерно в 1,5 выше, чем при переработке малосернистой нефти. В свою очередь высокопарафинистая вязкая нефть требует дополнительных затрат по ее депарафинизации, перекачке и хранению.

Фракции нефти определяются лабораторным путем, поскольку продукт содержит органические вещества, обладающие разным давлением насыщенных паров. О температуре кипения, как таковой, говорить нельзя, но вычисляется начальная точка и предел. Определенный интервальный промежуток кипения нефти +28-540°С. По нему определяется фракционный состав нефти. Он регламентирован стандартом ГОСТ 2177-99. За начало кипения принята температура, при которой появляется конденсат. Завершением кипения считается момент прекращения испарения паров. Лабораторные испытания проходят на перегонных аппаратах, где фиксируются устойчивые показания и выводится кривая температур кипения методом перегонки. Разделение нефти и нефтепродуктов на фракции до +200°С производится при атмосферном давлении. Остальные в более высоких температурах отбираются под вакуумом, чтобы не произошло разложения.

Методы определения фракционного состава нефтепродуктов

Фракционирование нефти необходимо, чтобы выбрать направления переработки сырьевой базы, узнать точное содержание базовых масел при перегонке нефти. На основании этого классифицируются все свойства фракций.

  • Метод A — использование автоматических аппаратов для определения фракционного состава нефти и отдельных псевдокомпонентов. Колбы используются из термостойкого стекла, дно и стенки которых одинаковой толщины.
  • Метод B – применение четырехгнездного, или шестигнездного аппарата. Колбы с круглым дном вместимостью 250 см3. Метод применяется только для разгонки темных нефтепродуктов.

Виды и свойства нефтяных фракций

Фракционный состав нефти определяется согласно российскому стандарту перегонки или ректификации, который соответствует разгонке Эглера. В основе разделение сложного состава углеводных газов на промежуточные элементы. На основе кипения высоких температур классифицируется 3 вида переработки нефти.

  • Простая перегонка - во время испарения пар конденсирует.
  • Дефлегмация - только высококипящие пары выделяют конденсат и возвращаются обратно в общую смесь в виде флегмы. Низкокипящие пары полностью испаряются.
  • Ректификация - процесс соединения двух предыдущих видов обработки, когда достигается максимальная концентрация и конденсирование низкокипящих паров.

В процессе определения фракционного состава нефти и нефтепродуктов, а также их свойств, происходит разделение на следующие виды фракций:

  • легкие (к этому типу относят бензиновую и петролейную) – выходят при температуре до 140°С при атмосферном давлении;
  • средние (сюда относятся: керосиновая, дизельная, лигроиновая) при атмосферном давлении в интервале температур 140-350°С;
  • при вакуумной переработке и температурах более 350°С получаются фракции, которые называют тяжелые (Вакуумный газойль, гудрон).

Фракции также делят на светлые (сюда относят легкие и средние) и темные или мазуты (это тяжелые фракции).

Фракции нефти таблица

А теперь подробнее об основных видах нефтяных фракций:

Петролейная фракция

Эфир или масло Шервуда - это бесцветная жидкость, которая состоит из пентана и гексана. Сразу испаряется при невысоких температурах. Является растворителем для создания экстрактов, топливо для зажигалок, горелок. Получается при температурах до + 100°С.

Бензиновая фракция

Бензиновая фракция нефти построена на сложной схеме углеродных соединений, которые выкипают при температуре + 140°С. Основное применение — используется для получения топлива к двигателям внутреннего сгорания и в качестве сырья в нефтехимии. В основе бензиновой фракции парафиновые вещества: метилциклопентан, циклогексан, метилциклогексан. Бензин содержит жидкие алканы в составе- природные, попутные, газообразные. Они подразделяются также на разветвленные и неразветвленные. Состав зависит от качественного соотношения компонентов сырья. Это говорит о том, что хороший бензин получается далеко не их всех сортов нефти. Ценность вида в том, что в процессе распада на соединения, образуются ароматические углеводороды, доля которых в сырьевой массе катастрофически мала.

Лигроиновая фракция

Подвид включает в себя тяжелые элементы. Насыщенность ароматическими углеводородами больше, чем у других соединений. Является компонентом для производства товарных бензинов, осветительных керосинов, реактивного топлива, органическим растворителем. Выступает как наполнитель бытовой техники. Химический состав: полициклические, циклические и ненасыщенные углеводороды. Отличается наличие серы, процент от общей массы которой зависит от месторождения, уровня залегания и качества сырьевого продукта.

Керосиновая фракция

Керосиновая фракция нефти — в первую очередь это топливо для реактивных двигателей. Используется в производстве лакокрасочной продукции и добавляется как растворитель в краску для стен и полов. Выступает сырьем в процессах синтеза веществ. Соединения углеводов с повышенным содержанием парафина. Наблюдается низкое содержание ароматических углеводов. Керосиновая фракция выделяется при атмосферной перегонке в пределах + 220°С.

Дизельная фракция

Подвид находит применение в изготовлении дизельного топлива для быстроходных видов транспорта, а также используется как вторичное сырье. В процессе обработки выделяется керосин, используемый для в лакокрасочной промышленности и приборостроении, изготовлении химии для автотранспорта. Преобладание смесей углеводородов нафтена. Для получения топлива, которые не застывает при -60°С, состав проходит карбамидную депарафинизацию. Это перемешивание всех компонентов в течение 1 часа и последующая фильтрация через воронку Бюхнера.

Мазут

Качественный состав смеси: масла смол, органические соединения с микроэлементами. Углеводородные компоненты: асфальтен, карбен, карбоид. При вакуумной перегонке из мазута производится гудрон, парафин, технические масла. Основное применение - жидкое топливо для котельных за характеристики вязкости. Топочный мазут подразделяется на 3 основных вида: флотский, средне-котельный и тяжелый. Последний применяется на ТЭЦ, средний вид - в котельных предприятий. Флотский - неотъемлемая часть работы судоходного транспорта.

Гудрон

Качество компонентов в процентном соотношении определяется так:

  • Парафин, нафтен - 95%.
  • Асфальтен - 3%.
  • Смолы - 2%.

Вакуумный гудрон получается в результате завершения всех процессов разделения и перегонки. Температура выкипания + 500°С. На выходе получается вязкая консистенция черного цвета. Жидкостный состав используется в дорожном строительстве. Из него производят битумы для кровельных материалов. Гудрон необходим для создания кокса - продукта стратегического назначения. Компонент используется в изготовлении котельного топлива. В нем сконцентрирован самый большой процент тяжелых металлов, содержащихся в нефти.

Сырьевые показатели нефтепродуктов зависят от глубины залегания и вида месторождения. Это учитывается при формировании фракций нефти и достижения процентного соотношения компонентов.

Сырая нефть представляет собой сложную смесь углеводородов и других соединений. В таком виде она мало используется. Сначала ее перерабатывают в другие продукты, которые имеют практическое применение. Поэтому сырую нефть транспортируют танкерами или с помощью трубопроводов к нефтеперерабатывающим заводам.

Переработка нефти включает целый ряд физических и химических процессов: фракционную перегонку, крекинг, риформинг и очистку от серы.

Фракционная перегонка

Сырую нефть разделяют на множество составных частей, подвергая ее простой, фракционной и вакуумной перегонке. Характер этих процессов, а также число и состав получаемых фракций нефти зависят от состава сырой нефти и от требований, предъявляемых к различным ее фракциям.

Из сырой нефти прежде всего удаляют растворенные в ней примеси газов, подвергая ее простой перегонке. Затем нефть подвергают первичной перегонке, в результате чего ее разделяют на газовую, легкую и среднюю фракции и мазут. Дальнейшая фракционная перегонка легкой и средней фракций, а также вакуумная перегонка мазута приводит к образованию большого числа фракций. В табл. 18.6 указаны диапазоны температур кипения и состав различных фракций нефти, а на рис. 18.11 изображена схема устройства первичной дистилляционной (ректификационной) колонны для перегонки нефти. Перейдем теперь к описанию свойств отдельных фракций нефти.

Таблица 18.6. Типичные фракции перегонки нефти

Рис. 18.11. Первичная перегонка сырой нефти.

Лаборатория экстракции и перегонки в Индийском нефтехимическом институте.

Газовая фракция. Газы, получаемые при переработке нефти, представляют собой простейшие неразветвленные алканы: этан, пропан и бутаны. Эта фракция имеет промышленное название нефтезаводской (нефтяной) газ. Ее удаляют из сырой нефти до того, как подвергнуть ее первичной перегонке, или же выделяют из бензиновой фракции после первичной перегонки. Нефтезаводской газ используют в качестве газообразного горючего или же подвергают его сжижению под давлением, чтобы получить сжиженный нефтяной газ. Последний поступает в продажу в качестве жидкого топлива или используется как сырье для получения этилена на крекинг-установках.

Бензиновая фракция. Эта фракция используется для получения различных сортов моторного топлива. Она представляет собой смесь различных углеводородов, в том числе неразветвленных и разветвленных алканов. Особенности горения неразветвленных алканов не идеально соответствуют двигателям внутреннего сгорания. Поэтому бензиновую фракцию нередко подвергают термическому риформингу (см. ниже), чтобы превратить неразветвленные молекулы в разветвленные. Перед употреблением эту фракцию обычно смешивают с разветвленными алканами, циклоалканами и ароматическими соединениями, получаемыми из других фракций путем каталитического крекинга либо риформинга.

Качество бензина как моторного топлива определяется его октановым числом. Оно указывает процентное объемное содержание 2,2,4-триметилпентана (изооктана) в смеси 2,2,4-триметилпентана и гептана (алкан с неразветвленной цепью), которая обладает такими же детонационными характеристиками горения, как и испытуемый бензин.

Плохое моторное топливо имеет нулевое октановое число, а хорошее топливо-октановое число 100. Октановое число бензиновой фракции, получаемой из сырой нефти, обычно не превышает 60. Характеристики горения бензина улучшаются при добавлении в него антидетонаторной присадки, в качестве которой используется разд. 15.2). Тетраэтилсвинец представляет собой бесцветную жидкость, которую получают при нагревании хлороэтана со сплавом натрия и свинца:

При горении бензина, содержащего эту присадку, образуются частицы свинца и оксида свинца(II). Они замедляют определенные стадии горения бензинового топлива и тем самым препятствуют его детонации. Вместе с тетраэтилсвинцом в бензин добавляют еще 1,2-дибромоэтан. Он реагирует со свинцом и образуя бромид Поскольку бромид представляет собой летучее соединение, он удаляется из автомобильного двигателя с выхлопными газами (см. разд. 15.2).

Лигроин (нафта). Эту фракцию перегонки нефти получают в промежутке между бензиновой и керосиновой фракциями. Она состоит преимущественно из алканов (табл. 18.7).

Лигроин получают также при фракционной перегонке легкой масляной фракции, получаемой из каменноугольной смолы (см. табл. 18.5). Лигроин из каменноугольной смолы имеет высокое содержание ароматических углеводородов.

Большую часть лигроина, получаемого при перегонке нефти, подвергают риформингу для превращения в бензин. Однако значительная его часть используется как сырье для получения других химических веществ (см. ниже).

Керосин. Керосиновая фракция перегонки нефти состоит из алифатических алканов, нафталинов (см. выше) и ароматических углеводородов. Часть ее подвергается

Таблица 18.7. Углеводородный состав лигроиновой фракции типичной ближневосточной нефти

очистке для использования в качестве источника насыщенных углеводородов-парафинов, а другая часть подвергается крекингу с целью превращения в бензин. Однако основная часть керосина используется в качестве горючего для реактивных самолетов.

Газойль. Эта фракция переработки нефти известна под названием дизельного топлива. Часть ее подвергают крекингу для получения нефтезаводского газа и бензина. Однако главным образом газойль используют в качестве горючего для дизельных двигателей. В дизельном двигателе зажигание топлива производится в результате повышения давления. Поэтому они обходятся без свечей зажигания. Газойль используется также как топливо для промышленных печей.

Мазут. Эта фракция остается после удаления из нефти всех остальных фракций. Большая его часть используется в качестве жидкого топлива для нагревания котлов и получения пара на промышленных предприятиях, электростанциях и в корабельных двигателях. Однако некоторую часть мазута подвергают вакуумной перегонке для получения смазочных масел и парафинового воска. Смазочные масла подвергают дальнейшей очистке путем экстракции растворителя. Темный вязкий материал, остающийся после вакуумной перегонки мазута, называется «битум», или «асфальт». Он используется для изготовления дорожных покрытий.

Мы рассказали о том, как фракционная и вакуумная перегонка наряду с экстракцией растворителями позволяет разделить сырую нефть на различные практически важные фракции. Все эти процессы являются физическими. Но для переработки нефти используются еще и химические процессы. Эти процессы можно подразделить на два типа: крекинг и риформинг.

Крекинг

В этом процессе крупные молекулы высококипящих фракций сырой нефти расщепляются на меньшие молекулы, из которых состоят низкокипящие фракции. Крекинг необходим потому, что потребности в низкокипяших фракциях нефти - особенно в бензине - часто опережают возможности их получения путем фракционной перегонки сырой нефти.

В результате крекинга кроме бензина получают также алкены, необходимые как сырье для химической промышленности. Крекинг в свою очередь подразделяется на три важнейших типа: гидрокрекинг, каталитический крекинг и термический крекинг.

Гидрокрекинг. Эта разновидность крекинга позволяет превращать высококипящие фракции нефти (воски и тяжелые масла) в низкокипящие фракции. Процесс гидрокрекинга заключается в том, что подвергаемую крекингу фракцию нагревают под очень высоким давлением в атмосфере водорода. Это приводит к разрыву крупных молекул и присоединению водорода к их фрагментам. В результате образуются насыщенные молекулы небольших размеров. Гидрокрекинг используется для получения газойля и бензинов из более тяжелых фракций.

Каталитический крекинг. Этот метод приводит к образованию смеси насыщенных и ненасыщенных продуктов. Каталитический крекинг проводится при сравнительно

невысоких температурах, а в качестве катализатора используется смесь кремнезема и глинозема. Таким путем получают высококачественный бензин и ненасыщенные углеводороды из тяжелых фракций нефти.

Термический крекинг. Крупные молекулы углеводородов, содержащихся в тяжелых фракциях нефти, могут быть расщеплены на меньшие молекулы путем нагревания этих фракций до температур, превышающих их температуру кипения. Как и при каталитическом крекинге, в этом случае получают смесь насыщенных и ненасыщенных продуктов. Например,

Термический крекинг имеет особенно важное значение для получения ненасыщенных углеводородов, например этилена и пропена. Для термического крекинга используются паровые крекинг-установки. В этих установках углеводородное сырье сначала нагревают в печи до 800°С, а затем разбавляют его паром. Это увеличивает выход алкенов. После того как крупные молекулы исходных углеводородов расщепятся на более мелкие молекулы, горячие газы охлаждают приблизительно до 400°С водой, которая превращается в сжатый пар. Затем охлажденные газы поступают в ректификационную (фракционную) колонну, где они охлаждаются до 40°С. Конденсация более крупных молекул приводит к образованию бензина и газойля. Несконденсировавшиеся газы сжимают в компрессоре, который приводится в действие сжатым паром, полученным на стадии охлаждения газов. Окончательное разделение продуктов производится в колоннах фракционной перегонки.

Таблица 18.8. Выход продуктов крекинга с паром из различного углеводородного сырья (масс. %)

В европейских странах главным сырьем для получения ненасыщенных углеводородов с помощью каталитического крекинга является лигроин. В Соединенных Штатах главным сырьем для этой цели служит этан. Его легко получают на нефтеперерабатывающих заводах как один из компонентов сжиженного нефтяного газа или же из природного газа, а также из нефтяных скважин как один из компонентов природных сопутствующих газов. В качестве сырья для крекинга с паром используются также пропан, бутан и газойль. Продукты крекинга этана и лигроина указаны в табл. 18.8.

Реакции крекинга протекают по радикальному механизму (см. разд. 18.1).

Риформинг

В отличие от процессов крекинга, которые заключаются в расщеплении более крупных молекул на менее крупные, процессы риформинга приводят к изменению структуры молекул или к их объединению в более крупные молекулы. Риформинг используется в переработке сырой нефти для превращения низкокачественных бензиновых фракций в высококачественные фракции. Кроме того, он используется с целью получения сырья для нефтехимической промышленности. Процессы риформинга могут быть подразделены на три типа: изомеризация, алкилирование, а также циклизация и ароматизация.

Изомеризация. В этом процессе молекулы одного изомера подвергаются перегруппировке с образованием другого изомера. Процесс изомеризации имеет очень важное значение для повышения качества бензиновой фракции, получаемой после первичной перегонки сырой нефти. Мы уже указывали, что эта фракция содержит слишком много неразветвленных алканов. Их можно превратить в разветвленные алканы, нагревая данную фракцию до под давлением 20-50 атм. Этот процесс носит название термического риформинга.

Для изомеризации неразветвленных алканов может также применяться каталитический риформинг. Например, бутан можно изомеризовать, превращая его в -метил-пропан, с помощью катализатора из хлорида алюминия при температуре 100°С или выше:

Эта реакция имеет ионный механизм, который осуществляется с участием карбкатионов (см. разд. 17.3).

Алкилирование. В этом процессе алканы и алкены, которые образовались в результате крекинга, воссоединяются с образованием высокосортных бензинов. Такие алканы и алкены обычно имеют от двух до четырех атомов углерода. Процесс проводится при низкой температуре с использованием сильнокислотного катализатора, например серной кислоты:

Эта реакция протекает по ионному механизму с участием карбкатиона

Циклизация и ароматизация. При пропускании бензиновой и лигроиновой фракций, полученных в результате первичной перегонки сырой нефти, над поверхностью таких катализаторов, как платина или оксид на подложке из оксида алюминия, при температуре 500°С и под давлением 10-20 атм происходит циклизация с последующей ароматизацией гексана и других алканов с более длинными неразветвленными цепями:

Отщепление водорода от гексана, а затем от циклогексана называется дегидрированием. Риформинг этого типа в сущности представляет собой один из процессов крекинга. Его

называют платформингом, каталитическим риформингом или просто риформингом. В некоторых случаях в реакционную систему вводят водород, чтобы предотвратить полное разложение алкана до углерода и поддержать активность катализатора. В этом случае процесс называется гидроформингом.

Очистка от серы

Сырая нефть содержит сероводород и другие соединения, содержащие серу. Содержание серы в нефти зависит от месторождения. Нефть, которую получают из континентального шельфа Северного моря, имеет низкое содержание серы. При перегонке сырой нефти органические соединения, содержащие серу, расщепляются, и в результате образуется дополнительное количество сероводорода. Сероводород попадает в нефтезаводской газ или во фракцию сжиженного нефтяного газа (см. выше). Поскольку сероводород обладает свойствами слабой кислоты, его можно удалить, обрабатывая нефтепродукты каким-либо слабым основанием. Из полученного таким образом сероводорода можно извлекать серу, сжигая сероводород в воздухе и пропуская продукты сгорания над поверхностью катализатора из оксида алюминия при температуре 400 С. Суммарная реакция этого процесса описывается уравнением

Приблизительно 75% всей элементной серы, используемой в настоящее время промышленностью несоциалистических стран, извлекают из сырой нефти и природного газа (см. разд. 15.4).