Как держать форму. Массаж. Здоровье. Уход за волосами

Перегонка четыреххлористого углерода установка. Приготовление безводных чистых органических растворителей

Поскольку четыреххлористый углерод (ЧХУ) в соответствии с Монреальским протоколом является запрещенным озоноразрушающим веществом, но неизбежно образуется в качестве побочного продукта в производстве хлорметанов, выбор наиболее эффективного метода переработки ЧХУ является актуальной задачей.
Различные превращения ЧХУ особенно интенсивно исследовались в последнее время, имеется большое количество экспериментальных данных. Ниже будет сделана оценка различных вариантов превращения ЧХУ на основании собственных исследований и данных других авторов.
В работах рассмотрена проблема переработки ЧХУ в экологически безопасные продукты, однако в них не полно освещены возможные варианты переработки, а также, на наш взгляд, недостаточно объективно отражены преимущества и недостатки отдельных методов утилизации ЧХУ.
Можно отметить и некоторые противоречия в статьях. Так, темой статей является переработка ЧХУ в экологически безопасные продукты, в тексте и выводах в качестве перспективных методов рекомендуется превращение ЧХУ в хлорметаны, а во введении хлорметаны называются основными химическими загрязнителями окружающей среды. В действительности хлорметаны не включены в Стокгольмскую конвенцию по стойким органическим загрязнителям, а по токсичности, объему выпуска хлорметаны не являются основными загрязнителями даже среди других хлорорганических соединений .
В статьях говорится о высокой персистентности хлорметанов. В то же время известно, что все хлорметаны, кроме хлористого метила, являются неустойчивыми продуктами и для сохранения своих свойств требуют стабилизации . Разложение хлорметанов происходит в кипятильниках ректификационных колонн, в испарителе для подачи ЧХУ в реактор. Согласно энциклопедии хлороформ без стабилизатора вряд ли продержится без изменения своих свойств в течение суток, если находится в контакте с атмосферой.
Процессы переработки ЧХУ можно классифицировать по степени полезности получаемых продуктов переработки. Это не означает, что в той же последовательности будут располагаться и полезность самих процессов утилизации ЧХУ, так как многое будет зависеть от стоимости переработки и последующего выделения полученных продуктов.
Определенное влияние на выбор метода оказывает и наличие в перерабатываемых отходах кроме ЧХУ большого количества других продуктов (например, в кубовых ректификации производства хлорметанов), когда выделение ЧХУ из этих отходов может потребовать значительных затрат. Такая же ситуация складывается при обезвреживании ЧХУ, содержащегося в небольшом количестве в газовых выбросах. В этом случае неселективное полное сжигание с получением СО2 и HCl с практически нулевой полезностью из-за малой рентабельности их выделения может оказаться наиболее приемлемым решением. Поэтому в каждом конкретном случае выбор может быть сделан только после технико-экономического сравнения.

Сжигание ЧХУ
При сжигании ЧХУ с использованием в качестве окислителя воздуха требуется одновременная подача углеводородного топлива для подвода тепла и связывания хлора в хлористый водород. Как вариант при небольшом количестве хлористого водорода его можно превращать в хлорид натрия путем впрыскивания в газы сжигания раствора гидрооксида натрия . В противном случае хлористый водород выделяют из газов сжигания в виде соляной кислоты.
Утилизация самой соляной кислоты может быть проблемой из-за превышения предложения над спросом. Выделение хлористого водорода из соляной кислоты методом стриппинга приводит к тому, что он становится дороже хлора. Кроме этого, хлористый водород имеет ограниченное применение в процессах оксихлорирования и гидрохлорирования. Превращение хлористого водорода в хлор с помощью электролиза соляной кислоты или окисления кислородом (процесс Дикона) является довольно дорогой и сложной с точки зрения технологии операцией.
Авторами работ в качестве метода полного окисления ЧХУ предпочтение отдается каталитическому окислению по сравнению с обычным термическим сжиганием. Согласно по сравнению со сжиганием процессы каталитического окисления характеризуются большей глубиной деструкции хлорорганических отходов и не сопровождаются образованием диоксинов.
Эти утверждения не соответствуют действительности и могут привести к превратному представлению об эффективности сравниваемых методов. В статье не приводится никаких данных в подтверждение более высоких степеней превращения при каталитическом окислении. В приводимых в пользу такого утверждения ссылках, например , степени превращения действительно высокие 98-99%, но это не тот уровень, который достигается при термическом сжигании. Даже если указывается степень превращения 100% или 100,0%, это означает только, что точность этих данных составляет 0,1%.
В соответствии с американским Законом о сохранении и восстановлении ресурсов для основных органических опасных загрязнений эффективность деструктивного удаления должна составлять как минимум 99,9999%. В Европе также рекомендуют придерживаться этой минимальной величины степени разложения непригодных пестицидов и полихлорбифенилов в установках сжигания.
Разработан ряд требований к процессу сжигания, названный BAT - Best Available Technique (наилучший приемлемый способ). Одним из требований наравне с температурой  1200оС и временем пребывания  2 с является турбулентность реакционного потока, позволяющая, в основном, устранять проблему проскока сжигаемого вещества в пристеночном слое и обеспечивать режим идеального вытеснения. По-видимому, в трубчатом реакторе, заполненном катализатором, труднее устранить проскок сжигаемого вещества в пристеночном слое. Кроме этого имеются трудности в равномерном распределении реакционного потока по трубкам. В то же время дальнейшие успехи в устранении "пристеночного эффекта" позволили при сжигании в жидкостном ракетном двигателе достигнуть степени превращения 99,999999% .
Другим спорным утверждением авторов является отсутствие ПХДД и ПХДФ в продуктах каталитического окисления. Никаких цифр в подтверждение этого не приводится. В работе даны только две ссылки, подтверждающие факт отсутствия диоксинов при каталитическом окислении. Однако одна из ссылок , по-видимому, из-за какой-то ошибки не имеет к каталитическому окислению никакого отношения, так как посвящена биотрансформации органических кислот. В другой работе рассматривается каталитическое окисление, но никаких сведений об отсутствии при этом диоксинов не сообщается. Наоборот приводятся данные об образовании другого стойкого органического загрязнителя - полихлорбифенила при каталитическом окислении дихлорбензола, что может косвенно говорить о возможности образования и диоксинов.
В работе справедливо отмечается, что температурный диапазон каталитических процессов окисления хлорорганических отходов благоприятен для образования ПХДД и ПХДФ, однако отсутствие ПХДД и ПХДФ может быть обусловлено каталитической деструкцией источников их образования. В то же время известно, что на катализаторах с успехом идут и процессы синтеза высокомолекулярных соединений даже из соединений С1.
В европейских странах действуют экологические требования по сжиганию отходов, по которым предельная величина выбросов в атмосферу по диоксинам составляет 0,1 нг ТЭ/нм3.
Представленные выше экологические показатели процесса термоокислительного (огневого) обезвреживания жидких хлорорганических отходов имеются в . Наконец, следует отметить, что в "Реестре существующих мощностей для уничтожения полихлорбифенилов" наиболее широко применяемым и проверенным методом уничтожения ПХБ является высокотемпературное сжигание. Каталитическое окисление для этой цели не применяется.
По нашему мнению, каталитическое окисление, несмотря на использование в качестве катализатора драгоценных металлов на носителе, имеет преимущество при уничтожении остаточных количеств токсичных веществ в газовых выбросах, так как благодаря низкой температуре процесса требуется значительно меньший расход топлива на нагрев реакционного газа, чем при термическом сжигании. Такая же ситуация складывается, когда оптимальные условия для сжигания трудно создать, например, в каталитических дожигателях в автомобильных двигателях. Кроме того, каталитическое окисление хлорорганических отходов под давлением ("катоксид-процесс") было использовано фирмой "Goodrich" для непосредственной подачи газов сжигания, содержащих хлористый водород, в реактор окислительного хлорирования этилена для получения дихлорэтана.
Сообщается о том, что при сочетании термического и каталитического окисления газообразных отходов достигается более высокая эффективность, чем при чисто каталитическом окислении . Квалифицированная переработка хлорорганических отходов рассмотрена также в . По нашему мнению, для сжигания ЧХУ в виде концентрированного продукта целесообразнее использовать обычное термическое сжигание.
В заключение этого раздела целесообразно рассмотреть еще один аспект окисления ЧХУ. Согласно ЧХУ является негорючим веществом, поэтому его сжигание может быть осуществлено только в присутствии дополнительного топлива. Это справедливо при использовании воздуха в качестве окислителя. В кислороде же ЧХУ способен сгорать с незначительным тепловым эффектом, теплотворная способность составляет 242 ккал/кг . Согласно другому справочнику теплота сгорания жидкости равна 156,2 кДж/моль (37,3 ккал/моль), а теплота сгорания пара равна 365,5 кДж/моль (87,3 ккал/моль).
Окисление кислородом может быть одним из способов переработки ЧХУ, в котором теряется углеродная составляющая, но регенерируется хлор, потраченный на получение ЧХУ. Такой процесс имеет преимущество перед обычным сжиганием ввиду получения концентрированных продуктов.
CCl4 + O2 → CO2 + 2Cl2
Процесс окислительного дехлорирования ЧХУ позволяет получать также углекислый газ, а при необходимости и фосген.
2CCl4 + O2 → 2COCl2 + 2Cl2

Гидролиз ЧХУ

Еще одним интересным, на наш взгляд, процессом переработки ЧХУ в углекислый газ и хлористый водород является гидролиз.
CCl4 + 2Н2О → CO2 + 4НCl
Публикаций по этому направлению имеется мало. Взаимодействие ОН-групп с хлорметанами в газовой фазе обсуждается в статье . Каталитический гидролиз ЧХУ до HCl и СО2 на окиси магния при температурах более 400оС изучен в . Константы скорости гомогенного гидролиза ЧХУ в жидкой фазе получены в работе .
Процесс хорошо идет, по нашим данным, при относительно низких температурах 150-200оС, использует самый доступный реагент и не должен сопровождаться образованием диоксинов и фуранов. Необходим только устойчивый к соляной кислоте реактор, например, покрытый внутри фторопластом. Возможно, такой дешевый и экологически чистый метод переработки может применяться для уничтожения и других отходов.

Взаимодействие ЧХУ с метанолом
Близким к гидролизу и фактически протекающим через эту стадию является процесс парофазного взаимодействия ЧХУ с метанолом с получением хлористого метила в присутствии катализатора - хлористый цинк на активированном угле. Относительно недавно этот процесс был впервые запатентован фирмой Shin-Etsu Chemical (Япония) . Процесс протекает с высокими близкими к 100% конверсиями ЧХУ и метанола.
CCl4 + 4СН3ОН → 4CH3Cl + СО2 + 2Н2О
Авторы считают, что взаимодействие ЧХУ с метанолом протекает в 2 этапа: сначала идет гидролиз ЧХУ до углекислого газа и хлористого водорода (см. выше), а затем хлористый водород реагирует с метанолом с образованием хлористого метила и воды.
СН3ОН + НCl → CН3Cl + Н2О
При этом для инициирования реакции достаточно небольшого количества воды, которое присутствует в атмосфере. Считается, что лимитирует скорость суммарного процесса первая стадия.
При близком к стехиометрическому соотношении ЧХУ к метанолу (1:3,64) реакция стабильно протекала во время эксперимента, длившегося 100 часов, с конверсией ЧХУ 97,0% и метанола 99,2%. Селективность образования хлористого метила была близка к 100%, так как были обнаружены лишь следы диметилового эфира. Температура в слое катализатора составляла 200 о С .
Затем было предложено разделить процесс на две реакционные зоны: в первой идет гидролиз ЧХУ, а во второй - взаимодействие хлористого водорода с вводимым в эту зону метанолом . Наконец той же фирмой был запатентован способ получения хлорметанов без образования ЧХУ , который включает следующие стадии:
. получение хлорметанов хлорированием метана;
. взаимодействие хлористого водорода, выделившегося на первой стадии, с метанолом с образованием хлористого метила и разбавленной соляной кислоты;
. гидролиз ЧХУ разбавленной соляной кислотой в присутствии катализатора - хлориды или оксиды металлов на носителе.
Недостатком гетерогенно каталитического процесса взаимодействия ЧХУ с метанолом является относительно невысокий срок службы катализатора из-за его обуглероживания. При этом высокотемпературная регенерация для выжигания углистых отложений нежелательна из-за улетучивания хлорида цинка, а при использовании активированного угля в качестве носителя вообще невозможна.
В заключение этого раздела можно упомянуть, что нами предпринимались попытки уйти от твердого катализатора в процессе переработки ЧХУ с метанолом. В отсутствие катализатора при мольном соотношении метанол:ЧХУ = 4:1 и с ростом температуры от 130 до 190оС конверсия ЧХУ увеличивалась с 15 до 65%. Для изготовления реактора требуются материалы, устойчивые в этих условиях.
Проведение каталитического жидкофазного процесса при относительно низких температурах 100-130оС и мольном соотношении метанол:ЧХУ = 4:1 без давления позволило достичь конверсии ЧХУ только 8%, при этом можно получать практически 100% превращение метанола и 100% селективность по хлористому метилу. Для повышения конверсии ЧХУ требуется увеличение температуры и давления, что в лабораторных условиях осуществить не удалось.
Запатентован способ алкоголиза ЧХУ, включающий одновременную подачу ЧХУ и ³ 1 спирта ROH (R = алкил С 1 - С 10) в каталитическую систему, представляющую собой водный раствор металлгалогенидов, в особенности хлоридов I Б, II Б, V I Б и V III групп . При жидкофазном взаимодействии метанола и ЧХУ (в соотношении 4:1) в лабораторном реакторе с магнитной мешалкой в присутствии каталитического раствора хлорида цинка при температуре 180оС и давлении 3,8 бар конверсии ЧХУ и метанола составляли 77%.

Хлорирование с помощью ЧХУ
ЧХУ является безопасным хлорирующим агентом, например, при получении хлоридов металлов из их оксидов. В процессе такой реакции ЧХУ превращается в углекислый газ.
2Ме2О3 + 3CCl4 → 4МеCl3 + 3СО2
Проводились работы по получению хлоридов железа с применением в качестве хлорирующего агента ЧХУ, процесс идет при температуре около 700оС. Хлорированием с помощью ЧХУ в промышленности получают из оксидов элементов 3-5 групп Периодической системы их хлориды.

Взаимодействие ЧХУ с метаном

Наиболее простым решением проблемы переработки ЧХУ было бы взаимодействие ЧХУ с метаном в реакторе хлорирования метана с получением менее хлорированных хлорметанов, так как в этом случае потребовалось бы практически только организация рецикла не прореагировавшего ЧХУ, а последующее выделение и разделение продуктов реакции может быть осуществлено на основной системе производства.
Ранее при исследовании процесса окислительного хлорирования метана, как в лаборатории, так и на опытной установке, было замечено, что при подаче в реактор реакционного газа от процесса прямого хлорирования метана, содержащего все хлорметаны, включая ЧХУ, количество последнего после реактора оксихлорирования уменьшается, хотя должно было с возрастанием количества всех остальных хлорметанов увеличиваться .
В связи с этим представляло определенный интерес провести термодинамический анализ реакций взаимодействия метана с ЧХУ и другими хлорметанами. Оказалось, что наиболее термодинамически вероятным является взаимодействие ЧХУ с метаном. При этом равновесная степень превращения ЧХУ в условиях избытка метана, который реализуется в промышленном хлораторе, близка к 100% даже при самой высокой температуре (самой низкой константе равновесия).
Однако реальное протекание термодинамически вероятного процесса зависит от кинетических факторов. Кроме этого в системе ЧХУ с метаном могут протекать и другие реакции: например, пиролиз ЧХУ до гексахлорэтана и перхлорэтилена, образование других хлорпроизводных С 2 за счет рекомбинации радикалов.
Экспериментальное исследование реакции взаимодействия ЧХУ с метаном проводили в проточном реакторе при температурах 450-525оС и атмосферном давлении, при времени взаимодействия 4,9 с. Обработка экспериментальных данных дала следующее уравнение скорости обменной реакции метана с ЧХУ :
r = 1014,94 exp(-49150/RT).[ССl 4 ]0,5.[СН 4 ], моль/см 3 .с.
Полученные данные позволили оценить вклад обменного взаимодействия ЧХУ с метаном в процессе хлорирования метана, рассчитать необходимый рецикл ЧХУ для полного его превращения. В таблице 1 приведены конверсии ЧХУ в зависимости от температуры реакции и концентрации ЧХУ при примерно одинаковой концентрации метана, которая реализуется в промышленном хлораторе.
Конверсия ЧХУ закономерно падает с уменьшением температуры процесса. Приемлемая конверсия ЧХУ наблюдается только при температурах 500-525 о С, что близко к температуре объемного хлорирования метана на действующих производствах хлорметанов 480-520 о С.
Суммарные превращения ЧХУ и метана могут быть охарактеризованы следующим суммарным уравнением и материальным балансом:
CCl 4 + CH 4 → CH 3 Cl + CH 2 Cl 2 + CHCl 3 + 1,1-C 2 H 2 Cl 2 + C2Cl 4 + HCl
100,0 95,6 78,3 14,9 15,2 7,7 35,9 87,2 моль
Во второй строчке даны количества прореагировавшего метана и полученных продуктов в молях на 100 молей прореагировавшего ЧХУ. Селективность превращения ЧХУ в хлорметаны равна 71,3%.
Поскольку выделение товарного ЧХУ из кубовых ректификации производства хлорметанов представляло собой определенную проблему, а со сбытом кубовых ректификации периодически возникали трудности, переработка ЧХУ в реакторе хлорирования метана вызывала интерес еще до запрета на выпуск ЧХУ в связи с его озоноразрушающей способностью.
Опытно-промышленные испытания переработки ЧХУ в реакторе хлорирования метана были осуществлены на Чебоксарском п.о. "Химпром". Полученные результаты, в основном, подтвердили лабораторные данные. Селективность превращения ЧХУ в хлорметаны была выше, чем в лабораторных условиях.
То, что селективность процесса взаимодействия ЧХУ в промышленном реакторе оказалась выше, чем в лабораторном можно объяснить тем, что при хлорировании метана в лабораторном реакторе происходит перегрев наружных стенок, обогреваемых кожухом с электроспиралью. Так, при температуре в реакционной зоне 500оС, температура стенок лабораторного хлоратора составляла 550 о С.
В промышленном реакторе происходит аккумулирование тепла центральным кирпичным столбиком и футеровкой, а наружные стенки хлоратора, наоборот, охлаждаются.
Опытно-промышленные испытания возврата ЧХУ в реактор хлорирования метана проводились ранее и на Волгоградском п.о. "Химпром". ЧХУ в промышленный хлоратор подавали без выделения в составе кубовых ректификации вместе со всеми примесями хлоруглеводородов С 2 . В результате за месяц было переработано около 100 м3 кубовых ректификации. Однако обработка полученных данных вызвала затруднения из-за большого количества компонентов в малой концентрации и недостаточной точности анализов.
Для подавления образования побочных хлоруглеводородов этиленового ряда при взаимодействии ЧХУ с метаном предлагается вводить в реакционную смесь хлор при соотношении хлора к ЧХУ  0,5 .
Получение хлорметанов и других продуктов взаимодействием ЧХУ с метаном при температурах 400-650 о С в полом реакторе описано в патенте . Приводится пример, где конверсия ЧХУ составляла в % мол.: в хлороформ - 10,75, метиленхлорид - 2,04, хлористый метил - 9,25, винилиденхлорид - 8,3 и трихлорэтилен - 1,28.
Затем той же фирмой "Stauffer" был запатентован способ получения хлороформа взаимодействием ЧХУ с углеводородами С2-С3 и хлоруглеводородами С1-С3 . Согласно приводимым примерам из ЧХУ и метиленхлорида при температуре 450оС в полом реакторе получается только хлороформ, а при температуре 580оС - хлороформ и перхлорэтилен. Из ЧХУ и хлористого метила при температуре 490оС образовывались только метиленхлорид и хлороформ в равном количестве, а при температуре 575оС появлялся еще и трихлоэтилен.
Предлагался также процесс получения хлористого метила и метиленхлорида взаимодействием метана с хлором и ЧХУ в кипящем слое контакта при температуре 350-450 о С . Описан процесс хлорирования метана до хлороформа в кипящем слое контакта с введением в реакционную зону ЧХУ для обеспечения теплосъема . В этом случае одновременно происходит реакция ЧХУ с метаном.
Обменная реакция между ЧХУ и парафином приводит к образованию хлороформа и хлорпарафина .
При разработке процесса окислительного хлорирования метана было найдено, что окислительное дехлорирование ЧХУ в присутствии метана протекает более эффективно, чем взаимодействие метана и ЧХУ в отсутствии кислорода и катализатора.
Полученные данные говорят о том, что процесс окислительного дехлорирования ЧХУ в присутствии метана и катализатора на основе хлоридов меди протекает при более низкой температуре, чем взаимодействие ЧХУ с метаном в отсутствии кислорода, с получением только хлорметанов без образования побочных хлоруглеводородов. Так, конверсия ЧХУ при температурах 400, 425 и 450оС составляла в среднем соответственно 25, 34 и 51%.
Дополнительным преимуществом окислительной переработки ЧХУ является отсутствие зауглероживания катализатора. Однако необходимость катализатора и кислорода снижает преимущества данного метода.
Запатентован способ получения хлорметанов окислительным хлорированием метана без получения ЧХУ в конечных продуктах за счет полного его рецикла в зону реакции. В одном из подпунктов формулы изобретения этой заявки утверждается, что можно получить в качестве конечного продукта один хлороформ, возвращая в реакционную зону метан и все хлорметаны кроме хлороформа.

Переработка ЧХУ с водородом
Гидродехлорирование ЧХУ с помощью водорода (так же, как и метана) в отличие от окислительных превращений с помощью кислорода позволяет с пользой использовать и углеродную составляющую ЧХУ. Катализаторы, кинетика, механизм и другие аспекты реакций гидродехлорирования рассмотрены в обзорах .
Одной из основных проблем процесса гидродехлорирования ЧХУ является селективность, нередко реакция идет до образования метана, а выход хлороформа, как наиболее желательного продукта, недостаточно высок. Другой проблемой является довольно быстрая дезактивация катализатора, в основном, за счет обуглероживания при разложении ЧХУ и продуктов реакции. При этом добиться селективного получения хлороформа удается более легко, чем стабильности катализатора. В последнее время появилось довольно много работ, где достигается высокая селективность по хлороформу, данных по стабильности катализатора гораздо меньше.
В патенте в качестве катализаторов гидрогенолиза ЧХУ и хлороформа предлагают Ru, Rh, Pd, Os, Ir, Pt, Cu, Ag или Au. На катализаторе, содержащем 0,5% платины на окиси алюминия, при температурах 70-180 о С из ЧХУ получено 97,7-84,8% хлороформа и 2,3-15,2% метана; при более высоких температурах образуется также метиленхлорид.
В работах гидродехлорирование ЧХУ проводилось на платиновых катализаторах. Выбор MgO в качестве носителя был сделан на основании более высокой селективности по хлороформу и длительности работы катализатора по сравнению с другими носителями: Al2O3, TiO2, ZrO2, SiO2, алюмосиликат и цеолит NaY. Показано , что для стабильной работы катализатора Pt/MgO с конверсией ЧХУ более 90% необходимо поддерживать температуру реакции 140оС, соотношение Н2/ЧХУ более 9 и объемную скорость 9000 л/кг.ч. Обнаружено влияние природы исходных соединений платины на активность полученного катализатора - 1% Pt/Al2O3. На катализаторах, приготовленных из Pt(NH 3) 4 Cl 2 , Pt(NH3)2(NO3)2 и Pt(NH3)4(NO3)2, конверсия ЧХУ близка к 100%, а селективность по хлороформу - к 80%.
Модифицирование катализатора - 0,25% Pt/Al2O3 окисью лантана позволило при 120оС, объемной скорости 3000 ч-1и мольном соотношении Н2:ССl4 = 10 получить выход хлороформа 88% при селективности 92% .
По данным прокаливание носителя - окиси алюминия при температурах 800 - 900оС снижает льюисовскую кислотность, благодаря чему повышается стабильность и селективность катализатора. На окиси алюминия с удельной поверхностью 80 м2/г, содержащей 0,5% Pt, конверсия ЧХУ 92,7% при селективности по хлороформу 83% удерживается в течение 118 часов.
В отличие от данных в патенте при получении метиленхлорида и хлороформа гидродехлорированием ЧХУ рекомендуют обрабатывать носитель соляной кислотой или соляной кислотой и хлором, а платину промотировать небольшими количествами металлов, например, оловом. Это позволяет снизить образование побочных продуктов и повысить стабильность катализатора.
При гидродехлорировании ЧХУ на катализаторах, содержащих 0,5-5% Pd на сибуните (угле) или TiO2, при температуре 150-200оС конверсия ЧХУ составляла 100% . В качестве побочных продуктов образовывались нехлорированные углеводороды С2-С5. Стабильно катализаторы работали более 4-х часов, после этого проводилась регенерация продувкой аргоном при нагревании.
Сообщается , что при использовании биметаллической композиции платины и иридия, промотированной небольшими количествами третьих металлов, таких как олово, титан, германий, рений и др., образование побочных продуктов уменьшается, а продолжительность работы катализатора увеличивается.
При исследовании некаталитического взаимодействия ЧХУ с водородом методом импульсного сжатия в свободнопоршневой установке при характерных временах процесса 10-3 с было найдено две области протекания реакции . При температуре 1150К (степень превращения до 20%) процесс протекает относительно медленно. Регулируя состав исходной смеси и температуру процесса, можно получить 16%-ный выход хлороформа с селективностью, близкой к 100%. В определенной области температур в условиях самовоспламенения смеси реакцию можно направить на преимущественное образование перхлорэтилена.
Большие успехи в деле разработки активного, стабильного и селективного катализатора газофазного гидродехлорирования ЧХУ водородом были достигнуты фирмой "Sud Chemie MT" . Катализатором являются благородные металлы V группы, нанесенные на микросферическую окись алюминия (состав катализатора фирмой не раскрывается). Процесс проводится в псевдоожиженном слое катализатора при температурах 100-150оС, давлении 2-4 ата, времени контакта 0,5-2 сек и соотношении водород:ЧХУ в реакционной зоне 6-8:1 (мол.).
Конверсия ЧХУ в этих условиях достигает 90%, селективность по хлороформу - 80-85%. Основным побочным продуктом является метан, хлористый метил и метиленхлорид образуются в незначительных количествах.
В работах исследовано гидродехлорирование ЧХУ на палладиевых катализаторах в жидкой фазе. При температурах 20-80оС на ацетате палладия с добавкой уксусной кислоты и при использовании в качестве растворителей парафинов С7 -С12, метилэтилкетона, диметилформамида, диоксана и бензилового спирта единственным продуктом реакции оказался метан . Проведение реакции в изопропиловом и трет-бутиловом спиртах в качестве растворителей позволило получить в качестве основных продуктов хлороформ и хлористый метил, образование метана колебалось от следовых количеств до 5%.
Отмечается, что побочная реакция гидрохлорирования спиртов, используемых в качестве растворителей, протекает с конверсией 7-12% от поданного количества и образованием изомеров хлорпроизводных, что создает проблему их утилизации и затруднит выделение товарных продуктов. Поэтому реализация этого метода пока не планируется.
По-видимому, для исключения побочных продуктов в патенте реакцию гидродехлорирования ЧХУ до хлороформа предлагают проводить в галоидированном алифатическом растворителе, в частности в хлороформе. Катализатором служит суспензия платины на носителе. Конверсия ЧХУ составляет 98,1% при селективности образования хлороформа 99,3%.
Такой же процесс получения хлороформа в присутствии Pt и Pd -катализаторов на носителе с использованием  1 растворителя (пентан, гексан, гептан, бензол и др.) описан в патенте . Утверждается, что процесс проводится непрерывно или периодически в промышленном масштабе.
Наиболее часто применяемыми катализаторами для гидродехлорирования ЧХУ до хлороформа и других хлорметанов являются палладий, платина, родий и рутений на носителе. В такой катализатор распыляют и суспензируют в жидком ЧХУ и обрабатывают его водородом при давлении 8000 кПа и температуре ниже 250оС. Сообщается, что способ пригоден для получения хлороформа в промышленных масштабах.
При исследовании гидрохлорирования ЧХУ в жидкофазном барботажном реакторе было показано, что наиболее активным и селективным катализатором является палладий, нанесенный на активированный уголь. Преимущество активированного угля в качестве носителя обусловлено более равномерным распределением металла на его поверхности по сравнению с такими неорганическими носителями как окись алюминия и силикагель. По активности металлов катализаторы можно расположить в ряд Pd/C  Pt/C  Rh/C  Ru/C  Ni/C. Основным побочным продуктом является гексахлорэтан.
В дальнейшем было обнаружено, что скорость процесса лимитируется химической реакцией на поверхности .

Превращения ЧХУ в ПХЭ

В жестких температурных условиях происходит образование перхлорэтилена из ЧХУ. Процесс получения перхлорэтилена из ЧХУ идет с поглощением тепла и выделением хлора, чем принципиально отличается от производств перхлоруглеродов (перхлорэтилена и ЧХУ) из метана или отходов производства эпихлоргидрина, где процессы идут при подаче хлора и с выделением тепла.
При 600оС Н = 45,2 ккал/моль, а равновесная степень превращения при атмосферном давлении составляет 11,7% 5. Следует отметить, что данные различных авторов о величине теплового эффекта реакции значительно отличаются, что вызывало сомнения в возможности полной переработки ЧХУ в перхлорэтилен в производствах перхлоруглеродов из-за недостатка тепла для этой реакции. Однако полный рецикл ЧХУ в настоящее время осуществлен в производстве перхлоруглеродов на Стерлитамакском ЗАО "Каустик".
Термическое превращение ЧХУ значительно увеличивается в присутствии акцепторов хлора. Очевидно, что акцептор, связывая хлор, сдвигает равновесие реакции:
2CCl 4 → C 2 Cl 4 + 2Cl 2
в сторону образования перхлорэтилена.
Превращение ЧХУ в перхлорэтилен в присутствии акцептора хлора выполняет еще одну очень важную функцию - превращает эндотермический процесс в экзотермический и исключает практически нереальный подвод тепла через стенку при таких температурах в присутствии хлора.
Введение органических акцепторов хлора (метана, этилена, 1,2-дихлорэтана) в процессе термического дехлорирования ЧХУ позволило повысить выход ПХЭ до 50% масс. , однако при этом симбатно возрастало и количество побочных продуктов (гексахлорэтан, гексахлорбутадиен, смолы). Поэтому в работе 53 для реализации процесса в промышленности рекомендуется добавлять акцептор (метан или этилен) в количестве 0,3 от стехиометрии.
В патенте 54 предлагается проводить процесс некаталитического термического превращения ЧХУ в перхлорэтилен при температуре 500-700 о С с использованием в качестве акцептора хлора водорода, благодаря чему образуется мало побочных хлоруглеводородов.
Превращение ЧХУ в ПХЭ при наличии сбыта последнего имеет очень важные преимущества перед другими методами переработки ЧХУ от производства хлорметанов:
. для переработки не требуется выделять ЧХУ из кубовых ректификации;
. в ПХЭ превращаются и хлоруглеводороды С2, содержащиеся в кубовых.
Процесс превращения ЧХУ в перхлорэтилен в присутствии СН4 сопровождается образованием большого количества побочных продуктов, часть из которых (гексахлорэтан, гексахлорбутадиен) перерабатываются в процессе, другие (гексахлорбензол) направляются на захоронение. При этом метан, связывая хлор, превращается в ЧХУ, который также надо перерабатывать, т.е. мощность по переработке ЧХУ увеличивается.
При использовании водорода в качестве акцептора хлора количество побочных продуктов уменьшается, увеличивается только выход хлористого водорода. Процесс проводится в псевдоожиженном слое силикагеля. Температура процесса 550-600 о С, соотношение ЧХУ:Н2 = 1:0,8-1,3 (мол.), время контакта 10-20 с. Конверсия ЧХУ достигает 50% 55. Недостатком этого процесса является необходимость создания отдельной большой технологической схемы, а также наличие трудноутилизируемого отхода - гексахлорбензола.
Минимизировать образование тяжелых побочных продуктов можно и при получении перхлорэтилена хлорированием углеводородов и их хлорпроизводных в присутствии ЧХУ и водорода .

Другие методы переработки ЧХУ
Некоторые способы восстановления ЧХУ предложены в . Например, можно получить хлороформ медленным восстановлением ССl4 железом с соляной кислотой, цинковой пылью с 50% раствором NH4Cl при 50-60 о С, этанолом при 200 о С.
При электрохимическом восстановлении ЧХУ получаются, в основном, хлороформ и метиленхлорид. В присутствии хлористого алюминия ЧХУ алкилирует ароматические соединения. В свободно радикальных реакциях и реакциях теломеризации ЧХУ служит переносчиком галогена.

Выводы

1. Так как ЧХУ неизбежно образуется при хлорировании метана и хлорметанов, разработка методов его эффективной переработки является актуальной задачей.
2. При уничтожении ЧХУ высокотемпературным сжиганием достигаются существующие экологические требования по эффективности деструктивного удаления 99,9999% и содержанию диоксинов в выбросах не более 0,1 нг ТЭ/нм3. Аналогичных показателей при каталитическом окислении ЧХУ не выявлено.
При каталитическом окислении ЧХУ кислородом возможно получения хлора и/или фосгена.
3. Интересным методом переработки ЧХУ с точки зрения дешевого реагента и низкой температуры процесса является гидролиз до углекислого газа и хлористого водорода.
4. Совмещение гидролиза ЧХУ и взаимодействия образовавшегося HCl с метанолом дает также достаточно интересный процесс переработки ЧХУ с метанолом с получением хлористого метила и СО 2 .
5. Гидродехлорирование водородом позволяет утилизировать ЧХУ с получением нужных менее хлорированных хлорметанов. Основным недостатком этого процесса, так же как и взаимодействия с метанолом является постепенное падение активности катализатора за счет зауглероживания.
6. Наиболее простым решением проблемы переработки ЧХУ является взаимодействие ЧХУ с метаном при его возврате в реактор хлорирования метана. Однако кроме хлорметанов при этом образуются примеси хлоруглеводородов С 2 . Избежать образования примесей можно при взаимодействии ЧХУ с метаном в присутствии катализатора и кислорода при более низкой температуре, однако для этого потребуется создание отдельной стадии и наличие кислорода.
7. Пиролиз ЧХУ в присутствии метана, водорода или других акцепторов хлора позволяет получать перхлорэтилен. Процесс осложняется образованием побочных высокомолекулярных продуктов.
8. ЧХУ является безопасным хлорирующим агентом, например, при получении хлоридов металлов из их оксидов.
9. Имеются ряд других методов переработки ЧХУ, например, электрохимическим восстановлением или с помощью реагентов - восстановителей. Можно использовать ЧХУ и в качестве алкилируюшего агента.

Библиография
1. Занавескин Л.Н., Аверьянов В.А.//Экология и пром. России. 1999, июль, с. 12-17.
2. Занавескин Л.Н., Аверьянов В.А.//Хим. пром., 2002, № 9, с. 4-21.
3. Промышленные хлорорганические продукты. Справочник под ред. Л.А.Ошина. М.: Химия, 1978, 656 с.
4. Трегер Ю.А., Карташов Л.М., Кришталь Н.Ф. Основные хлорорганические растворители. М.: Химия, 1984, 224 с.
5. Mc Ketta J.J., Cunningham W.//Encyclopedia. Chem. Process, 1979.
6. Бернадинер М.Н.// Хим. пром. сегодня. 2004, № 7, с. 40-43.
7. Занавескин Л.Н., Конорев О.А., Аверьянов В.А.//Хим. пром., 2002, №2, с. 1-17.
8. Parvesse I.//Hydrocarbon Proc., 2000, V. 79, N 8, P. 85-92.
9. Платэ Н.А., Колбановский Ю.А.//Химия в интересах устойчивого развития. 2000, № 8, с. 567-577.
10. Mastrell N.//Inform. Chimie. 1998, V. 398, P. 89-90.
11. Lago R.M., Green M.L.H. at al.//Appl. Catalysis B: Environmental. 1996, V. 8, P. 107-121.
12. Программа ОНН по окружающей среде. Реестр существующих в мире мощностей для уничтожения ПХБ. ЦМП. июль 2001 г., 72 с.
13. Zieva A., Banaszak T., Miller R.//Applied Catalysis A: General. 1995, V. 124, N 1, P. 47-57.
14. Карташов Л.М., Флид М.Р., Трегер Ю.А., Дасаева Г.С.//Хим. пром. сегодня. 2004, № 7, с. 33-39.
15. Пожарная опасность веществ и материалов. Справочник под ред. И.В.Рябова. М.: Изд. лит-ры по строительству. 1966, 243 с.
16. Borisov Y.A., Arcia E.E., Mielke S.L., Garrett B.C., Dunning T.H.//J. Phys. Chem. A 2001, V. 105, N 32, P. 7724-7736.
17. Weiss U., Rosynek M.P., Runsford J.//Chem. Commun. 2000, N 5, P. 405-406.
18. Jeffers P.M., Ward L.M., Woytowitch L.M., Wolf N.L.//Environ. Sci. Technol. 1989, V. 23, N 8, P. 965-969.
19. Заявка 91-194792 Японии.//Jap. Pat. Abstr. 1991, N 40, P.E:2.
Европейская патентная заявка 0435210 от 03.07.1991 г.
20. Заявка 501501 Европы.//C.A. 1992, V.117, N 16, 153219.
Пат. 5196618 США.//РЖХим. 1994, 14Н24П.
21. Заявка 4-346944 Японии.//Jap. Pat. Gaz. 1993, N 3, P.E:1.
22. Заявка 2720740 Франции.//РЖХим. 1998, 13Н16П.
23. Розанов В.Н.//Хим. пром-сть. 1996, № 6, с.351-356.
24. Авт. св. 540857 СССР//Б.И. 1976, № 48, с. 68.
25. Розанов В.Н., Розловский А.И., Трегер Ю.А., Бабич Н.Ф.//Доклады АН СССР. 1983, Т.264, № 5, с.1126-1130.
26. Японский патент 6016578 от 25.01.1994.
27. Пат. 2979541 США.//РЖХим. 1962, 5Л70.
28. Пат. 3026361 США.//РЖХим. 1963, 13Н21
29. Пат. 2792435 США.//C.A. 1957, V.51, N 21, 16512d.
30. Пат. 2829180 США.//С.А. 1958, V.52, N 17, 14648c.
31. Голубева Е.Н., Смирнов В.В., Абдрашитов Я.М., Ростовщикова Т.Н.//IV Междунар. конф. "Наукоемкие хим. технологии". Волгоград. 1996, с.104-105.
Пат. 2107544; 2107678 РФ.
32. Заявка на пат. 2351565 ФРГ.
33. Занавескин Л.Н., Аверьянов В.А., Трегер Ю.А.//Усп. химии. 1996, Т.65, №7, с. 667.
34. Лунин В.В., Локтева Е.С.//Изв. АН. Сер. хим. 1996, №7, с. 1609-1624.
35. Пат. 3579596 США.//РЖХим. 1972, 8Н14П.
36. Kim S.Y., Choi H.C., Yanga O.B., Lee K.H., Lee I.S., Kim Y.G.//J. Chem. Soc. Chem. Commun. 1995, N 21, P.2169-2170.
37. Choi H.C., Choi S.H., Yang O.B., Lee I.S., Lee K.H., Kim Y.G.//J. Catal. 1996, V.161, N2, P.790-797.
38. Choi H.C., Choi S.H., Lee I.S., Lee K.H., Kim Y.G.//I. Catal. 1997, V.166, N 2, P.284.
39. Пат. 04 - 364136 Японии.//С.А. 1992, V.118, 254378.
40. Пат. 570050 Европы.//С.А. 1994, V.120, 106376.
41. Пат. 5105032 США.//РЖХим. 1994, 3Н14П.
42. Golubina E.V., Lokteva E.S., Lunin V.V., Turakulova A.O., Simagina V.I., Stoyanova I.V.//Applied Catalysis A: General. V. 241, N 1-2, P. 123-132.
43. WO 2005113137 от 01.12.2005 г.
44. Колбановский Ю.А., Чернышева А.С., Щипачев В.С.//Кинетика и катализ. 1988, Т.29, N 5, с.1222-1226.
45. Японский патент 2002191975 от 10.07.2002 г. (Европейский патент 1201300).
46. Дасаева Г.С., Величко С.М., Моисеев И.И., Трегер Ю.А.// Кинетика и катализ. 1990, Т.31, N 4, с.858-862.
47. Дасаева Г.С., Трегер Ю.А., Моисеев И.И. Занавескин Л.Н.//Хим. пром-сть. 1996, N 6, с.16-20.
48. Пат. 4138141 ФРГ.//РЖХим. 1994, 8Н10П.
49. Пат. 652195 Европы.//C.A. 1995, 122:317406.
50. Заявка 91 9827 РСТ.//ИСМ. 1992, Вып. 41, N 12, с.14;
51. Gomez-Sainero L.M., Cortes A., Seoane X.L., Arcoya A.//Ind. Eng. Chem. Res. 2000, V. 39, N 8, P. 2849-2854.
52. Gomez-Sainero L.M., Seoane X.L., Tijero E., Arcoya A.//Chemical Engineering Science. 2002, V. 57, N 17, P. 3565-3574.
53. Антонов В.Н., Рожков В.И., Заликин А.А.//Ж. прикл. химии. 1987, Т.60, N 6, с.1347-1352.
54. Пат. 5315050 США.//РЖХим. 1995, 17Н14П.
55. Абдрашитов Я.М. Дисс. в виде научного доклада на д.т.н. М. 1998 г.
56. Японский патент 7002708 от 06.01.1995. (Европейский патент 0613874).
57. Kirk-Оthmer//Encycl. Chem. Process. 1979, Vol.5, P.668-714.
58. Faith W.H., Clark R.L., Keyes D.B. Industrial Chemicals. 1957.
59. Doong R.-A., Chen K.-T., Tsai H.-C.//Environmental Science and Technology. 2003, T. 37, N 11, P. 2575.
60. Boronina T.N., Klabunde K.J., Sergeev G.B.//Mendeleev Communications. 1998, V. 8, N 4, P. 154-155.
61. Методы элементоорганической химии. Хлоралифатические соединения. М.: Наука. 1973, 750 с.
62. Suppan F.W.//Chemie-Umwelt Technik. 1991, N 20, S.101-102.
63. Пат. 5208393 США.
64. Заявка 91-194792 Японии.//Jap. Pat. Abstr. 1991, N 40, P.E:2.
65. Заявка 501501 Европы.//C.A. 1992, V.117, N 16, 153219.
66. Пат. 5196618 США.//РЖХим. 1994, 14Н24П.

Таблица 1. Взаимодействие ЧХУ с метаном

Т-ра, Концентрации, % мол. Конверсия ЧХУ, %
п/п о С СС l 4 СН 4 по хлору по углероду
1 525 22,5 53,4 27,4 25,4
2 525 9,7 53,0 29,4 31,9
3 500 24,9 48,8 12,0 11,9
4 475 23,4 47,8 6,4 5,7
5 450 29,5 51,1 2,9 1,9

Физические и химические свойства:
Четыреххлористый углерод (тетрахлометан, CHCl 4) - бесцветная жидкость. Раств. воды в ССl 4 около 1% (24°). Не воспламеняется. При соприкосновении с пламенем или накаленными предметами разлагается, образуя фосген. Может содержать в виде примесей СS 2 , НСl, Н 2 S, органические сульфиды.

Область применения:
Применяется как растворитель; для экстрагирования жиров и алкалоидов; при производстве фреонов; в огнетушителях; для чистки и обезжиривания одежды в быту и производственных условиях.

Получение:
Получается хлорированием СS 2 в присутствии катализаторов; каталитическим хлорированием СН 4 (вместе с СН 2 С1 2 и СНСl 3); накаливанием смеси угля и СаСl 2 при температуре вольтовой дуги.

Общий характер токсического действия:

Наркотик с меньшей силой действия паров, чем хлороформ. При любом пути поступления вызывает тяжелые повреждения печени: центролобулярный некроз и жировую дегенерацию. Одновременно поражает и другие органы: почки (проксимальные отделы почечных канальцев), альвеолярные мембраны и сосуды легких. Поражения в почках и легких менее значительны, развиваются, как правило, вслед за поражением печени и как результат нарушения общего обмена, но в ряде случаев играют существенную роль в картине и исходе отравления. Наиболее ранним признаком токсического действия считают изменение уровня ряда ферментов крови. Выявлена большая способность печени к регенерации после отравления. Прием алкоголя во время вдыхания паров Ч. У., охлаждение, повышенное содержание кислорода в воздухе усиливают токсическое действие. При гашении пламени огнетушителями и вообще при сильном нагревании отравления могут возникнуть от вдыхания продуктов термического разложения Ч. У.

Согласно существующим взглядам на патогенез токсического действия Ч. У., оно связано со свободнорадикальными метаболитами (типа СС1 з), образующимися в результате гемолитического разрыва молекул ССl 4 . В результате усиления перекисного окисления липидных комплексов внутриклеточных мембран нарушаются активность ферментов, ряд функций клетки (синтез белков, обмен ß-липопротеидов, метаболизм лекарств), возникает деструкция нуклеотидов и т. д. Предполагают, что основным местом образования свободнораднкальных метаболитов являются эндоплазматнческая сеть и микросомы клетки.

Картина отравления:

При вдыхании очень высоких концентраций (при неосторожном входе в цистерны и резервуары, при тушении пожаров огнетушителями с Ч. У. в малых замкнутых помещениях и т. д.) возможны либо внезапная смерть, либо потеря сознания или наркоз. При более легком отравлении и преобладании дей­ствия на нервную систему характерны головная боль, головокружение, тошнота, рвота, спутанность или потеря сознания. Выздоровление наступает относительно быстро. Возбуждение носит иногда характер сильных приступов буйного состоя­ния. Описаны отравления в виде энцефаломиелита, мозжечковой дегенерации, периферических невритов, невритов зрительного нерва, кровоизлияний и жировой эмболии мозга. Известен случай эпилептиформных судорог и потери сознания на 4-й день после отравления без значительных поражений печени и почек. На вскрытии (в случае быстрой смерти) - только кровоизлияния и отек мозга, эмфизема легких.

Если отравление развивается медленно, к явлениям поражения центральной нервной системы в течение 12-36 ч присоединяются сильная икота, рвота, часто длительная, понос, иногда кишечное кровотечение, желтушность, множественные кровоизлияния. Позднее - увеличение и болезненность печени, выраженная желтуха. Еще позже появляются симптомы тяжелого поражения почек. В иных случаях симптомы поражения почек предшествуют признакам заболевания печени. Наблюдения показали, что поражения печени резко выражены в первый период и тем сильнее, чем быстрее наступает смерть; при более поздней гибели в ткани печени имеются уже регенеративные процессы. Изменения же в почках при ранней гибели незначительны. При поражении почек уменьшается количество мочи; в моче - белок, кровь, цилиндры. В крови повышено содержание небелкового азота, но понижено содержание хлоридов, кальция, белков. В тяжелых случаях наступает олигурия или полная анурия (нарушаются и фильтрационная, и секреторная функции почек). Высокое кровяное давление, отеки, судорожные припадки, уремия- Может развиться отек легких, часто являющийся непосредственной причиной смерти (иногда отек объясняют введением избытка жидкости при лечении). В более благоприятных случаях после анурии - обильный диурез, постепенное Исчезновение патологических элементов в моче, полное восстановление функции почек. Иногда, по-видимому при не очень высоких концентрациях Ч.У., единственным признаком отравления может быть уменьшение или прекращение выделения мочи.

Следствием острого отравления парами Ч. У. могут быть язва двенадцатиперстной кишки, некрозы поджелудочной железы, анемия, лейкоцитоз, лимфопения, изменения в миокарде, острый психоз (Васильева). Исходом отравления может быть желтая атрофия печени, а также ее цирроз.

При приеме Ч. У. внутрь картина отравления такая же, как и при вдыхании паров, хотя есть указания иа преимущественное поражение в этих случаях печени.

Наиболее характерные патологоанатомические изменения: паренхиматозное и жировое перерождение печени, а также многочисленные некрозы в ней; острый токсический нефроз; нефрозонефрит (поражаются канальцы почек на всем их протяжении); отек мозга; воспаление и отек легких; миокардит.

Токсические концентрации, вызывающие острое отравление.

Для человека порог восприятия запаха- 0,0115 мг/л, а концентрация, действующая на световую чувствительность глаза- 0,008 мг/л (Белков). При 15 мг/л через 10 мин головная боль, тошнота, рвота, учащение пульса; при 8 мг/л то же через 15 мин, а при 2 мг/л - через 30 мин. У рабочих при 8-часовом воздействии концентрации 1,2 мг/л наблюдались усталость и сонливость. При чистке пола Ч. У. (концентрация в воздухе 1,6 мг/л) рабочий через 15 мин почувствовал головную боль, головокружение и вынужден был оставить работу. Отравление оказалось смертельным (пострадавший был алкоголиком). Описано массовое отравление при чистке змеевиков испарителя на корабле (концентрация в воздухе 190 мг/л). Пострадавшие, за исключением одного, выжили. Смертельным может быть воздействие концентрации 50 мг/л при вдыхании в течение 1 ч. Известно тяжелое отравление с поражением печени, почек и кишечным кровотечением при работе 2 смены подряд в обычных условиях промывания приборов.

При приеме внутрь 2-3 мл Ч. У. уже могут возникнуть отравлении; 30- 50 мл приводят к тяжелой и смертельной интоксикации. Описан случаи массового отравления с 20 смертельными исходами при употреблении внутрь средства для мытья волос, содержавшего 1,4% Ч. У. (остальное - спирт). У пострадавших - бронхит, воспаление легких, кровавая рвота, понос, поражения печени и почек. Однако известен случай выздоровления после приема 220 мл Ч. У. при развившемся наркозе и тяжелой недостаточности почек. Для промывания желудка использовалось парафиновое (вазелиновое) масло.

При хронических отравлениях в относительно легких случаях наблюдается: усталость, головокружение, головная боль, боли в разных частях тела, мышечное дрожание, ухудшение памяти, инертность, похудание, сердечные расстройства, раздражение слизистых оболочек носа и горла, дизурические расстройства. Чаще всего жалобы на боли в животе, отсутствие аппетита, тошноту. Обнаруживаются увеличение и болезненность печени; изменение моторики, спазмы разных отделов кишечника, билирубинемия и др.

На коже тетрахлорметан может вызывать дерматиты, иногда экземы, крапивницу. Раздражает кожу сильнее, чем бензин. При погружении большого пальца руки в Ч, У, на 30 мин через 7-10 мин появляется чувство холода и жжения. После эрсепоаиции- эритема, проходящая через 1-2 ч. Описан случай полиневрита в результате постоянного соприкосновения Ч. У. с кожей во время работы. В большом количестве проникает через обожженную кожу; вероятно» возможны отравления при тушении горящей на людях одежды с помощью Ч. У.

Неотложная помощь.

При остром ингаляционном отравлении - свежий воздух, покой. Длительное вдыхание увлажненного кислорода с использованием носовых катетеров (непрерывное в течение первых 2-4 ч; в последующем по 30- 40 мнн с перерывами по 10-15 мин). Сердечные средства: камфара (20%), кофеин (10%). кордиамин (25%) по 1-2 мл подкожно; успокаивающие средства, крепкий сладкий чай. Внутривенно ввести 20-30 мл 40% раствора глюкозы с 5 мл 5% аскорбиновой кислоты, 10 мл 10% раствора хлористого кальция. При икоте, рвоте - внутримышечно 1-2 мл 2,5% раствора аминазина с 2 мл 1% раствора новокаина. При угнетении дыхания - вдыхание карбогена повторно по 5-10 мин, внутривенно 10-20 мл 0,5% раствора бемегрида, подкожно 1 мл 10% раствора коразола. При резком ослаблении (остановке) дыхания - искусственное дыхание методом «рот в рот» с переходом на управляемое. В тяжелых случаях немедленная госпитализация в реанимационный центр.

При приеме яда внутрь - тщательное промывание желудка через зонд, универсальный антидот (ТУМ), 100-200 мл вазелинового масла с последующей дачей солевого слабительного; очищение кишечника до чистых промывных вод (сифонная клизма); Кровопускание (150-300 мл) с последующим частичным кровозамещением. Для усиления диуреза введение в вену 50-100 мл 30% мочевины на 10% растворе глюкозы или 40 мг лазикса. При развитии коллаптоидного состояния- внутривенно 0,5 мл 0,05% раствора строфантина в 10-20 мл 20% раствора глюкозы,или коргликон (0,5-1 мл 0,06% раствора в 20 мл 40% раствора глюкозы); по показаниям - мезатон. В дальнейшем для восстановления кислотно-щелочного равновесия - внутривенное капельное введение 300-500 мл 4% раствора бикарбоната натрия. Рекомендуются витамины В6 и С, липоевая кислота, унитиол (5% раствор внутримышечно по 5 мл 3-4 раза в день в первые сутки, 2-3 раза в день на вторые и третьи сутки).

Противопоказаны: сульфаниламидные препараты, адреналин и хлорсодержащие снотворные (хлоралгидрат и др.). Не допустим прием алкоголя и жиров!

По материалам из книги: Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей. Изд. 7-е, пер. и доп. В трех томах. Том I. Органические вещества. Под ред. засл. деят. науки проф. Н. В. Лазарева и докт. мед. наук Э. Н. Левиной. Л., «Химия», 1976.

Изобретение относится к способу очистки четыреххлористого углерода от примесей соединений, содержащих связи углерод-водород и/или двойные связи. Согласно способу раствор газообразного хлора в жидком четыреххлористом углероде подвергают воздействию ультрафиолетового облучения в реакторе, выполненном из прозрачного материала. Технический результат - очистка четыреххлористого углерода от соединений, содержащих двойные связи и связь углерод-водород. Способ обеспечивает получение четыреххлористого углерода, содержащего менее 10 мг/мл соединений со связью углерод-водород и двойными связями. 1 н. и 6 з.п. ф-лы, 1 табл.

Изобретение относится к способу очистки технического четыреххлористого углерода путем исчерпывающего фотохимического хлорирования примесей соединений с углеводородными и двойными связями хлором, растворенным в четыреххлористом углероде.

Очищенный четыреххлористый углерод может быть использован контрольно-аналитическими и метрологическими службами предприятий химической, нефтехимической и других отраслей промышленности, службами санитарно-экологического надзора, для синтеза органических соединений, а также для других целей.

Известен способ очистки четыреххлористого углерода от сероуглерода, отличающийся тем, что с целью упрощения технологии процесса исходный четыреххлористый углерод обрабатывают хлором при температуре 10-80°С в присутствии катализатора с удельной поверхностью 10-300 м 2 /г .

Способ позволяет добиться очистки четыреххлористого углерода только от сероуглерода.

Известен способ очистки хлорорганических продуктов, в частности метиленхлорида, хлороформа, четыреххлористого углерода и трихлорэтилена, от смолы и сажи. Способ очистки заключается в том, что в хлорорганические продукты перед испарением или ректификацией вводят топливо с пределами выкипания от 150 до 500°С .

Способ позволяет добиться очистки хлорорганических продуктов только от смолы и сажи.

Известен способ очистки технического четыреххлористого углерода от труднолетучих примесей, основанный на ректификационном разделении жидких смесей .

Недостатком способа является его недостаточная эффективность, так как получают четыреххлористый углерод реактивной квалификации только: "чистый", "чистый для анализа", "химически чистый", который содержит остаточное количество примесей соединений с углеводородными и двойными связями, что обусловлено их высокой летучестью, близостью температур кипения и образованием азеотропных смесей с основным компонентом. Получаемый таким способом четыреххлористый углерод не может быть использован при анализе содержания нефтепродуктов в воде и в качестве растворителя для проведения исследований методом протонно-магнитного резонанса.

Задачей изобретения является разработка недорогого и легко выполнимого способа очистки технического четыреххлористого углерода от примесей соединений с углеводородными и двойными связями, позволяющий получать четыреххлористый углерод для использования при анализе содержания нефтепродуктов в воде и в качестве растворителя для проведения исследований методом протонно-магнитного резонанса, а также для других целей.

Задача решена тем, что разработан легко осуществимый способ очистки технического четыреххлористого углерода от примесей, основанный на фотохимическом методе хлорирования соединений с углеводородными и двойными связями растворенным в четыреххлористом углероде хлором под воздействием ультрафиолетового облучения.

Метод основан на получении в растворе высокоактивных радикалов-атомов хлора, образующихся при поглощении ультрафиолетовых квантов света растворенными в четыреххлористом углероде молекулами хлора, которые эффективно разрушают углеводородные связи, приводя в результате цепной радикальной реакции к образованию полностью хлорированных продуктов. Одновременно происходят процессы полного хлорирования ненасыщенных соединений. Примеси, загрязняющие четыреххлористый углерод и не позволяющие его использовать при проведении многих исследований, например при определении содержания нефтепродуктов в воде, представлены насыщенными и ненасыщенными хлорпроизводными низших углеводородов. Это соединения с углеводородными и двойными связями, в основном, производные метана, преимущественно хлороформ, а также производные этана, такие как дихлорэтан, трихлорэтан, трихлорэтилен, тетрахлорэтилен.

Способ очистки технического четыреххлористого углерода от примесей соединений с углеводородными и двойными связями осуществляют следующим образом.

В четыреххлористом углероде растворяют газообразный хлор до концентрации его в растворе примерно 0,2-2%. Полученный раствор облучают ртутно-кварцевыми лампами низкого давления. При облучении в диапазоне УФ-излучения 250-400 нм в течение 1-20 мин примеси хлорпроизводных метана превращаются в четыреххлористый углерод, а хлорпроизводных этана - в гексахлорэтан. Для удаления избытка хлора и образующихся кислот четыреххлористый углерод после фотолиза обрабатывается восстанавливающим раскислителем, например кальцинированной содой (Na 2 CO 3). Фотохимическое хлорирование осуществляют в реакторе, выполненном из прозрачного материала, в основном из кварцевого стекла или стекла марки «Пирекс», хорошо пропускающего УФ-излучение в диапазоне 250-400 нм. Получают четыреххлористый углеводород, содержащий примесей соединений с углеводородными и двойными связями не более 10 мг/л, определенных методом ИКН, применяемым для измерения массовой концентрации нефтепродуктов в четыреххлористом углеводороде . Очищенный таким образом четыреххлористый углеводород содержит пентахлорэтан и гексахлорэтан, при этом содержание их зависит от содержания в исходном техническом четыреххлористом углероде хлорпроизводных этана с углеводородными и двойными связями. Такой очищенный четыреххлористый углерод может быть использован при определении содержания нефтепродуктов в воде, так как присутствующие пентахлорэтан и гексахлорэтан не влияют на результаты анализа. Для получения четыреххлористого углерода особой чистоты дополнительно осуществляют стадию отделения четыреххлористого углерода от пентахлорэтана и гексахлорэтана методом обычной перегонки, которые остаются в кубовом остатке. Процесс фотохимического хлорирования может быть осуществлен в периодическом или проточно-циркуляционном режиме.

Пример 1. В 32 г технического четыреххлористого углерода растворяют 0,1 г хлора. Полученный раствор в кювете из кварцевого стекла облучают светом ртутной лампы ДРТ-250 в течение 15 мин. После облучения УФ-светом полученный продукт обрабатывался безводным углекислым натрием (примерно 2 г) для удаления избытка хлора, образующихся кислот и воды. На основании хроматографического анализа образца четыреххлористого углерода до и после очистки установлено, что количество примесей, определенных по методу ИКН, сократилось с 217 до 10,2. Массовая доля пентахлорэтана и гексахлорэтана составила соответственно 0,153% и 1,340%.

Пример 2. В 32 г технического четыреххлористого углерода растворяют 0,1 г хлора. Полученный раствор в кювете из стекла марки «Пирекс» облучают светом ртутной лампы ДРТ-1000 в течение 5 мин. После облучения УФ-светом полученный продукт обрабатывался безводным углекислым натрием (примерно 2 г) для удаления избытка хлора, образующихся кислот и воды. На основании хроматографического анализа образца четыреххлористого углерода до и после очистки установлено, что количество примесей, определенных по методу ИКН, сократилось с 217 до 5,7. Массовая доля пентахлорэтана и гексахлорэтана составила соответственно 0,011% и 1,628%.

Пример 3. Очищенный четыреххлористый углерод, полученный как в примере 2, дополнительно подвергают перегонке при температуре кипения четыреххлористого углерода и получают в дистилляте четыреххлористый углерод с содержанием основного компонента 99,987%, количество примесей, определенных по методу ИКН, сократилось с 5,7 до 2,3. В кубовом остатке остается смесь пентахлорэтана и гексахлорэтана.

Пример 4. Четыреххлористый углерод насыщается газообразным хлором до концентрации 0,6% в смесителе. Затем, со скоростью 0,5 л/мин, поступает в охлаждаемый проточной водой цилиндрический фотореактор из стекла марки «Пирекс», освещаемый ртутной лампой ДРТ-1000, расположенной вдоль его оси. Из фотореактора четыреххлористый углерод поступает на фильтрующую колонку, где проходит через безводный углекислый натрий для удаления избытка хлора, а также образующихся кислот и воды. На основании хроматографического анализа образца четыреххлористого углерода до и после очистки установлено, что количество примесей, определенных по методу ИКН, сократилось с 217 до 12,3. Массовая доля пентахлорэтана и гексахлорэтана составила соответственно 0,322% и 1,311%.

Следовательно, при очистке четыреххлористого углеводорода таким способом получают четыреххлористый углерод, содержащий примесей соединений с углеводородными и двойными связями, определенных методом ИКН, не более 10 мг/л. Присутствующая в очищенном четыреххлористом углероде примесь пентахлорэтана и гексахлорэтана позволяет использовать его при определении содержания нефтепродуктов в воде. Дополнительной перегонкой получают четыреххлористый углерод "особой чистоты".

Результаты очистки четыреххлористого углерода представлены в таблице.

Таблица

Содержание примесей в четыреххлористом углероде

Наименование примеси, массовая доля (%)* Содержание примеси в четыреххлористом углероде
В исходном В очищенном
№ примера
1 2 3 4
Хлороформ 0,240 0,001 0,001 0,001 0,002
Дихлорэтан 0,461 0,000 0,000 0,000 0,000
Четыреххлористый углерод 96,937 97,138 97,170 99,987 97,125
Трихлорэтилен 0,477 0,000 0,000 0,000 0,004
Трихлорэтан 0,075 0,000 0,000 0,000 0,000
Тетрахлорэтан 0,005 0,000 0,000 0,068
Тетрахлорэтилен 0,015 0,000 0,000 0,000 0,010
Пентахлорэтан 0,000 0,153 0,011 0,005 0,332
Гексахлорэтан 0,005 1,340 1,628 0,002 1,311
ИКН" (мг/л) 217,4 10,2 5,7 2,3 12,3
* Массовая доля компонента определена методом газовой хроматографии

** ИКН - суммарное содержание эквивалентного количества углеводородов определено методом ИК-спектроскопии на концентратомере ИКН-025

ИСТОЧНИКИ ИНФОРМАЦИИ

1. SU №686274.

2. RU №2051887.

3. RU №2241513.

4. ГОСТ Р51797-2001.

1. Способ очистки четыреххлористого углерода, отличающийся тем, что осуществляют очистку от примесей соединений с углеводородными и двойными связями методом исчерпывающего фотохимического хлорирования растворенным в четыреххлористом углероде хлором в реакторе, выполненном из прозрачного материала, под воздействием ультрафиолетового облучения, при этом получают четыреххлористый углерод для анализа определения содержания нефтепродуктов в воде, содержащий не более 10 мг/л соединений с углеводородными и двойными связями.

2. Способ по п.1, отличающийся тем, что получают четыреххлористый углерод для проведения исследований методом протонно-магнитного резонанса.

СОЮЗ СОВЕТСНИХщириши едеРЕСПУБЛИК 07 С 07 С 19/06 РЕТЕНИ РСКОМУ ичаюю упро- увелистве осу щ нщениченншиткоб ксо золдназол, оРС 12 бщем к отс-Хххлоушкинн н и пеГОСУДАРСТВЕННЫЙ КОНИТЕТ СССР ДЕЛАН ИЗОБРЕТЕНИЙ И О 3 НРЬТЮ ОПИСАНИЕ И(71) Институт неорганической химии..,и электрохимии АН Грузинской ССР"Иностранная литература", 1958,с. 393-396.2. Практикум по органической химииИ., "Иир", 1979, с. 376 (прототип).3 Е.Н.Напвоп, С.Е.Ие 1 оап-"Зпот 8.пцс 1.сЬев. 1 еййег", 971, р.461-472..80295 4)(57) СПОСОБ ОЧИСТКИ, ЧЕТЫ СТОГО УГЛЕРОДА путем осуш ушителем н перегонки, о тй с я тем, что, с цель я технологии процесса и я.степенн осушки, в кач еля используют смесь компл альта формулы СоК С 1 + Сойгде 11- бенз,1,3-тнади1 - бенз,1,3-селенпри массовом соотношении.: Со К С 1 (25-30) :нличестве смеси 2,0-3,0 маношению к исходному четыртому углероду, а стадии орегонки совмещают во времестранстве.117295 2рый включает стадию кипячения растворителя с обратным холодильником втечение 18.ч с использованием в качестве осушителя Р О и последую 5 щую перегонку на колонке. РасходР 05 на 1 л растворителя состав-ляет 25-30 г, а содержание воды вцелевом продукте не ниже, чем0,00523.0 Недостатками известного способаявляются сложность 1,наличие двухстадий - осушка и перегонка и дли" е тельность процесса, что существенноусложняет его технологию, а также15 высокое содержание воды в целевомпродукте.Целью изобретения является упрощение технопогии процесса и увеличение. степени осушки.- 20 Поставленная цель достигаетсятем, что согласно способу очисткичетыреххлористого углерода путемосушки над осушителем и перегонки,у в качестве осушителя используют25 смесь комплексов кобальта форму- лы Изобретение относится к способуочистки четыреххлористого углерода.Вода является основной нежелательной примесью СС и поэтому всеметоды очистки, как правило, включают стадию осушки и перегонки растворителя. Сушка и перегонка завершающие стадии процесса очистки СС 1 ипоэтому удаление воды из СС 1 является важной задачей,СС 1 плохо смешивается с водой (0,08%) н во многихслучаях для очистки достаточно перегонки, Вода при этом удаляется в видазеотропной смеси, которая кипитпри бб С и содержит 95,9 растворитепя. Тройная азеотропная смесь сводой (4,3%) и этанолом (9,7) кипитпри 61,8 С. Когда к очистке СС 1,предъявляются более высокие требо 1 вания, то перегонка без предварительного высушивания растворителя непригодна.Известен способ очистки четыреххлористого углерода, согласно которому СС 1 предварительно высушивают и затем перегоняют на колонке.Осушку осуществляют над СаС 1 ,.аперегонку иад Р 05 СС 1, сушат надпрокаленным СаС 1 и перегоняютиз колбы с эффективным,дефлегмато- З 0ром на водяной бане, а в некоторыхслучаях - из кварцевой колбы сдефлегматором. При использованииСС 14, для термохимнческих измерений растворитель дважды подвергаютфракционной перегонке на колонкес вакуумной рубашкой, каждый разотбрасывая первую и последнюю порциюобъемом по четверти всего количества дистиллята Г 1,.Однако простая перегонка растворителя без применения осушителей нейозволяет получить растворитель снизким содержанием воды. В способах,основанных на применении осушителей и последующей перегонке., необходим предварительный длительныйконтакт растворителя с осушителем,выбор которого для СС 1 ограничен.Среди осушителей прокаленный СаС 1наиболее приемлемый. Показано, что50СС 1, нельзя сушить над натрием, таккак в этих условиях образуется взрывчатая смесь, Этот способ очистки длителен, имеет много ступеней и малоэф"фективен,55 Наиболее близким к изобретению является способ очистки СС 1, кото СоК С 1, + СоК С 1где й" бенз,1,3-тиадиаэол;к - бенз,1,3-селендиазол;при массовом соотношении Со КС 1Со К., С 1 25"30:1 и общем количестве смеси 2,0-3,0 мас,.Ж по отношению к исходному четыреххлористому углероду, а стадии осушки и пере-гонки совмещают во времени и пространстве.Комплексы Со К С 1и Со КС 1попучают по известной методике 3,1.Сущность предлагаемого способа со-,стоит в том, что комплексы кобальтас указанными лигандами Ри К)количественно распадаются в прйсутствии следов воды, Эти комплексынерастворимы во всех обычных раство.- рителях. В растворителях с примесями воды вместо обычного растворе"ния имеет место разрушение комплекса с образованием свободного лиганда.и гидратированного иона кобапьта,В растворителях, содержащих в молекуле трехвалентный атом азота, протекает реакция замещения молекул лиганда молекулами растворителя. К таким растворителям относятся амины,амиды, иитрилы, а также некоторыегетероциклы.г1117295 10 В растворителях, не содержащих трехвапентный атом азота в молекуле, но содержащих примеси воды, в частности в СС 1, в результате протекания реакции в растворе обнаруживают продукты распада комплекса кобальта с серу- или селенсодержащими диазолами, Методом полярографии, а также УФ- и видимыми спектрами получающихся растворов показано, что взаимодействие между лигандом и комплексообразователем в азотсодержащих средах или в средах, содержа.щих следы воды, не имеетместо. Комплексы кобальта.с ароматическими ди азолами можно получить только в абсолютно безводных средах, несодаржащих атом азота. Во всех случаях при внесении указанных комплексов в растворители, содержащие примеси влаги, сумма спектров лиганда и иона кобапьта соответствует получающемуся спектру, а на полярограммах четко Фиксируются волны лнганда и иона кобальта. 25 Реакция распада комппексов кобапьта с указанными диазолами под действием молекул воды протекает очень,быстро и растворитель принимает цвет гндратированного иона кобальта. Мгновенное связывание следов воды осушителем (комплексы кобапьта протекает по механизму образования гид,рата (перевод координированного атома кобальта в комплексе в гндратнро- З 5 .ванный нон в растворен поэтому окрашивание растворителя в цвет гнд,.ратированных ионов кобольта может служить характерным признаком удаления примесей воды из растворителя,Известно, что твердый безводныйимеет бледно голубой цвет ди-, -три-, тетра- и гексагидраты соответственно фиолетовый, пурпур ный, красный и красно-коричневый.:Комплекс кобальта с диазолами представляет собой пластинки оливкового цвета, при внесении которых в СС 14 в зависимости от количества воды в 50 нем растворитель окрашивается в одиниз указанных цветов гидратированного Со. Способность комплексов кобапь" та с бенз,1,3-тиа- и селендиазола" ми разрушаться в присутствии сле" 55 дов воды зависит от природы лиганда, точнее от природы ключевого гетероатома в молекуле лиганда. 4Спедовательно, эффективность указанного комплекса как осушителя также зависит от природы гетероатома (Я, Яе) в лиганде и значительно увеличивается при замене атома серы атомом селена в гетерокольце диазола. Прн очень низкой содержании воды в СС 1 наиболее эффективным осушителем является комплекс кобальта с бенз,1,3-селенпиаэолом. При содержании воды в растворителе в количестве, не превышающем 0,013, осушитепем может служить и комплекс кобальта с бенз,1,3-тиддиаэолом.Следовательно, смесь укаэанных комплексов может служить в качестве осушителя в широком диапазоне содержания воды в растворителе, При глубокой осушке СС 14 комплекс кобальта с бенз,1,3-селендиаэолом можно смешивать в виде примеси к комплексу кобальта с бенз,1,3-тиадиазолом, который будет связывать основное количество воды в растворителе. Необходимую степень очистки СС 1 в каждом конкретном случае можно достичь путем варьирования пропорции компонентов смеси.Однако для того, чтобы композиция обладала максимальной эффективностью как осушитель, необходимо использовать минимальную весовую долю комплекса кобальта с бенз,1,3-селендиаэолом в смеси. Таким образом, одновре" менно с эффектом образования гидрата из безводного комплекса кобальта, которое легко в основу предлагаемого способа, состав осушающей смеси из комппексов кобальта с ароматическими диазолами является харахтер" ным признаком данного метода очист" ки СС 14 . Мгновенное связывание следов воды комплексами кобальта на основе указанных диаэолов при их введении в СС 14 исключает необходимость в предварительном 18-ти часовом кипячении растворителя с обратным холодильником над РО, Поэтому смесь комппексов можно вводить в растворитель непосредственно на стадии перегонки, тем самым совмещая стадии осушки и перегонкиПродукты распада комплексов - ли-ганд ароматический диаэол и гидратированный ион кобальта имеют гораздо более высокую температуру кипения, чем СС, поэтому при перегонке не могут переходить в дистиллят, Последний собирают в приемник с уст-.7295 соотношении комплексов кобальта сбенэ,1,3-тиадиаэолом и бенэ,1,3-селендиаэолом. Результаты приведеныв таблице,ройством для предотвращения контакта дистиллята с воздухом, Избыток смеси комплексов кобальта с диаэолами при ввецении в СС 1 оседает на дне колбы перегонного аппарата, в кото-5 ром очищаемдй растворитель сохраня" ет цвет гидратированного иона кобальта до конца процесса. Содержание воды в дистилляте определяют стандар ным титрованием по Флеру.П р и м е р 1. 300 мп СС+ вносят в колбу перегонного аппарата, добавляют смесь, состоящую из 10 г комплекса кобольта с бенэо,1, 3-тиади азолом и О, 4 г комплекса кобальта сбензот 2,1,3-селендиазолом (общее количество смеси комплексов кобальта 23 и перегоняют. Отбирают фракцию с т.кип, 76,5-77,0 С (" 200 мп). Первую фракцию с т.кип. до 76,5 С 2 отбрасывают (30 мп). Содержаниеводы в дистиляте 0,00073, Скорость пе- р 5 мп/мин. Продолжительность т- О 3 0750 10: 15:1,0007 25 30 0,0005 0 Пр егонки роцесс Таким образом, изобретение обеспечивает упрощение технологии процесса эа счет ликвидации стадии предварительного контакта растворителяЗ 0 с осушителем стадии осушки и перегонки совмещены во времени и про"странстве, сокращение времени,необходимого для очистки СС 1 засчет быстрого связйвания следов во"ды в растворителе смесью комплексовкобальта с ароматическими диа",эолами, и достижение глубины осушки СС 1, до 0,00053 остаточной воды,что увеличивает степень осушки напорядок,Се вноарата, из 14 г 2 1,3-тикоб альоном (общекобальсят в кол добавляют компле кс адиазоло та с бен количест ют фрак" 200 мп)е 0,0005 Ж Продола Хс т одержан коростьжительно одят Составитель А.Артеедактор Н.Джуган Техред И.Аствлош Коррект В,Вутяга Тираж 409рственного комитетаобретений и открытийа, Ж, Раушская н сное д. 4/5 ал ППП "Патент", г.уж ул.Проектная,4 П П П,Патент Зак. 4 мер 2, 300 мп бу перегонного ап смесь, состоящую кобапьта с бенэо и 0,4 г комплекс о,1,3-селендиаэ о смеси комплексо перегоняют, Отбир ип. до 76,5-77 ОС е воды в дистилля перегонки 5 чп/ми ть процессач. м е р ы 3-8. Процесс пропримеру 2 при различномг аказ 7145/16 ВНИИЙИ Госу по делам 113035, Иос

Заявка

3521715, 16.12.1982

ИНСТИТУТ НЕОРГАНИЧЕСКОЙ ХИМИИ И ЭЛЕКТРОХИМИИ АН ГССР

ЦВЕНИАШВИЛИ ВЛАДИМИР ШАЛВОВИЧ, ГАПРИНДАШВИЛИ ВАХТАНГ НИКОЛАЕВИЧ, МАЛАШХИЯ МАРИНА ВАЛЕНТИНОВНА, ХАВТАСИ НАНУЛИ САМСОНОВНА, БЕЛЕНЬКАЯ ИНГА АРСЕНЕВЬНА

МПК / Метки

Код ссылки

Способ очистки четыреххлористого углерода

Похожие патенты

Окисления комплексов кобальта (П) через определенный про. - межуток времени.Это позволяет определять содержание воды в органическом растворителе по градуировочному графику, построенному в координатах "разница оптической плотности. растворов при, 390 нм в отсутствие и в присутствии воды" - 11 концентрация воды в органическом растворителе,П р и м е р 1, В пробирку с при" тертой пробкой объемом 15 мл вносят 5 мл безводного ацетона, приливают с помощью микропипетки 0,025 мл 10 - ного раствора воды н ацетоне, что соответствует содержанию воды в пробе 0,05 , затем прибавляют 1 мл 1.10К раствора безводного хлористого кобальта в ацетоне, 1 мл 2,5.10 2 М раствора 4-аминоантипирина в ацетоне, перемешивают и через 1 мин вводят 2 мл 5,0,10...

Чистого растворителя с несмешивающейся с ним жид костью с последующим измерением критической температуры взаимного растворения смеси, составленной пз влажного растворителя и несмешивающейся с ним жидкости, и по разности значений критических температур судят 1 о содержании воды в растворителе.В качестве несмешивающейся с полярным растворителем жидкости используют кремний, органические соединения, например октаметилциклотетрасплоксан. 2 Согласно описываемому испытуемого полярного раст пробирке длиной 15 слс п октаметилциклотетрасилокса пробирки нагревают при п тех пор, пока смесь не ста затем медленно охлаждают рывном перемешивапии. П к критической температуре в дают опалесценцию. При дальнейшем охлденни жидкость внезапно...

Кобальткарбонштфосфиттовьте комплексы, обрабатывают в нейтральной или щелочной среде при б 0120 С газом, содержащим кислород в 3-20-кратнов 1 избытке по отношению к количеству кобальта.Пример 1. На обработку берут раствор процесса гидрирования циклододекагриена в питалододецен, содержащий 60 вес. % циклоцодсиена, 38,5% толуола и 0,5% кобальткарбогтнцттрибутилфострттттового комплекса100 г раствора нагревают до 70 С и черезнего в течение часа пропускают 2,3 л возду(1 О-кратный избыток кислорода относи р ЭЗЛОИСЕНтельно требующегося по реакции). После этого отфильтровывают выделившийся осадок; содержание остаточного кобальта в растворе 0,0 О 07%.Пример 2. На обработку берут 50 г раствора кобальткарбонилгрифенилфосфинового...

Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter

ВВЕДЕНИЕ

Чистота растворителей

Требования, предъявляемые к степени чистоты растворителя, несомненно, зависят от того, как этот растворитель затем будет использоваться. Поэтому не существует адекватных экспериментальных критериев для идеальной чистоты растворителей; с применением обычных методов очистки можно получить растворитель лишь приблизительно 100%-ной чистоты. С практической точки зрения чистота определяется следующим образом: «Материал считается достаточно чистым, если он не содержит примесей такой природы и в таких количествах, которые могли бы препятствовать его использованию в целях, для которых он предназначен»

Основные меры предосторожности

Ниже перечислены некоторые правила, которые следует соблюдать при очистке растворителей и работе с ними;

А) Ни при каких обстоятельствах не следует использовать натрии и другие активные металлы или гидриды металлов для высушивания жидкостей или соединений кислотного характера (или галогенсодержащих соединений), которые могут действовать как окислители.

Б) Не следует применять энергичные высушивающие агенты (такие, как Na, СаН 2 , LiAlH 4 , H 2 SO 4 , P 2 O 5) до тех пор, пока не проведена предварительная грубая сушка с помощью обычных агентов (Na 2 SО 4 и др.) или в веществе не гарантировано низкое содержание воды.

В) Перед перегонкой и высушиванием простых эфиров и других растворителей обязательно следует проверять наличие в них перекисей и удалять их. Во избежание образования перекисей большинство простых эфиров не следует хранить на свету и на воздухе в течение длительного времени.

Г) Следует помнить, что многие растворители (например, бензол и др.) токсичны и обладают способностью накапливаться в организме; поэтому необходимо избегать вдыхания паров этих растворителей. Следует помнить также, что многие растворители, за исключением, например, ССl 4 и СНСl 3 , легко воспламеняются; особенно опасны в этом отношении диэтиловый эфир и CS 2 .

Д) Тщательно очищенные растворители рекомендуется хранить в герметичной стеклянной посуде в инертной атмосфере (обычно N 2 , свободный от О 2). Если герметичность обеспечить невозможно, следует создать избыточное давление инертного газа над поверхностью жидкости. Длительное хранение некоторых растворителей обеспечивается герметизацией закрытой емкости парафином.

МЕТОДЫ БЫСТРОГО ОПРЕДЕЛЕНИЯ ПЕРЕКИСЕЙ В ЖИДКОСТЯХ

1. Наиболее чувствительный метод (позволяет определить до 0,001% перекиси); под действием капли жидкости, содержащей перекись, бесцветный ферротиоцианат превращается в красный ферритиоцианат. Реагент готовят следующим образом: 9 г FeSO 4 7H 2 О растворяют в 50 мл 18%-ной НСl. Добавляют немного гранулированного Zn и 5 г тиоцианата натрия; после исчезновения красного окрашивания добавляют еще 12 г тиоцианата натрия и раствор декантируют с непрореагировавшего Zn в чистую склянку.

2. Несколько миллилитров жидкости помещают в колбу со стеклянной пробкой. Добавляют 1 мл свежеприготовленного 10%-ного водного раствора KI, встряхивают и оставляют стоять в течение 1 мин. Появление желтой окраски указывает на наличие перекиси. Более быстрый метод заключается в следующем: около 1 мл жидкости добавляют к равному объему ледяной уксусной кислоты, содержащей около 100 мг NaI или KI. Желтая окраска раствора указывает на наличие низкой концентрации, коричневая - высокой концентрации перекиси.

3. Метод определения перекисей в жидкостях, нерастворимых в воде, состоит в следующем: несколько миллилитров жидкости добавляют к раствору, содержащему около 1 мг бихромата натрия, 1 мл воды и 1 каплю разбавленной H 2 SО 4 . Голубая окраска органического слоя (ион перхромата) указывает на наличие перекиси.

4. Некоторое количество жидкости «стряхивают с каплей чистой ртути; в присутствии перекиси образуется черная пленка окиси ртути.

УДАЛЕНИЕ ПЕРЕКИСЕЙ (В ЧАСТНОСТИ, ИЗ ПРОСТЫХ ЭФИРОВ)

1. Большие количества перекисей удаляют, выдерживая жидкости над окисью алюминия или пропуская их через короткие колонки, заполненные окисью алюминия. Применение активированной окиси алюминии позволяет одновременно высушивать растворитель. Меры предосторожности: при пропускании растворителей через колонку необходимо следить, чтобы окись алюминия была полностью смочена растворителем; адсорбированные перекиси следует элюировать или вымывать, например, 5%-ным водным раствором FeSО 4 (см. ниже).

2. Из жидкостей, нерастворимых в воде, перекиси удаляют встряхиванием с концентрированным раствором соли двухвалентного железа (100 г сульфата железа (II), 42 мл концентрированной НCl, 85 мл воды). При такой обработке в некоторых простых эфирах могут образовываться небольшие количества альдегидов, которые удаляют промыванием 1%-ным раствором КМnO 4 , затем 5%-ным. водным раствором NaOH и водой.

3. Одним из наиболее эффективных реагентов для удаления перекисей является водный раствор пиросульфита натрия (называемого также метабисульфитом Na 2 S 2 O 5), который быстро реагирует с перекисями в стехиометрических соотношениях.

4. Перекиси в больших концентрациях полностью удаляют из эфиров промыванием на холоду триэтилентетрамином (25% веса эфира).

5. Двухлористое олово SnCl 2 - единственный неорганический реагент, который эффективен в твердом состоянии.

6. Из эфиров, растворимых в воде, перекиси обычно удаляют кипячением эфира с обратным холодильником в присутствии 0,5 вес.% Сu 2 Cl 2 и последующей перегонкой.

МЕТОДЫ ОЧИСТКИ

Использование приведенных ниже методов очистки дает возможность получать растворители со степенью чистоты, удовлетворяющей в большинстве случаев требованиям химического и физического эксперимента (синтез, кинетические исследования, спектроскопия, определение дипольных моментов и т.д.). При этом предполагается, что экспериментатор использует для очистки выпускаемые промышленностью растворители с определенной стандартной степенью чистоты (см. гл. 1), а не технические растворители, содержащие большое количество примесей. Если не сделано специальных оговорок, перегонка растворителя. осуществляется при атмосферном давлении. Если не указан метод кристаллизации растворителя из другой жидкости, под кристаллизацией подразумевается вымораживание очищаемого растворителя; при этом с кристаллической массы сливают до 20% жидкости. В дополнение к изложенным здесь методам во многих случаях для очистки растворителей можно рекомендовать так называемое «адсорбционное фильтрование» с использованием активированной окиси алюминия.

Ароматические углеводороды

Бензол очень высокой чистоты (т. кип. 80,1°; т. пл. 5,53°) получают дробной кристаллизацией из этанола или метанола с последующей перегонкой. При использовании традиционного метода очистки бензол встряхивают или перемешивают с концентрированной серной кислотой (100 мл на 1 л бензола) и затем удаляют слой кислоты; операцию повторяют до тех пор, пока слой кислоты не будет иметь очень слабую окраску. Бензол декантируют и перегоняют. Очистка с использованием серной кислоты позволяет удалить из бензола примеси тиофена, олефинов и воду.

Толуол (т. кип. 110.6°) и ксилолы очищают аналогичным образом; следует помнить, однако, что эти углеводороды обладают более высокой, чем бензол, способностью сульфироваться, поэтому при обработке их серной кислотой необходимо охлаждать смесь, поддерживая температуру ниже 30°С. Кроме серной кислоты, рекомендуется также применять для высушивания СаСl 2 , хотя, вообще говоря, может оказаться достаточно и простой перегонки, так как указанные углеводороды образуют азеотропные смеси с водой или имеют значительно более высокую температуру кипения, чем вода.

Ацетон (т. кип. 56,2°)

Ацетон очень трудно высушить; применение многих из обычно используемых высушивающих агентов (даже МgSO 4) приводит к конденсации ацетона. Для высушивания удобно использовать молекулярное сито 4А и К 2 СО 3 . Перегонка над небольшим количеством КМnО 4 позволяет разрушить примеси, содержащиеся в ацетоне, например альдегиды. Очень чистый ацетон получают следующим образом: насыщают сухим NaI при 25-30°С, раствор декантируют и охлаждают до -10°С; кристаллы NaI образуют с ацетоном комплекс, который отфильтровывают и нагревают до 30°С; образующуюся жидкость перегоняют.

Ацетонитрил (т. кип. 81,6°)

Ацетонитрил, содержащий воду, предварительно высушивают, затем перемешивают с СаН 2 до прекращения выделения газа и перегоняют над Р 2 О 5 (≤5 г/л) в стеклянной аппаратуре с дефлегматором с высоким флегмовым числом. Дистиллят кипятят с обратным холодильником над СаН 2 (5 г/л) не менее 1 ч, затем медленно перегоняют, отбрасывая первые 5% и последние 10% дистиллята, для того чтобы уменьшить содержание акрилонитрила. Если ацетонитрил содержит в качестве примеси бензол (полоса поглощения в УФ-спектре при 260 нм, интенсивный «хвост» при 220 нм), последний удаляют азеотропной перегонкой с водой перед обработкой Р 2 О 5 .

трет -Бутиловый спирт (т. кип. 82°)

Для получения спирта очень высокой чистоты (т. пл. 25,4°) его перегоняют над СаО с последующей многократной кристаллизацией.

Диметилсульфоксид [т. кип. 189° (разл.)]

Диметилсульфоксид может содержать, помимо воды, примеси диметилсульфида и сульфона. Для очистки его держат в течение 12 и более часов над свежей активированной окисью алюминия, дриеритом, ВаО или NaOH. Затем перегоняют под уменьшенным давлением (~2-3 мм рт. ст., т. кип. 50°) над гранулами NaOH или ВаО и хранят над молекулярным ситом 4А.

Диметилформамид (т. кип. 152°)

N,N-Диметилформамид может содержать примеси воды и муравьиной кислоты. Растворитель перемешивают или встряхивают с КОН и перегоняют над СаО или ВаО.

1,4-Диоксан (т. кип. 102°)

Диоксан может содержать большое количество примесей, поэтому его трудно очистить. Известно, что многие из описанных методов неэффективны при очистке этого растворителя, так как приводят к разложению жидкости. Традиционный метод очистки состоит в следующем. Смесь 300 мл воды, 40 мл концентрированной НCI и 3 л диоксана кипятят с обратным холодильником в течение 12 ч в медленном токе азота (для удаления ацетальдегида, который образуется при гидролизе примеси ацеталя гликоля). Раствор охлаждают и добавляют гранулы КОН до тех пор, пока они не перестанут растворяться и не произойдет разделение слоев. Слой диоксана (верхний слой) декантируют и сушат над свежей гидроокисью калия. Высушенный диоксан кипятят над Na в течение 12 ч или до тех пор, пока Na не будет сохранять блестящую поверхность. Затея растворитель перегоняют над Na и хранят в темноте в атмосфере N 2 .

Для высушивания диоксана не следует использовать LiAlH 4 , так как он может разлагаться при температуре кипения растворителя. Для того чтобы обеспечить отсутствие кислорода и перекисей в очищенном диоксане, рекомендуется использовать бензофенонкетил.

Диэтиловый эфир (т. кип. 34,5°)

Во всех случаях, за исключением тех, когда используют готовый «абсолютный» эфир, растворитель следует проверять на присутствие перекисей и соответствующим образом обрабатывать. При работе с эфиром необходимо соблюдать дополнительные меры предосторожности, связанные с легкой воспламеняемостью растворителя. Достаточно сухой эфир можно получить высушиванием и перегонкой над натриевой проволокой, однако наиболее эффективным методом является перегонка над LiAlH 4 (или СаН 2).

Метанол (т. кип. 64,5°)

В метаноле, помимо воды, обнаруживаются примеси карбонильных и гидроксилсодержащих соединений с числом атомов С от 1 до 4, однако растворитель со степенью чистоты «reagent grade» обычно содержит лишь следы таких примесей. Ацетон удаляют из метанола в виде йодоформа после обработки NaOI. Большую часть воды можно удалить перегонкой, так как метанол не образует азеотропных смесей с водой. Очень сухой метанол получают, выдерживая растворитель над молекулярными ситами 3А или 4А или пропуская через колонку, заполненную этими молекулярными ситами; затем растворитель сушат над гидридом кальция. В качестве высушивающего агента для метанола не рекомендуется использовать дриерит! Остатки воды можно также удалить с помощью метилата магния следующим образом: смесь 50 мл метанола, 5 г Mg в виде стружки и 0,5 г сублимированного иода кипятят с обратным холодильником до обесцвечивания раствора и прекращения выделения водорода. Затем добавляют 1 л метанола, кипятят с обратным холодильником около 30 мин и осторожно перегоняют.

Нитроалканы

Поступающие в продажу соединения с числом атомов углерода от 1 до 3 можно достаточно хорошо очистить высушиванием над хлористым кальцием или P 2 O 5 с последующей осторожной перегонкой. Нитрометан высокой чистоты также получают дробной кристаллизацией (т. пл. -28,6°).

Нитробензол (т. кип. 211°)

Нитробензол, очищенный дробной кристаллизацией (т. пл. 5,76°) и перегонкой над Р 2 О 5 , бесцветен. Растворитель, содержащий примеси, быстро окрашивается над P 2 О 5 ; чистый растворитель остается бесцветным даже после продолжительного контакта с Р 2 О 5 .

Пиридин (т. кип. 115,3°)

Пиридин высушивают в течение длительного времени над гранулами КОН, затем перегоняют над ВаО. Следует иметь в виду, что пиридин очень гигроскопичен (образует гидрат, т. кип. 94,5°), поэтому необходимо следить, чтобы в очищенный растворитель не попадала влага.

2-Пропанол [изо-пропанол] (т. кип. 82,4°)

2-Пропанол образует азеотропную смесь с водой (9% воды, т. кип. 80,3°); воду можно удалить кипячением с обратным холодильником или перегонкой над известью. Растворитель склонен к образованию перекисей, которые обычно разрушают кипячением с обратным холодильником над SnСl 2 . Достаточно сухой и чистый растворитель получают перегонкой над безводным сульфатом кальция; очень сухой спирт получают с использованием Мg по методике, описанной для метанола.

Серная кислота (т. кип. около 305°)

По Джолли, 100%-ную кислоту обычно получают добавлением дымящей серной кислоты к стандартной 96%-ной кислоте до тех пор, пока содержащаяся в ней вода не превратится в серную кислоту. Время окончания этой процедуры определяют следующим образом: через кислоту с помощью небольшого каучукового шприца продувают влажный воздух; образование тумана свидетельствует об избытке SО 3 ; если кислота еще не 100%-ная, туман не образуется. Этот метод позволяет регулировать состав кислоты с точностью до 0,02% (!). Серная кислота очень гигроскопична, поэтому необходимо следить, чтобы в нее не попадала влага.

Сероуглерод (т. кип. 46,2°)

Сероуглерод представляет собой легко воспламеняющуюся и токсичную жидкость, поэтому при работе с ним необходимо соблюдать особые меры предосторожности. Перегонять растворитель следует очень осторожно, используя водяную баню, которую рекомендуется нагревать до температуры, ненамного превышающей температуру кипения СS 2 . Примеси серы из сероуглерода удаляют, встряхивая растворитель сначала с Нg, затем с холодным насыщенным раствором НgСl 2 и далее с холодным насыщенным раствором КМnO 4 , после чего сушат над Р 2 О 5 и перегоняют.

Тетрагидрофуран (т. кип. 66°)

Растворитель обязательно следует проверять на наличие перекисей и соответствующим образом обрабатывать; следы перекисей удаляют кипячением 0,5%-ной суспензии Cu 2 Cl 2 в тетрагидрофуране в течение 30 мин, после чего растворитель перегоняют. Затем тетрагидрофуран сушат над гранулами КОН, кипятят с обратным холодильником и перегоняют над литийалюминийгидридом или гидридом кальция. Такой метод позволяет получить очень сухой растворитель.

Уксусная кислота (т. кип. 118°)

Поступающая в продажу ледяная уксусная кислота (~99,5%) содержит примеси карбонильных соединений, которые удаляют кипячением с обратным холодильником в присутствии от 2 до 5 вес.% КМnO 4 или избытка СrО 3 , после чего кислоту перегоняют. Следы воды удаляют при нагревании обработкой двойным или тройным избытком триацетилбората, который готовят нагреванием при 60°С смеси борной кислоты и уксусного ангидрида (в соотношении 1:5 по весу); смесь уксусной кислоты с триацетилборатом охлаждают и образовавшиеся кристаллы отфильтровывают. После перегонки получают безводную кислоту. Уксусную кислоту обезвоживают также перегонкой над Р 2 O 5 .

Четыреххлористый углерод (т. кип. 76,5°)

Примеси CS 2 из ССl 4 удаляют перемешиванием горячего растворителя с 10 об.% концентрированного спиртового раствора КОН. Эту процедуру повторяют несколько раз, после чего растворитель промывают водой, высушивают над СаСl 2 и перегоняют над P 2 О 5 .

Хлороформ (т. кип. 61,2°)

Поступающий в продажу хлороформ чаще всего содержит около 1% этанола в качестве стабилизатора, предохраняющего хлороформ от окисления кислородом воздуха в фосген. Для очистки растворителя рекомендуется один из следующих методов:

А) Хлороформ встряхивают с концентрированной H 2 SO 4 , промывают водой, сушат над СаСl 2 или К 2 СO 3 и перегоняют.

Б) Хлороформ пропускают через колонку, заполненную активированной окисью алюминия (степень активности 1) (около 25 г на 500 мл CHCI 3).

В) Хлороформ несколько раз встряхивают с водой (около половины объема растворителя), сушат над СаСl 2 и перегоняют над Р 2 О 5 .

Растворитель, очищенный по любому из этих методов, хранят в темноте в атмосфере N 2 .

Этанол (т. кип. 78,3°)

Поступающий в. продажу «абсолютный» этанол содержит около 0,1-0,5% воды и, как правило, 0,5-10% денатурирующего агента (ацетона, бензола, диэтилового эфира или метанола и т.д.). Более доступный и менее дорогой растворитель обычно представляет собой азеотропную смесь с водой (4,5%) (95%-ный этанол или cпирт-ректификат) (т. кип. 78,2°). Именно этот растворитель чаще всего используется в УФ-спектрофотометрии (этанол со степенью чистоты «reagent grade» или USP не содержит примесей бензола и других денатурирующих агентов). Чистый этанол весьма гигроскопичен и легко поглощает влагу; это обстоятельство следует считывать при получении сухого растворителя.

Для удаления следов воды из абсолютного этанола рекомендуется следующий метод. Смесь 60 мл абсолютного этанола, 5 г Mg (стружка) и нескольких капель CCl 4 или СНСl 3 (катализатор) кипятят с обратным холодильником до тех пор, пока весь Mg не превратится в этилат. Добавляют еще 900 мл абсолютного этанола, кипятят с обратным холодильником в течение 1 ч и перегоняют. Если необходимо обеспечить отсутствие в абсолютируемом растворителе соединений галогенов, вместо CCl 4 или СНСl 3 в качестве катализатора можно использовать легколетучий этил бромид. Образование объемного осадка при добавлении в этанол бензольного раствора этилата алюминия позволяет обнаружить присутствие в растворителе до 0,05% воды. Хранение абсолютированного этанола над молекулярным ситом ЗА позволяет сохранять растворитель с содержанием воды не более 0,005%.

Большую часть воды из 95%-пого спирта удаляют кипячением с обратным холодильником над свежей известью (СаО) и последующей перегонкой. В качестве другого метода рекомендуется азеотропная перегонка: воду отгоняют из тройной азеотропной смеси, например бензол-этанол-вода (т. кип. 64,48°); затем отгоняют бензол из двойной азеотропной смеси бензол-этанол (т. кип. 68,24°).

Этилацетат (т. кип. 77,1°)

Поступающий в продажу этилацетат чаще всего содержит а качестве примесей воду, этанол и кислоты; их удаляют промывая растворитель 5%-ным водным раствором карбоната натрия, затем насыщенным раствором хлористого кальция, после чего высушивают над безводным карбонатом калия и перегоняют над Р 2 О 5 .

Другие растворители

Целлозольвы и карбитолы очищают высушиванием над сульфатом кальция и перегонкой. Ангидриды кислот очищают фракционной перегонкой из расплавов солей соответствующих кислот; ангидриды с высоким молекулярным весом (с 6 атомами углерода и т.д.) разлагаются в процессе перегонки при атмосферном давлении.