Как держать форму. Массаж. Здоровье. Уход за волосами

Кто изобрел турбореактивный двигатель. Реактивный двигатель

В передней части реактивного двигателя располагается вентилятор. Он забирает воздух из внешней среды, засасывая его в турбину. В двигателях, применяемых в ракетах, воздух заменяет жидкий кислород. Вентилятор снабжен множеством титановых лопастей, имеющих специальную форму.

Площадь вентилятора стараются сделать достаточно большой. Помимо забора воздуха эта часть системы участвует также и в охлаждении двигателя, предохраняя его камеры от разрушения. Позади вентилятора располагается компрессор. Он под большим давлением нагнетает воздух в камеру сгорания.

Один из главных конструктивных элементов реактивного двигателя – камера сгорания. В ней топливо смешивается с воздухом и поджигается. Происходит возгорание смеси, сопровождающееся сильным разогревом деталей корпуса. Топливная смесь под действием высокой температуры расширяется. Фактически в двигателе происходит управляемый взрыв.

Из камеры сгорания смесь топлива с воздухом поступает в турбину, которая состоит из множества лопаток. Реактивный поток с усилием давит на них и приводит турбину во вращение. Усилие передается на вал, компрессор и вентилятор. Образуется замкнутая система, для работы которой требуется лишь постоянный подвод топливной смеси.

Последняя по счету деталь реактивного двигателя – сопло. Сюда из турбины поступает разогретый поток, формируя реактивную струю. В эту часть двигателя также подается от вентилятора холодный воздух. Он служит для охлаждения всей конструкции. Воздушный поток защищает манжету сопла от вредного воздействия реактивной струи, не позволяя деталям расплавиться.

Как работает реактивный двигатель

Рабочим телом двигателя является реактивная . Она с очень большой скоростью истекает из сопла. При этом образуется реактивная сила, которая толкает все устройство в противоположном направлении. Тяговое усилие создается исключительно за счет действия струи, без какой-либо опоры на другие тела. Эта особенность работы реактивного двигателя позволяет использовать его в качестве силовой установки для ракет, самолетов и космических аппаратов.

Отчасти работа реактивного двигателя сравнима с действием струи воды, вытекающей из шланга. Под огромным давлением жидкость подается по рукаву к зауженному концу шланга. Скорость воды при выходе из брандспойта выше, чем внутри шланга. При этом образуется сила обратного давления, которая позволяет пожарному удерживать шланг лишь с большим трудом.

Производство реактивных двигателей представляет собой особую отрасль техники. Поскольку температура рабочего тела здесь достигает нескольких тысяч градусов, детали двигателя изготовляют из высокопрочных металлов и тех материалов, которые устойчивы к плавлению. Отдельные части реактивных двигателей выполняют, к примеру, из специальных керамических составов.

Видео по теме

Функция тепловых двигателей – преобразование тепловой энергии в полезную механическую работу. Рабочим телом в таких установках служит газ. Он с усилием давит на лопатки турбины или на поршень, приводя их в движение. Самые простые примеры тепловых двигателей – это паровые машины, а также карбюраторные и дизельные двигатели внутреннего сгорания.

Инструкция

Поршневые тепловые двигатели имеют в своем составе один или несколько цилиндров, внутри которых находится поршень. В объеме цилиндра происходит расширение горячего газа. При этом поршень под воздействием газа перемещается и совершает механическую работу. Такой тепловой двигатель преобразует возвратно-поступательное движение поршневой системы во вращение вала. Для этой цели двигатель оснащается кривошипно-шатунным механизмом.

К тепловым двигателям внешнего сгорания относятся паровые машины, в которых рабочее тело разогревается в момент сжигания топлива за пределами двигателя. Нагретый газ или пар под сильным давлением и при высокой температуре подается в цилиндр. Поршень при этом перемещается, а газ постепенно охлаждается, после чего давление в системе становится почти равным атмосферному.

Отработавший свое газ выводится из цилиндра, в который немедленно подается очередная порция. Для возврата поршня в начальное положение применяют маховики, которые крепят на вал кривошипа. Подобные тепловые двигатели могут обеспечивать одинарное или двойное действие. В двигателях с двойным действием на один оборот вала приходится две стадии рабочего хода поршня, в установках одинарного действия поршень совершает за то же время один ход.

Отличие двигателей внутреннего сгорания от описанных выше систем состоит в том, что горячий газ здесь получается при сжигании топливно-воздушной смеси непосредственно в цилиндре, а не вне его. Подвод очередной порции горючего и

Изобретатель : Френк Уиттл (двигатель)
Страна : Англия
Время изобретения : 1928 г.

Турбореактивная авиация зародилась в годы Второй мировой войны, когда был достигнут предел совершенства прежних винтомоторных , оснащенных .

С каждым годом гонка за скоростью становилась все труднее, поскольку даже незначительный ее прирост требовал сотен добавочных лошадиных сил мощности двигателя и автоматически приводил к утяжелению самолета. В среднем, увеличение мощности на 1 л.с. вело за собой увеличение массы двигательной установки (самого двигателя, винта и вспомогательных средств) в среднем на 1 кг. Простые расчеты показывали, что создать винтомоторный самолет-истребитель со скоростью порядка 1000 км/ч практически невозможно.

Необходимая для этого мощность двигателя в 12000 лошадиных сил могла быть достигнута только при весе мотора порядка 6000 кг. В перспективе выходило, что дальнейший рост скорости приведет к вырождению боевых самолетов, превратит их в аппараты, способные носить лишь самих себя.

Для оружия, радиооборудования, брони и запаса горючего на борту уже не оставалось места. Но даже такой ценой невозможно было получить большого прироста скорости. Более тяжелый мотор увеличивал общий вес , что заставляло увеличивать площадь крыла, это вело к возрастанию их аэродинамического сопротивления, для преодоления которого необходимо было повысить мощность двигателя.

Таким образом, круг замыкался и скорость порядка 850 км/ч оказывалась предельно возможной для самолета с . Выход из этой порочной ситуации мог быть только один - требовалось создать принципиально новую конструкцию авиационного двигателя, что и было сделано, когда на смену поршневым самолетам пришли турбореактивные.

Принцип действия простого реактивного двигателя можно понять, если рассмотреть работу пожарного брандспойта. Вода под давлением подается по шлангу к брандспойту и истекает из него. Внутреннее сечение наконечника брандспойта суживается к концу, в связи с чем струя вытекающей воды имеет большую скорость, чем в шланге.

Сила обратного давления (реакции) при этом бывает настолько велика, что пожарник зачастую должен напрягать все силы для того, чтобы удержать брандспойт в требуемом направлении. Этот же принцип можно применить в авиационном двигателе. Самым простым реактивным двигателем является прямоточный.

Представим себе трубу с открытыми концами, установленную на движущемся самолете. Передняя часть трубы, в которую поступает воздух вследствие движения самолета, имеет расширяющееся внутреннее поперечное сечение. Из-за расширения трубы скорость поступающего в нее воздуха снижается, а давление соответственно увеличивается.

Допустим, что в расширяющейся части в поток воздуха впрыскивается и сжигается горючее. Эту часть трубы можно назвать камерой сгорания. Сильно нагретые газы стремительно расширяются и вырываются через суживающееся реактивное сопло со скоростью, многократно превосходящей ту, которую воздушный поток имел на входе. За счет этого увеличения скорости создается реактивная сила тяги, которая толкает самолет вперед.

Нетрудно видеть, что такой двигатель может работать лишь в том случае, если он движется в воздухе со значительной скоростью, но он не может приводиться в действие тогда, когда находится без движения. Самолет с таким двигателем должен или запускаться с другого самолета или разгоняться с помощью специального стартового двигателя. Этот недостаток преодолен в более сложном турбореактивном двигателе.

Наиболее ответственным элементом этого двигателя является газовая турбина, которая приводит во вращение воздушный компрессор, сидящий на одном с ней валу. Воздух, поступающий в двигатель, сначала сжимается во входном устройстве - диффузоре, затем в осевом компрессоре и после этого попадает в камеру сгорания.

Топливом обычно служит керосин, который вбрызгивается в камеру сгорания через форсунку. Из камеры продукты сгорания, расширяясь, поступают, прежде всего, на лопатки газовой , приводя ее во вращение, а затем в сопло, в котором разгоняются до очень больших скоростей.

Газовая турбина использует лишь небольшую часть энергии воздушно-газовой струи. Остальная часть газов идет на создание реактивной силы тяги, которая возникает за счет истекания с большой скоростью струи продуктов сгорания из сопла. Тяга турбореактивного двигателя может форсироваться, то есть увеличиваться на короткий период времени различными способами.

Например, это можно делать с помощью так называемого дожигания (при этом в поток газов позади турбины дополнительно впрыскивается топливо, которое сгорает за счет кислорода, не использованного в камерах сгорания). Дожиганием можно за короткий срок дополнительно увеличить тягу двигателя на 25-30% при малых скоростях и до 70% при больших скоростях.

Газотурбинные двигатели начиная с 1940 года, произвели настоящую революцию в авиационной технике, но первые разработки по их созданию появились десятью годами прежде. Отцом турбореактивного двигателя по праву считается английский изобретатель Френк Уиттл. Еще в 1928 году, будучи слушателем в авиационной школе в Крэнуэлле, Уиттл предложил первый проект реактивного двигателя, оснащенного газовой турбиной.

В 1930 году он получил на него патент. Государство в то время не заинтересовалось его разработками. Но Уиттл получил помощь от некоторых частных фирм, и в 1937 году по его проекту фирма «Бритиш-Томсон-Хаустон» построила первый в истории турбореактивный двигатель, получивший обозначение «U». Только после этого министерство авиации обратило внимание на изобретение Уиттла. Для дальнейшего совершенствования двигателей его конструкции была создана фирма «Пауэр», имевшая поддержку от государства.

Тогда же идеи Уиттла оплодотворили конструкторскую мысль Германии. В 1936 году немецкий изобретатель Охайн, в то время студент Геттингенского университета, разработал и запатентовал свой турбореактивный двигатель. Его конструкция почти ничем не отличалась от конструкции Уиттла. В 1938 году фирма «Хейнкель», принявшая Охайна на работу, разработала под его руководством турбореактивный двигатель HeS-3B, который был установлен на самолете He-178. 27 августа 1939 года этот самолет совершил первый успешный полет.

Конструкция He-178 во многом предвосхищала устройство будущих реактивных самолетов. Воздухозаборник располагался в носовой части фюзеляжа. Воздух, разветвляясь, обходил кабину летчика и попадал прямым потоком в двигатель. Горячие газы истекали через сопло в хвостовой части. Крылья у этого самолета были еще деревянные, но фюзеляж - из дюралюминия.

Двигатель, установленный позади кабины летчика, работал на бензине и развивал тягу 500 кг. Максимальная скорость самолета достигала 700 км/ч. В начале 1941 года Ханс Охайн разработал более совершенный двигатель HeS-8 с тягой 600 кг. Два таких двигателя были установлены на следующем самолете He-280V.

Испытания его начались в апреле того же года и показали хороший результат - самолет развивал скорость до 925 км/ч. Однако серийное производство этого истребителя так и не началось (всего было изготовлено 8 штук) из-за того, что двигатель все-таки оказался ненадежным.

Тем временем «Бритиш-Томсон-Хаустон» выпустила двигатель W1.X, специально спроектированный под первый английский турбореактивный самолет «Глостер G40», который совершил свой первый полет в мае 1941 года (на самолете был установлен затем усовершенствованный двигатель Уиттла W.1). Английскому первенцу было далеко до немецкого. Максимальная скорость его равнялась 480 км/ч. В 1943 году был построен второй «Глостер G40» с более мощным двигателем, развивавший скорость до 500 км/ч.

По своей конструкции «Глостер» удивительно напоминал немецкий «Хейнкель». G40 имел цельнометаллическую конструкцию с воздухозаборником в носовой части фюзеляжа. Подводящий воздуховод был разделен и огибал с обеих сторон кабину летчика. Истечение газов происходило через сопло в хвосте фюзеляжа.

Хотя параметры G40 не только не превосходили те, что имели в то время скоростные винтомоторные самолеты, но и заметно уступали им, перспективы применения реактивных двигателей оказались настолько многообещающими, что английское министерство авиации решило приступить к серийному выпуску турбореактивных истребителей-перехватчиков. Фирма «Глостер» получила заказ на разработку такого самолета.

В последующие годы сразу несколько английских фирм начали производить различные модификации турбореактивного двигателя Уиттла. Фирма «Ровер», взяв за основу двигатель W.1, разработала двигатели W2B/23 и W2B/26. Затем эти двигатели были куплены фирмой «Роллс-Ройс», которая на их основе создала свои модели - «Уэллэнд» и «Дервент».

Первым в истории серийным турбореактивным самолетом стал, впрочем, не английский «Глостер», а немецкий «Мессершмитт» Ме-262. Всего было изготовлено около 1300 таких самолетов различных модификаций, оснащенных двигателем фирмы «Юнкерс» «Юмо-004B». Первый самолет этой серии был испытан в 1942 году. Он имел два двигателя с тягой 900 кг и развивал скорость 845 км/ч.

Английский серийный самолет «Глостер G41 Метеор» появился в 1943 году. Оснащенный двумя двигателями «Дервент» с тягой каждого по 900 кг, «Метеор» развивал скорость до 760 км/ч и имел высоту полета до 9000 м. В дальнейшем на самолеты начали устанавливать более мощные «Дервенты» с тягой около 1600 кг, что позволило увеличить скорость до 935 км/ч. Этот самолет отлично зарекомендовал себя, поэтому производство различных модификаций G41 продолжалось вплоть до конца 40-х годов.

США в развитии реактивной авиации поначалу сильно отставали от европейских стран. Вплоть до Второй мировой войны здесь вообще не было предпринято никаких попыток создать реактивный самолет. Только в 1941 году, когда из Англии были получены образцы и чертежи двигателей Уиттла, эти работы развернулись полным ходом.

Фирма «Дженерал Электрик», взяв за основу модель Уиттла, разработала турбореактивный двигатель I-A, который был установлен на первом американском реактивном самолете P-59A «Эркомет». Американский первенец впервые поднялся в воздух в октябре 1942 года. Он имел два двигателя, которые размещались под крыльями вплотную к фюзеляжу. Это была еще несовершенная конструкция.

По свидетельству американских летчиков, испытывавших самолет, P-59 был хорош в управлении, но летные данные его оставались неважными. Двигатель оказался слишком маломощным, так что это был скорее планер, чем настоящий боевой самолет. Всего было построено 33 такие машины. Их максимальная скорость составляла 660 км/ч, а высота полета до 14000 м.

Первым серийным турбореактивным истребителем в США стал «Локхид F-80 Шутинг Стар» с двигателем фирмы «Дженерал Электрик» I-40 (модификация I-A). До конца 40-х годов было выпущено около 2500 этих истребителей различных моделей. Скорость их в среднем составляла около 900 км/ч. Однако на одной из модификаций этого самолета XF-80B 19 июня 1947 года впервые в истории была достигнута скорость 1000 км/ч.

В конце войны реактивные самолеты по многим параметрам еще уступали отработанным моделям винтомоторных самолетов и имели множество своих специфических недостатков. Вообще, при строительстве первых турбореактивных самолетов конструкторы во всех странах столкнулись со значительными трудностями. То и дело прогорали камеры сгорания, ломались лопатки и компрессоров и, отделившись от ротора, превращались в снаряды, сокрушавшие корпус двигателя, фюзеляж и крыло.

Но, несмотря на это, реактивные самолеты имели перед винтомоторными огромное преимущество - приращение скорости с увеличением мощности турбореактивного двигателя и его веса происходило гораздо стремительнее, чем у поршневого. Это решило дальнейшую судьбу скоростной авиации - она повсеместно становится реактивной.

Увеличение скорости вскоре привело к полному изменению внешнего вида самолета. На околозвуковых скоростях старая форма и профиль крыла оказались неспособными нести самолет - он начинал «клевать» носом и входил в неуправляемое пике. Результаты аэродинамических испытаний и анализ летных происшествий постепенно привели конструкторов к новому типу крыла - тонкому, стреловидному.

Впервые такая форма крыльев появилась на советских истребителях. Несмотря на то, что СССР позже западных государств приступил к созданию турбореактивных самолетов, советские конструкторы очень быстро сумели создать высококлассные боевые машины. Первым советским реактивным истребителем, запущенным в производство, был Як-15.

Он появился в конце 1945 года и представлял собой переоборудованный Як-3 (известный во время войны истребитель с поршневым мотором), на который был установлен турбореактивный двигатель РД-10 - копия трофейного немецкого «Юмо-004B» с тягой 900 кг. Он развивал скорость около 830 км/ч.

В 1946 году на вооружение Советской армии поступил МиГ-9, снабженный двумя турбореактивными двигателями «Юмо-004B» (официальное обозначение РД-20), а в 1947 году появился МиГ-15 - первый в истории боевой реактивный самолет со стреловидным крылом, оснащенный двигателем РД-45 (так обозначался двигатель «Нин» фирмы «Роллс-Ройс», купленный по лицензии и модернизированный советскими авиаконструкторами) с тягой 2200 кг.

МиГ-15 поразительно отличался от своих предшественников и удивлял боевых летчиков необыкновенными, скошенными назад крыльями, огромным килем, увенчанным таким же стреловидным стабилизатором, и сигарообразным фюзеляжем. Самолет имел и другие новинки: катапультирующееся кресло и гидравлические усилители рулей.

Он был вооружен скорострельной и двумя (в более поздних модификациях - тремя пушками). Обладая скоростью 1100 км/ч и потолком в 15000 м, этот истребитель в течение нескольких лет оставался лучшим в мире боевым самолетом и вызвал к себе огромный интерес. (Позже конструкция МиГ-15 оказала значительное влияние на проектирование истребителей в западных странах.)

В короткое время МиГ-15 стал самым распространенным истребителем в СССР, а также был принят на вооружение в армиях его союзников. Этот самолет хорошо зарекомендовал себя и во время Корейской войны. По многим параметрам он превосходил американские «Сейбры».

С появлением МиГ-15 закончилось детство турбореактивной авиации и начался новый этап в ее истории. К этому времени реактивные самолеты освоили все дозвуковые скорости и вплотную приблизились к звуковому барьеру.

Широкое применение реактивные двигатели в настоящее время получили в связи с освоением космического пространства. Применяются они также для метеорологических и военных ракет различного радиуса действия. Кроме того, все современные скоростные самолёты оснащены воздушно-реактивными двигателям

В космическом пространстве использовать какие-либо другие двигатели, кроме реактивных, невозможно: нет опоры (твёрдой жидкой или газообразной), отталкиваясь от которой космический корабль мог бы получить ускорение. Применение же реактивных двигателей для самолётов и ракет, не выходящих за пределы атмосферы, связано стем, что именно реактивные двигатели могут обеспечить максимальную скорость полёта.

Устройство реактивного двигателя.


Просто по принципу действия: забортный воздух (в ракетных двигателях - жидкий кислород) засасывается в турбину , там смешивается с топливом и сгорая, в конце турбины образует т.н. “рабочее тело” (реактивная струя), которое и дви­гает машину.

В начале турбины стоит вентилятор , который засасывает воздух из внешней среды в турбины. Основных задач две - первичный забор воздуха и охлаждение всего дв игателя в целом, путем прокачивания воздуха между внешней оболочкой двигателя и внутренними деталями. Это охлаждает камеры смешивания и сгорания и не дает им разрушится.

За вентилятором стоит мощный компрессор , который нагнетает воздух под большим давлением в камеру сгорания.

Камера сгорания смешивает топливо с воздухом. После образования топливо-воздушной смеси, она поджигается. В процессе возгорания происходит значительный разогрев смеси и окружающих деталей, а также объемное расширение. Фактически, реактивный двигатель использует для движения управляемый взрыв. Камера сгорания реактивного двигателя - одна из самых горячих его частей. Ей необходимо постоянное интенсивное охлаждение . Но и этого недостаточно. Температура в ней достигает 2700 градусов, поэтому её часто делают из керамики.

После камеры сгорания, горящая топливо-воздушная смесь направляется непосредственно в турбину . Турбина состоит из сотен лопаток, на которые давит реактивный поток, приводя турбину во вращение. Турбина в свою очередь вращает вал , на котором находятся вентиллятор и компрессор . Таким образом система замыкается и требует лишь подвода топлива и воздуха для своего функционироваия.


Существует два основных класса реактивных двига телей:


Воздушно-реактивные двигатели - реактивный двигатель, в котором атмосферный воздух применяется как основное рабочее тело в термодинамическом цикле, а также при создании реактивной тяги двигателя. Такие двигатели используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы. Рабочее тело этих двигателей представляет собой смесь продуктов горения с остальными компонентами забранного воздуха.

Ракетные двигатели - содержат все компоненты рабочего тела на борту и способны работать в любой среде , в том числе и в безвоздушном пространстве.


Виды реактивных двигателей.

- Классический реактивный двигатель - используется в основном на истребителях в различных модификациях.

К лассический реактивный двигатель

- Турбовинтовой двигатель.

Такие двигатели позволяют большим самолетам летать на приемлемых скоростях и тратить меньше горючего

Двухлопастной турбовинтовой двигатель


- Турбовентиляторный реактивный двигатель.

Этот тип двигателя является более экономичным родственником классического типа. главное отличие в том, что на входе ставится вентилятор большего диаметра , который подает воздух не только в турбину, но и создает достаточно мощный поток вне её . Таким образом достигается повышенная экономичность, за счет улучшения КПД.

В реактивном двигателе сила тяги, необходимая для движения, создается путем преобразования исходной энергии в кинетическую энергию рабочего тела. В результате истечения рабочего тела из сопла двигателя образуется реактивная сила в виде отдачи (струи). Отдача перемещает в пространстве двигатель и конструктивно связанный с ним аппарат. Перемещение происходит в направлении, противоположном истечению струи. В кинетическую энергию реактивной струи могут преобразовываться различные виды энергии: химическая, ядерная, электрическая, солнечная. Реактивный двигатель обеспечивает собственное движение без участия промежуточных механизмов.

Для создания реактивной тяги необходимы источник исходной энергии, которая преобразуется в кинетическую энергию реактивной струи, рабочее тело, выбрасываемое из двигателя в виде реактивной струи, и сам реактивный двигатель, преобразующий первый вид энергии во второй.

Основной частью реактивного двигателя является камера сгорания, в которой создается рабочее тело.

Все реактивные двигатели делятся на два основных класса, в зависимости от того, используется в их работе окружающая среда или нет.

Первый класс – воздушно?реактивные двигатели (ВРД). Все они тепловые, в которых рабочее тело образуется при реакции окисления горючего вещества кислородом окружающего воздуха. Основную массу рабочего тела составляет атмосферный воздух.

В ракетном двигателе все компоненты рабочего тела находятся на борту оснащенного им аппарата.

Существуют также комбинированные двигатели, сочетающие в себе оба вышеназванные типа.

Впервые реактивное движение было использовано в шаре Герона – прототипе паровой турбины. Реактивные двигатели на твердом топливе появились в Китае в X в. н. э. Такие ракеты применялись на Востоке, а затем в Европе для фейерверков, сигнализации, а затем как боевые.

Важным этапом в развитии идеи реактивного движения была идея применения ракеты в качестве двигателя для летательного аппарата. Ее впервые сформулировал русский революционер?народоволец Н. И. Кибальчич, который в марте 1881 г., незадолго до казни, предложил схему летательного аппарата (ракетоплана) с использованием реактивной тяги от взрывных пороховых газов.

H. Е. Жуковский в работах «О реакции вытекающей и втекающей жидкости» (1880?е годы) и «К теории судов, приводимых в движение силой реакции вытекающей воды» (1908 г.) впервые разработал основные вопросы теории реактивного двигателя.

Интересные работы по исследованию полета ракеты принадлежат также известному русскому ученому И. В. Мещерскому, в частности в области общей теории движения тел переменной массы.

В 1903 г. К. Э. Циолковский в своей работе «Исследование мировых пространств реактивными приборами» дал теоретическое обоснование полета ракеты, а также принципиальную схему ракетного двигателя, предвосхищавшую многие принципиальные и конструктивные особенности современных жидкостно?ракетных двигателей (ЖРД). Так, Циолковский предусматривал применение для реактивного двигателя жидкого топлива и подачу его в двигатель специальными насосами. Управление полетом ракеты он предлагал осуществить посредством газовых рулей – специальных пластинок, помещаемых в струе вылетающих из сопла газов.

Особенность жидкостно?реактивного двигателя в том, что в отличие от других реактивных двигателей он несет с собой вместе с топливом весь запас окислителя, а не забирает необходимый для сжигания горючего воздух, содержащий кислород, из атмосферы. Это единственный двигатель, который может быть применен для сверхвысотного полета вне земной атмосферы.

Первую в мире ракету с жидкостным ракетным двигателем создал и запустил 16 марта 1926 г. американец Р. Годдард. Она весила около 5 килограммов, а ее длина достигала 3 м. Топливом в ракете Годдарда служили бензин и жидкий кислород. Полет этой ракеты продолжался 2,5 секунды, за которые она пролетела 56 м.

Систематические экспериментальные работы над этими двигателями начались в 30?х годах XX века.

Первые советские ЖРД были разработаны и созданы в 1930–1931 гг. в ленинградской Газодинамической лаборатории (ГДЛ) под руководством будущего академика В. П. Глушко. Эта серия называлась ОРМ – опытный ракетный мотор. Глушко применил некоторые новинки, например охлаждение двигателя одним из компонентов топлива.

Параллельно разработка ракетных двигателей велась в Москве Группой изучения реактивного движения (ГИРД). Ее идейным вдохновителем был Ф. А. Цандер, а организатором – молодой С. П. Королев. Целью Королева была постройка нового ракетного аппарата – ракетоплана.

В 1933 г. Ф. А. Цандер построил и успешно испытал ракетный двигатель ОР?1, работавший на бензине и сжатом воздухе, а в 1932–1933 гг. – двигатель ОР?2, на бензине и жидком кислороде. Этот двигатель был спроектирован для установки на планере, который должен был совершить полет в качестве ракетоплана.

В 1933 г. в ГИРДе создана и испытана первая советская ракета на жидком топливе.

Развивая начатые работы, советские инженеры в последующем продолжали работать над созданием жидкостных реактивных двигателей. Всего с 1932 по 1941 г. в СССР было разработано 118 конструкций жидкостных реактивных двигателей.

В Германии в 1931 г. состоялись испытания ракет И. Винклера, Риделя и др.

Первый полет на самолете?ракетоплане с жидкостно?реактивным двигателем был совершен в Советском Союзе в феврале 1940 г. В качестве силовой установки самолета был применен ЖРД. В 1941 г. под руководством советского конструктора В. Ф. Болховитинова был построен первый реактивный самолет – истребитель с жидкостно?ракетным двигателем. Его испытания были проведены в мае 1942 г. летчиком Г. Я. Бахчиваджи.

В это же время состоялся первый полет немецкого истребителя с таким двигателем. В 1943 г. в США провели испытания первого американского реактивного самолета, на котором был установлен жидкостно?реактивный двигатель. В Германии в 1944 г. были построены несколько истребителей с этими двигателями конструкции Мессершмитта и в том же году применены в боевой обстановке на Западном фронте.

Кроме того, ЖРД применялись на немецких ракетах Фау?2, созданных под руководством В. фон Брауна.

В 1950?е годы жидкостно?ракетные двигатели устанавливались на баллистических ракетах, а затем на искусственных спутниках Земли, Солнца, Луны и Марса, автоматических межпланетных станциях.

ЖРД состоит из камеры сгорания с соплом, турбонасосного агрегата, газогенератора или парогазогенератора, системы автоматики, органов регулирования, системы зажигания и вспомогательных агрегатов (теплообменники, смесители, приводы).

Идея воздушно?реактивных двигателей не раз выдвигалась в разных странах. Наиболее важными и оригинальными работами в этом отношении являются исследования, проведенные в 1908–1913 гг. французским ученым Р. Лореном, который, в частности, в 1911 г. предложил ряд схем прямоточных воздушно?реактивных двигателей. Эти двигатели используют в качестве окислителя атмосферный воздух, а сжатие воздуха в камере сгорания обеспечивается за счет динамического напора воздуха.

В мае 1939 г. в СССР впервые состоялось испытание ракеты с прямоточным воздушно?реактивным двигателем конструкции П. А. Меркулова. Это была двухступенчатая ракета (первая ступень – пороховая ракета) с взлетным весом 7,07 кг, причем вес топлива для второй ступени прямоточного воздушно?реактивного двигателя составлял лишь 2 кг. При испытании ракета достигла высоты 2 км.

В 1939–1940 гг. впервые в мире в Советском Союзе проводились летние испытания воздушно?реактивных двигателей, установленных в качестве дополнительных двигателей на самолете конструкции Н. П. Поликарпова. В 1942 г. в Германии испытывались прямоточные воздушно?реактивные двигатели конструкции Э. Зенгера.

Воздушно?реактивный двигатель состоит из диффузора, в котором за счет кинетической энергии набегающего потока воздуха происходит сжатие воздуха. В камеру сгорания через форсунку впрыскивается топливо и происходит воспламенение смеси. Реактивная струя выходит через сопло.

Процесс работы ВРД непрерывен, поэтому в них отсутствует стартовая тяга. В связи с этим при скоростях полета меньше половины скорости звука воздушно?реактивные двигатели не применяются. Наиболее эффективно применение ВРД на сверхзвуковых скоростях и больших высотах. Взлет самолета с воздушно?реактивным двигателем происходит при помощи ракетных двигателей на твердом или жидком топливе.

Большее развитие получила другая группа воздушно?реактивных двигателей – турбокомпрессорные двигатели. Они подразделяются на турбореактивные, в которых тяга создается струей газов, вытекающих из реактивного сопла, и турбовинтовые, в которых основная тяга создается воздушным винтом.

В 1909 г. проект турбореактивного двигателя был разработан инженером Н. Герасимовым. В 1914 г. лейтенант русского морского флота М. Н. Никольской сконструировал и построил модель турбовинтового авиационного двигателя. Рабочим телом для приведения в действие трехступенчатой турбины служили газообразные продукты сгорания смеси скипидара и азотной кислоты. Турбина работала не только на воздушный винт: отходящие газообразные продукты сгорания, направленные в хвостовое (реактивное) сопло, создавали реактивную тягу дополнительно к силе тяги винта.

В 1924 г. В. И. Базаров разработал конструкцию авиационного турбокомпрессорного реактивного двигателя, состоявшую из трех элементов: камеры сгорания, газовой турбины, компрессора. Поток сжатого воздуха здесь впервые делился на две ветви: меньшая часть шла в камеру сгорания (к горелке), а большая подмешивалась к рабочим газам для понижения их температуры перед турбиной. Тем самым обеспечивалась сохранность лопаток турбины. Мощность многоступенчатой турбины расходовалась на привод центробежного компрессора самого двигателя и отчасти на вращение воздушного винта. Дополнительно к винту тяга создавалась за счет реакции струи газов, пропускаемых через хвостовое сопло.

В 1939 г. на Кировском заводе в Ленинграде началась постройка турбореактивных двигателей конструкции А. М. Люльки. Его испытаниям помешала война.

В 1941 г. в Англии был впервые осуществлен полет на экспериментальном самолете?истребителе, оснащенном турбореактивным двигателем конструкции Ф. Уиттла. На нем был установлен двигатель с газовой турбиной, которая приводила в действие центробежный компрессор, подающий воздух в камеру сгорания. Продукты сгорания использовались для создания реактивной тяги.

В турбореактивном двигателе воздух, поступающий при полете, сжимается сначала в воздухозаборнике, а затем в турбокомпрессоре. Сжатый воздух подается в камеру сгорания, куда впрыскивается жидкое топливо (чаще всего – авиационный керосин). Частичное расширение газов, образовавшихся при сгорании, происходит в турбине, вращающей компрессор, а окончательное – в реактивном сопле. Между турбиной и реактивным двигателем может быть установлена форсажная камера, предназначенная для дополнительного сгорания топлива.

Сейчас турбореактивными двигателями оснащено большинство военных и гражданских самолетов, а также некоторые вертолеты.

В турбовинтовом двигателе основная тяга создается воздушным винтом, а дополнительная (около 10 %) – струей газов, вытекающих из реактивного сопла. Принцип действия турбовинтового двигателя схож с турбореактивным, с той разницей, что турбина вращает не только компрессор, но и воздушный винт. Эти двигатели применяются в дозвуковых самолетах и вертолетах, а также для движения быстроходных судов и автомобилей.

Наиболее ранние реактивные твердотопливные двигатели использовались в боевых ракетах. Их широкое применение началось в XIX в., когда во многих армиях появились ракетные части. В конце XIX в. были созданы первые бездымные порохи, с более устойчивым горением и большей работоспособностью.

В 1920–1930?е годы велись работы по созданию реактивного оружия. Это привело к появлению реактивных минометов – «катюш» в Советском Союзе, шестиствольных реактивных минометов в Германии.

Получение новых видов пороха позволило применять реактивные твердотопливные двигатели в боевых ракетах, включая баллистические. Кроме этого они применяются в авиации и космонавтике как двигатели первых ступеней ракет?носителей, стартовые двигатели для самолетов с прямоточными воздушно?реактивными двигателями и тормозные двигатели космических аппаратов.

Реактивный твердотопливный двигатель состоит из корпуса (камеры сгорания), в котором находится весь запас топлива и реактивного сопла. Корпус выполняется из стали или стеклопластика. Сопло – из графита, тугоплавких сплавов, графита.

Зажигание топлива производится воспламенительным устройством.

Регулирование тяги производится изменением поверхности горения заряда или площади критического сечения сопла, а также впрыскиванием в камеру сгорания жидкости.

Направление тяги может меняться газовыми рулями, отклоняющейся насадкой (дефлектором), вспомогательными управляющими двигателями и т. п.

Реактивные твердотопливные двигатели очень надежны, могут долго храниться, а следовательно, постоянно готовы к запуску.

Отличное определение

Неполное определение ↓

Под реактивным понимают движение, при котором от тела с определенной скоростью отделяется одна из его частей. Возникающая в результате такого процесса сила действует сама по себе. Другими словами, у нее отсутствует даже малейший контакт с внешними телами.

в природе

Во время летнего отдыха на юге практически каждый из нас, купаясь в море, встречался с медузами. Но мало кто задумывался о том, что эти животные перемещаются так же, как реактивный двигатель. Принцип работы в природе подобного агрегата можно наблюдать при перемещении некоторых видов морских планктонов и личинок стрекоз. Причем КПД этих беспозвоночных зачастую выше, чем у технических средств.

Кто еще может наглядно продемонстрировать, какой имеет реактивный двигатель принцип работы? Кальмар, осьминог и каракатица. Подобное движение совершают и многие другие морские моллюски. Возьмем, например, каракатицу. Она вбирает воду в свою жаберную полость и энергично выбрасывает ее через воронку, которую направляет назад или вбок. При этом моллюск способен совершать движения в нужную сторону.

Принцип работы реактивного двигателя можно наблюдать и при перемещении сальца. Это морское животное принимает воду в широкую полость. После этого мышцы его тела сокращаются, выталкивая жидкость через отверстие, находящееся сзади. Реакция получаемой при этом струи позволяет сальце совершать движение вперед.

Морские ракеты

Но самого большего совершенства в реактивной навигации достигли все-таки кальмары. Даже сама форма ракеты, кажется, скопирована именно с этого морского обитателя. При перемещении с низкой скоростью кальмар периодически изгибает свой ромбовидный плавник. А вот для быстрого броска ему приходится использовать собственный "реактивный двигатель". Принцип работы всех его мышц и тела при этом стоит рассмотреть подробнее.

У кальмаров есть своеобразная мантия. Это мышечная ткань, которая окружает его тело со всех сторон. Во время движения животное засасывает в эту мантию большой объем воды, резко выбрасывая струю через специальное узкое сопло. Такие действия позволяют кальмарам двигаться толчками назад со скоростью до семидесяти километров в час. животное собирает в пучок все свои десять щупалец, что придает телу обтекаемую форму. В сопле имеется специальный клапан. Животное поворачивает его при помощи сокращения мышц. Это позволяет морскому обитателю менять направление движения. Роль руля во время перемещений кальмара играют и его щупальца. Их он направляет влево или вправо, вниз или вверх, легко уклоняясь от столкновений с различными препятствиями.

Существует вид кальмаров (стенотевтис), которому принадлежит звание лучшего пилота среди моллюсков. Опишите принцип работы реактивного двигателя - и вы поймете, почему, преследуя рыб, это животное порой выскакивает из воды, попадая даже на палубы судов, идущих по океану. Как же это происходит? Кальмар-пилот, находясь в водной стихии, развивает максимальную для него реактивную тягу. Это и позволяет ему пролететь над волнами на расстояние до пятидесяти метров.

Если рассматривать реактивный двигатель, принцип работы какого животного можно упомянуть еще? Это, на первый взгляд, мешковатые осьминоги. Пловцы из них не такие быстрые, как кальмары, но в случае опасности их скорости могут позавидовать даже лучшие спринтеры. Биологи, изучавшие миграции осьминогов, установили, что перемещаются они наподобие того, какой имеет реактивный двигатель принцип работы.

Животное с каждой струей воды, выброшенной из воронки, делает рывок на два или даже на два с половиной метра. При этом плывет осьминог своеобразно - задом наперед.

Другие примеры реактивного движения

Существуют свои ракеты и в мире растений. Принцип реактивного двигателя можно наблюдать тогда, когда даже при очень легком прикосновении «бешеный огурец» с высокой скоростью отскакивает от плодоножки, одновременно отторгая клейкую жидкость с семенами. При этом сам плод отлетает на значительное расстояние (до 12 м) в противоположном направлении.

Принцип работы реактивного двигателя можно наблюдать также, находясь в лодке. Если из нее в воду в определенном направлении бросать тяжелые камни, то начнется движение в противоположную сторону. Такой же имеет и принцип работы. Только там вместо камней используются газы. Они создают реактивную силу, обеспечивающую движение и в воздухе, и в разряженном пространстве.

Фантастические путешествия

О полетах в космос человечество мечтало давно. Об этом свидетельствуют произведения писателей-фантастов, которые для достижения этой цели предлагали самые разнообразные средства. Например, герой рассказа французского писателя Эркюля Савиньена Сирано де Бержерака достиг Луны на железной повозке, над которой постоянно подбрасывался сильный магнит. До этой же планеты добрался и знаменитый Мюнхгаузен. Совершить путешествие ему помог гигантский стебель боба.

Реактивное движение использовалось в Китае еще в первом тысячелетии до нашей эры. Своеобразными ракетами для забавы при этом служили бамбуковые трубки, которые начинялись порохом. Кстати, проект первого на нашей планете автомобиля, созданный Ньютоном, был также с реактивным двигателем.

История создания РД

Только в 19-м в. мечта человечества о космосе стала приобретать конкретные черты. Ведь именно в этом столетии русским революционером Н. И. Кибальчичем был создан первый в мире проект с реактивным двигателем. Все бумаги были составлены народовольцем в тюрьме, куда он попал после покушения на Александра. Но, к сожалению, 03.04.1881 г. Кибальчич был казнен, и его идея не нашла практического воплощения.

В начале 20-го в. мысль об использовании ракет для полетов в космос выдвинул русский ученый К. Э. Циолковский. Впервые его работа, содержащая описание движения тела переменной массы в виде математического уравнения, была опубликована в 1903 г. В дальнейшем ученый разработал саму схему реактивного двигателя, приводящегося в движение при помощи жидкого топлива.

Также Циолковским была изобретена многоступенчатая ракета и высказана идея о создании на околоземной орбите настоящих космических городов. Циолковский убедительно доказал, что единственным средством для космических полетов является ракета. То есть аппарат, оборудованный реактивным двигателем, заправляемый горючим и окислителем. Только такая ракета способна преодолеть силу тяжести и совершать полеты за пределами атмосферы Земли.

Освоение космоса

Идею Циолковского реализовали советские ученые. Возглавляемые Сергеем Павловичем Королевым, они осуществили запуск первого искусственного спутника Земли. 4 октября 1957 г. этот аппарат доставила на орбиту ракета с реактивным двигателем. Работа РД была основана на преобразовании химической энергии, которая передается топливом газовой струе, превращаясь в энергию кинетическую. При этом ракета совершает движение в обратном направлении.

Реактивный двигатель, принцип работы которого используется уже много лет, находит свое применение не только в космонавтике, но и в авиации. Но более всего его используют для Ведь только РД способен перемещать аппарат в пространстве, в котором отсутствует любая среда.

Жидкостный реактивный двигатель

Тот, кто стрелял из огнестрельного оружия или просто наблюдал этот процесс со стороны, знает, что существует сила, которая непременно оттолкнет ствол назад. Причем при большем количестве заряда отдача непременно увеличивается. Так же работает и реактивный двигатель. Принцип работы его схож с тем, как происходит отталкивание ствола назад под действием струи раскаленных газов.

Что касается ракеты, то в ней процесс, во время которого происходит воспламенение смеси, является постепенным и непрерывным. Это самый простой, твердотопливный двигатель. Он хорошо знаком всем ракетомоделистам.

В жидкостном реактивном двигателе (ЖРД) для создания рабочего тела или толкающей струи применяется смесь, состоящая из топлива и окислителя. Последним, как правило, выступает азотная кислота или Топливом в ЖРД служит керосин.

Принцип работы реактивного двигателя, который был в первых образцах, сохранен и до настоящего времени. Только теперь в нем используется жидкий водород. При окислении этого вещества увеличивается по сравнению с первыми ЖРД сразу на 30%. Стоит сказать о том, что идея применения водорода была предложена самим Циолковским. Однако существующие на тот момент трудности работы с этим чрезвычайно взрывоопасным веществом были просто непреодолимы.

Каков принцип работы реактивного двигателя? Топливо и окислитель попадают в рабочую камеру из отдельных баков. Далее происходит превращение компонентов в смесь. Она сгорает, выделяя при этом колоссальное количество тепла под давлением в десятки атмосфер.

Компоненты в рабочую камеру реактивного двигателя попадают по-разному. Окислитель вводится сюда напрямую. А вот топливо проходит более длинный путь между стенками камеры и сопла. Здесь оно разогревается и, уже имея высокую температуру, вбрасывается в зону горения через многочисленные форсунки. Далее струя, сформированная соплом, вырывается наружу и обеспечивает летательному аппарату толкающий момент. Вот так можно рассказать, какой имеет реактивный двигатель принцип работы (кратко). В данном описании не упоминаются многие компоненты, без которых работа ЖРД была бы невозможной. Среди них компрессоры, необходимые для создания нужного для впрыска давления, клапана, питающие турбины и т. д.

Современное использование

Несмотря на то что работа реактивного двигателя требует большого количества топлива, ЖРД продолжают служить людям и сегодня. Их применяют в качестве основных маршевых двигателей в ракетоносителях, а также маневровых для различных космических аппаратов и орбитальных станций. В авиации же используются другие виды РД, которые имеют несколько иные рабочие характеристики и конструкцию.

Развитие авиации

С начала 20-го столетия, вплоть до того периода, когда разразилась Вторая мировая война, люди летали только на винтомоторных самолетах. Эти аппараты были оснащены двигателями внутреннего сгорания. Однако прогресс не стоял на месте. С его развитием появилась потребность в создании более мощных и быстрых самолетов. Однако здесь авиационные конструкторы столкнулись с, казалось бы, неразрешимой проблемой. Дело в том, что даже при незначительном увеличении значительно возрастала масса самолета. Однако выход из создавшего положения был найден англичанином Френком Уиллом. Он создал принципиально новый двигатель, названный реактивным. Это изобретение дало мощный толчок для развития авиации.

Принцип работы реактивного двигателя самолета схож с действиями пожарного брандспойта. Его шланг имеет зауженный конец. Вытекая через узкое отверстие, вода значительно увеличивает свою скорость. Создающаяся при этом сила обратного давления настолько сильна, что пожарный с трудом удерживает в руках шланг. Таким поведением воды можно объяснить и то, каков принцип работы реактивного двигателя самолета.

Прямоточные РД

Этот тип реактивного двигателя является самым простым. Представить его можно в виде трубы с открытыми концами, которая установлена на движущемся самолете. В передней части ее поперечное сечение расширяется. Благодаря такой конструкции входящий воздух снижает свою скорость, а его давление увеличивается. Самое широкое место такой трубы является камерой сгорания. Здесь происходит впрыскивание топлива и его дальнейшее сгорание. Такой процесс содействует нагреванию образовавшихся газов и их сильному расширению. При этом возникает тяга реактивного двигателя. Ее производят все те же газы, когда с силой вырываются наружу из узкого конца трубы. Именно эта тяга и заставляет самолет лететь.

Проблемы использования

Прямоточные реактивные двигатели имеют некоторые недостатки. Они способны работать только на том самолете, который находится в движении. Летательный аппарат, находящийся в состоянии покоя, прямоточные РД привести в действие не могут. Для того чтобы поднять в воздух такой самолет нужен любой другой стартовый двигатель.

Решение проблемы

Принцип работы реактивного двигателя самолета турбореактивного типа, который лишен недостатков прямоточного РД, позволил авиационным конструкторам создать самый совершенный летательный аппарат. Как действует это изобретение?

Основной элемент, находящийся в турбореактивном двигателе, - газовая турбина. С ее помощью приводится в действие воздушный компрессор, проходя через который, сжатый воздух направляется в специальную камеру. Полученные в результате сгорания топлива (обычно это керосин) продукты попадают на лопасти турбины, чем приводят ее в действие. Далее воздушно-газовый поток переходит в сопло, где разгоняется до больших скоростей и создает огромнейшую реактивную силу тяги.

Увеличение мощности

Реактивная сила тяги может значительно возрасти за короткий промежуток времени. Для этого используется дожигание. Оно представляет собой впрыскивание дополнительного количества топлива в поток газа, вырывающийся из турбины. Неиспользованный в турбине кислород способствует сгоранию керосина, что и увеличивает тягу двигателя. На больших скоростях прирост ее значения достигает 70%, а на малых - 25-30%.