Как держать форму. Массаж. Здоровье. Уход за волосами

Применение ядерной энергии: проблемы и перспективы. Плюсы и минусы атомных электростанций

Главные аргументы в пользу развития атомной энергетики – это сравнительная дешевизна энергии и небольшое количество отходов. В пересчете на единицу производимой энергии отходы от АЭС в тысячи раз меньше, чем на угольных ТЭС (1 стакан урана-235 дает столько же энергии, сколько 10 тыс. т угля). Достоинством АЭС является и отсутствие выбросов в атмосферу диоксида углерода, которое сопровождает производство электроэнергии при сжигании углеродистых энергоносителей.

Сегодня уже совершенно очевидно, что при нормальной работе АЭС экологический риск при получении энергии несравненно ниже, чем в угольной промышленности.

По примерным расчетам, закрытие уже существующих АЭС потребовало бы дополнительно сжигать ежегодно 630 млн. т угля, что привело бы к поступлению в атмосферу 2 млрд. т диоксида углерода и 4 млн. т токсичной и радиоактивной золы. Замена АЭС на ТЭС привела бы к 50-кратному увеличению смертности от атмосферного загрязнения. Для извлечения из атмосферы этого дополнительного диоксида углерода потребовалось бы посадить лес на площади, которая в 4-8 раз превышает территорию ФРГ.

У атомной энергетики есть серьезные оппоненты. Как неконкурентоспособную ее рассматривает в последних работах Л. Браун (Brown, 2001). Аргументами против развития атомной энергетики являются сложность обеспечения полной безопасности ядерного топливного цикла, а также риск аварий на АЭС. Историю развития атомной энергетики омрачают тяжелые аварии, которые произошли в Кыштыме и Чернобыле. Однако, вероятность аварий на современных АЭС крайне низка. Так, в Великобритании она составляет не более чем 1:1000000. В Японии строятся новые АЭС (в том числе и самая крупная в мире «Фукусима») в сейсмически опасных районах на берегу океана.

Перспективы атомной энергетики .

Исчерпание углеродистых энергоносителей, ограниченные возможности энергетики на основе ВИЭ и возрастающая потребность в энергии подталкивает большинство стран мира к развитию атомной энергетики, причем строительство АЭС начинается в развивающихся странах Южной Америки, Азии и Африки. Возобновляется ранее приостановленное строительство АЭС даже в странах, пострадавших от Чернобыльской катастрофы, – Украине, Белоруссии, РФ. Возобновляется работа АЭС в Армении.

Повышаются технологический уровень атомной энергетики и ее экологическая безопасность. Уже разработаны проекты внедрения новых, более экономичных реакторов, способных расходовать на получение единицы электроэнергии в 4-10 раз меньше урана, чем современные. Обсуждается вопрос об использовании в качестве «топлива» тория и плутония. Японские ученые считают, что плутоний можно сжигать без остатка и АЭС на плутонии могут быть самыми экологически чистыми, так как не дают радиоактивных отходов (РАО). По этой причине Япония активно скупает плутоний, освобождающийся при демонтаже ядерных боеголовок. Однако для перевода АЭС на плутониевое топливо нужна дорогостоящая модернизация ядерных реакторов.


Меняется ядерный топливный цикл, т.е. совокупность всех операций, сопровождающих добычу сырья для ядерного топлива, его подготовку к сжиганию в реакторах, процесс получения энергии и переработку, хранение и захоронение РАО. В некоторых странах Европы и в РФ осуществляется переход к закрытому циклу, при котором образуется меньше РАО, так как значительная часть их после переработки дожигается. Это позволяет не только снизить риск радиоактивного загрязнения среды (см. 10.4.4), но и в сотни раз уменьшить расходы урана, ресурсы которого исчерпаемы. При открытом цикле РАО не перерабатываются, а захораниваются. Он более экономичен, но экологически не оправдан. По этой схеме пока работают АЭС США.

В целом вопросы переработки и безопасного захоронения РАО технически разрешимы. В пользу развития атомной энергетики в последние годы высказывается и Римский клуб, эксперты которого сформулировали следующее положение: «Нефть – слишком дорого, уголь – слишком опасно для природы, вклад ВИЭ – слишком незначителен, единственный шанс – придерживаться ядерного варианта».

Повсеместное применение ядерной энергии началось благодаря научно-техническому прогрессу не только в военной области, но и в мирных целях. Сегодня нельзя обойтись без нее в промышленности, энергетике и медицине.

Вместе с тем, использование ядерной энергии имеет не только преимущества, но и недостатки. Прежде всего, это опасность радиации, как для человека, так и для окружающей среды.

Применение ядерной энергии развивается в двух направлениях: использование в энергетике и использование радиоактивных изотопов.

Изначально атомную энергию предполагалось использовать только в военных целях, и все разработки шли в этом направлении.

Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

Ядерное оружие относят к потому что оно производит разрушения на огромных территориях.

По радиусу действия и мощности заряда ядерное оружие делится на:

  • Тактическое.
  • Оперативно-тактическое.
  • Стратегическое.

Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции Для цепной реакции используют уран либо плутоний.

Хранение такого большого количества опасных материалов - это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Международное агентство по атомной энергии (МАГАТЭ)

МАГАТЭ создано в 1957 году с целью развития сотрудничества между странами в области использования атомной энергии в мирных целях. С самого начала агентство осуществляет программу «Ядерная безопасность и защита окружающей среды».

Но самая главная функция - это контроль за деятельностью стран в ядерной сфере. Организация контролирует, чтобы разработки и использование ядерной энергии происходили только в мирных целях.

Цель этой программы - обеспечивать безопасное использование ядерной энергии, защита человека и экологии от воздействия радиации. Также агентство занималось изучением последствий аварии на Чернобыльской АЭС.

Также агентство поддерживает изучение, развитие и применение ядерной энергии в мирных целях и выступает посредником при обмене услугами и материалами между членами агентства.

Вместе с ООН МАГАТЭ определяет и устанавливает нормы в области безопасности и охраны здоровья.

Атомная энергетика

Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

И в 1954 году в СССР построили станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

Атомная энергия для полетов в космос

В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии.

Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня.

В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с Но после всех испытаний он так и не был запущен в космос.

Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур.

Сегодня «Роскосмос» и «Росатом» предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

Применение ядерной энергии в промышленности

Атомная энергия применяется для повышения чувствительности химического анализа и производства аммиака, водорода и других химических реагентов, которые используются для производства удобрений.

Ядерная энергия, применение которой в химической промышленности позволяет получать новые химические элементы, помогает воссоздавать процессы, которые происходят в земной коре.

Для опреснения соленых вод также применяется ядерная энергия. Применение в черной металлургии позволяет восстанавливать железо из железной руды. В цветной - применяется для производства алюминия.

Использование ядерной энергии в сельском хозяйстве

Применение ядерной энергии в сельском хозяйстве решает задачи селекции и помогает в борьбе с вредителями.

Ядерную энергию применяют для появления мутаций в семенах. Делается это для получения новых сортов, которые приносят больше урожая и устойчивы к болезням сельскохозяйственных культур. Так, больше половины пшеницы, выращиваемой в Италии для изготовления макарон, было выведено с помощью мутаций.

Также с помощью радиоизотопов определяют лучшие способы внесения удобрений. Например, с их помощью определили, что при выращивании риса можно уменьшить внесение азотных удобрений. Это не только сэкономило деньги, но и сохранило экологию.

Немного странное использование ядерной энергии - это облучение личинок насекомых. Делается это для того, чтобы выводить их безвредно для окружающей среды. В таком случае насекомые, появившееся из облученных личинок, не имеют потомства, но в остальных отношениях вполне нормальны.

Ядерная медицина

Медицина использует радиоактивные изотопы для постановки точного диагноза. Медицинские изотопы имеют малый период полураспада и не представляет особой опасности как для окружающих, так и для пациента.

Еще одно применение ядерной энергии в медицине было открыто совсем недавно. Это позитронно-эмиссионная томография. С ее помощью можно обнаружить рак на ранних стадиях.

Применение ядерной энергии на транспорте

В начале 50-х годов прошлого века были предприняты попытки создать танк на ядерной тяге. Разработки начались в США, но проект так и не был воплощен в жизнь. В основном из-за того, что в этих танках так и не смогли решить проблему экранирования экипажа.

Известная компания Ford трудилась над автомобилем, который бы работал на ядерной энергии. Но дальше макета производство такой машины не зашло.

Все дело в том, что ядерная установка занимала очень много места, и автомобиль получался очень габаритным. Компактные реакторы так и не появились, поэтому амбициозный проект свернули.

Наверное, самый известный транспорт, который работает на ядерной энергии - это различные суда как военного, так и гражданского назначения:

  • Транспортные суда.
  • Авианосцы.
  • Подводные лодки.
  • Крейсеры.
  • Атомные подводные лодки.

Плюсы и минусы использования ядерной энергии

Сегодня доля в мировом производстве энергии составляет примерно 17 процентов. Хотя человечество использует но его запасы не бесконечны.

Поэтому, как альтернативный вариант, используется Но процесс его получения и использования связан с большим риском для жизни и окружающей среды.

Конечно, постоянно совершенствуются ядерные реакторы, предпринимаются все возможные меры безопасности, но иногда этого недостаточно. Примером могут служить аварии на Чернобыльской и Фукусиме.

С одной стороны, исправно работающий реактор не выбрасывает в окружающую среду никакой радиации, тогда как из тепловых электростанций в атмосферу попадает большое количество вредных веществ.

Самую большую опасность представляет отработанное топливо, его переработка и хранение. Потому что на сегодняшний день не изобретен полностью безопасный способ утилизации ядерных отходов.

Плюсы и минусы Атомных электростанций «Пусть будет атом рабочим, а не солдатом».Плюсы и минусы
Атомных электростанций
«Пусть будет атом рабочим, а
не солдатом».

Устройство АЭС

Атомная электростанция (АЭС) - ядерная установка для производства энергии

Атомная электростанция (АЭС) ядерная установка для
производства энергии

Первая в мире промышленная
электростанция – г. Обнинск (СССР) 1954 г.
Мощность 5 Мвт

Ядерная энергетика - один из наиболее
перспективных путей утоления энергетического
голода человечества в условиях энергетических
проблем, связанных с использованием
ископаемого горючего топлива.

Плюсы и минусы АЭС

Какие плюсы и минусы есть у АЭС?
Чего больше?

Плюсы АЭС

1. Потребляет мало топлива:
2. Более экологически чистая, чем ТЭС
и ГЭС (которые работают на мазуте,
торфе и другом топливе.): т.к. АЭС
работает на уране и частично на газе.
3. Можно строить в любом месте.
4. Не зависит от дополнительного
источника энергии:

На выработку миллиона киловатт-часов
электроэнергии требуется несколько сот
граммов урана, вместо эшелона угля.

Вагон для перевозки ядерного топлива

Расходы на
перевозку ядерного
топлива, в отличие
от традиционного,
ничтожны. В России
это особенно важно
в европейской
части, так как
доставка угля
из Сибири слишком
дорога.
Вагон для перевозки ядерного топлива

10. Огромным преимуществом АЭС является её относительная экологическая чистота.

На ТЭС суммарные годовые выбросы вредных
веществ на 1000 МВт установленной мощности
составляют примерно от 13 000 до 165 000 тонн в год.

11. Подобные выбросы на АЭС полностью отсутствуют.

АЭС в Удомле

12.

ТЭС мощностью 1000 МВт потребляет 8
миллионов тонн кислорода в год для
окисления топлива, АЭС же не потребляют
кислорода вообще.

13. Наиболее мощные АЭС в мире

«Фукусима»
«Брус»
«Гравелин»
«Запорожская»
«Пикеринг»
«Пало Верде»
«Ленинградская»
«Трикастен»

14.

Фукусима
Гравелин
Брус
Запорожская

15.

Пикеринг
Пало Верде
Трикастен
Ленинградская

16. Минусы АЭС

1. тепловое загрязнение окружающей
среды;
2. обычная утечка радиоактивности
(радиоактивные выброс и сбросы);
3. транспортировка радиоактивных
отходов;
4. аварии ядерных реакторов;

17.

Кроме того, больший удельный (на единицу
произведенной электроэнергии) выброс
радиоактивных веществ даёт угольная
станция. В угле всегда содержатся
природные радиоактивные вещества, при
сжигании угля они практически полностью
попадают во внешнюю среду. При этом
удельная активность выбросов ТЭС в
несколько раз выше, чем для АЭС

18. Объем радиоактивных отходов очень мал, они весьма компактны, и их можно хранить в условиях, гарантирующих отсутствие утечки наружу.

19. Билибинская АЭС - единственная в зоне вечной мерзлоты атомная электростанция.

Затраты на строительство АЭС находятся
примерно на таком же уровне, как и
строительство ТЭС, или несколько выше.
Билибинская АЭС - единственная в зоне вечной
мерзлоты атомная электростанция.

20.

АЭС экономичнее
обычных тепловых
станций, а, самое
главное, при
правильной их
эксплуатации – это
чистые источники
энергии.

21. Мирный атом должен жить

Атомная энергетика, испытав тяжёлые уроки
Чернобыля и других аварий, продолжает
развиваться, максимально обеспечивая безопасность
и надёжность! Атомные станции вырабатывают
электроэнергию самым экологически чистым
способом. Если люди будут ответственно и
грамотно относиться к эксплуатации АЭС, то
будущее- за ядерной энергетикой. Люди не должны
бояться мирного атома, ведь аварии происходят по
вине человека.

Применение ядерной энергии в современном мире оказывается настолько важным, что если бы мы завтра проснулись, а энергия ядерной реакции исчезла, мир, таким как мы его знаем, пожалуй, перестал бы существовать. Мирное составляет основу промышленного производства и жизни таких стран, как Франция и Япония, Германия и Великобритания, США и Россия. И если две последние страны еще в состоянии заместить ядерные источники энергии на тепловые станции , то для Франции, или Японии это попросту невозможно.

Использование атомной энергии создает много проблем. В основном все эти проблемы связаны с тем, что используя себе на благо энергию связи атомного ядра (которую мы и называем ядерной энергией), человек получает существенное зло в виде высокорадиоактивных отходов, которые нельзя просто выбросить. Отходы от атомных источников энергии требуется перерабатывать, перевозить, захоранивать, и хранить продолжительное время в безопасных условиях.

Плюсы и минусы, польза и вред от использования ядерной энергии

Рассмотрим плюсы и минусы применения атомной-ядерной энергии, их пользу, вред и значение в жизни Человечества. Очевидно, что атомная энергия сегодня нужна лишь промышленно развитым странам. То есть, основное применение мирная ядерная энергия находит в основном, на таких объектах, как заводы, перерабатывающие предприятия, и т.п. Именно энергоемкие производства, удаленные от источников дешевой электроэнергии (вроде гидроэлектростанций) задействуют ядерные станции для обеспечения и развития своих внутренних процессов.

Аграрные регионы и города не слишком нуждаются в атомной энергии. Ее вполне можно заместить тепловыми и другими станциями. Получается, что овладение, получение, развитие, производство и использование ядерной энергии по большей части направлено на удовлетворение наших потребностей в промышленной продукции. Посмотрим, что это за производства: автомобильная промышленность, военные производства, металлургия, химическая промышленность, нефтегазовый комплекс, и т.д.

Современный человек хочет ездить на новой машине? Хочет одеваться в модную синтетику, кушать синтетику и упаковывать все в синтетику? Хочет ярких товаров разных форм и размеров? Хочет все новых телефонов, телевизоров, компьютеров? Хочет много покупать, часто менять оборудование вокруг себя? Хочет вкусно питаться химической едой из цветных упаковок? Хочет жить спокойно? Хочет слышать сладкие речи с телеэкрана? Хочет, чтобы танков было много, а также ракет и крейсеров, а еще снарядов и пушек?

И он все это получает. Неважно, что в конце расхождение между словом и делом приводит к войне. Неважно, что для его утилизации также нужна энергия. Пока что человек спокоен. Он ест, пьет, ходит на работу, продает и покупает.

А для всего этого нужна энергия. А еще для этого нужно очень много нефти, газа, металла и т.п. И все эти промышленные процессы нуждаются в атомной энергии. Поэтому кто бы что ни говорил, до тех пор, пока не будет запущен в серию первый промышленный реактор термоядерного синтеза, атомная энергетика будет только развиваться.

В плюсы ядерной энергии мы можем смело записать все то, к чему мы привыкли. К минусам – печальную перспективу скорой смерти в коллапсе исчерпания ресурсов, проблемах ядерных отходов, росте численности населения и деградации пахотных площадей. Иначе говоря, атомная энергетика позволила человеку еще сильнее начать овладевать природой, насилуя ее сверх меры настолько, что он за несколько десятилетий преодолел порог воспроизводства основных ресурсов, запустив между 2000 и 2010 годами процесс схлопывания потребления. Этот процесс объективно уже не зависит от человека.

Всем придется меньше есть, меньше жить и меньше радоваться окружающей природе. Здесь кроется еще один плюс-минус атомной энергии, который заключается в том, что страны, овладевшие атомом, смогут эффективнее перераспределять под себя скудеющие ресурсы тех, кто атомом не овладел. Более того, только развитие программы термоядерного синтеза позволит человечеству элементарно выжить. Теперь поясним на пальцах, что же это за «зверь» — атомная (ядерная) энергия и с чем ее едят.

Масса, материя и атомная (ядерная) энергия

Часто приходится слышать утверждение, что «масса и энергия одно и то же», или же такие суждения, будто выражение Е=mс2 объясняет взрыв атомной (ядерной) бомбы. Сейчас, когда вы получили первое представление о ядерной энергии и ее применении, было бы поистине неразумно сбивать вас с толку такими утверждениями, как «масса равна энергии». Во всяком случае, такой способ трактовки великого открытия не из лучших. По-видимому, это всего лишь острословие молодых реформистов, «Галилеев нового времени». На деле же предсказание теории, которое проверено многими экспери-ментами, говорит лишь о том, что энергия имеет массу.

Сейчас мы разъясним современную точку зрения и дадим небольшой обзор истории ее развития.
Когда энергия любого материального тела возрастает, его масса увеличивается, и мы приписываем эту дополнительную массу приросту энергии. Например, при поглощении излучения поглотитель становится горячее и его масса возрастает. Однако возрастание настолько мало, что остается за пределами точности измерений в обычных опытах. Напротив, если вещество испускает излучение, то оно теряет капельку своей массы, которая уносится излучением. Возникает более широкий вопрос: не обусловлена ли вся масса вещества энергией, т. е. не заключен ли во всем веществе громадный запас энергии? Много лет назад радиоактивные превращения на это ответили положительно. При распаде радиоактивного атома выделяется огромное количество энергии (в основном в виде кинетической энергии), а малая часть массы атома исчезает. Об этом ясно говорят измерения. Таким образом, энергия уносит с собой массу, уменьшая тем самым массу вещества.

Следовательно, часть массы вещества взаимозаменяема массой излучения, кинетической энергией и т. п. Вот почему мы говорим: «энергия и вещество способны частично к взаимным превращениям». Более того, мы теперь можем создавать частицы вещества, которые обладают массой и способны полностью превращаться в излучение, также имеющее массу. Энергия этого излучения может перейти в другие формы, передав им свою массу. И наоборот, излучение способно превращаться в частицы вещества. Так что вместо «энергия обладает массой» мы можем сказать «частицы вещества и излучение — взаимопревращаемы, а потому способны к взаимным превращениям с другими формами энергии». В этом и состоит создание и уничтожение вещества. Такие разрушительные события не могут происходить в царстве обычной физики, химии и техники, их следует искать либо в микроскопических, но активных процессах, изучаемых ядерной физикой, либо в высокотемпературном горниле атомных бомб, на Солнце и звездах. Однако было бы неразумно утверждать, что «энергия - это масса». Мы говорим: «энергия, как и вещество, имеет массу».

Масса обычного вещества

Мы говорим, что масса обычного вещества таит в себе огромный запас внутренней энергии, равной произведению массы на (скорость света)2. Но эта энергия заключена в массе и не может быть высвобождена без исчезновения хотя бы части ее. Как возникла столь удивительная идея и почему она не была открыта раньше? Ее предлагали и раньше - эксперимент и теория в разных видах,- но вплоть до двадцатого века изменение энергии не наблюдали, ибо в обычных экспериментах оно соответствует невероятно малому изменению массы. Однако сейчас мы уверены, что летящая пуля благодаря своей кинетической энергии имеет дополнительную массу. Даже при скорости 5000 м/сек пуля, которая в покое весила ровно 1 г, будет иметь полную массу 1,00000000001 г. Раскаленная добела платина массой 1 кг всего прибавит 0,000000000004 кг и практически ни одно взвешивание не сможет зарегистрировать эти изменения. Только когда из атомного ядра высвобождаются огромные запасы энергии или когда атомные «снаряды» разгоняются до скорости, близкой к скорости света, масса энергии становится заметной.

С другой стороны, даже едва уловимая разница масс знаменует возможность выделения огромного количества энергии. Так, атомы водорода и гелия имеют относительные массы 1,008 и 4,004. Если бы четыре ядра водорода смогли объединиться в одно ядро гелия, то масса 4,032 изменилась бы до 4,004. Разница невелика, всего 0,028, или 0,7%. Но она означала бы гигантское выделение энергии (преимущественно в виде излучения). 4,032 кг водорода дали бы 0,028 кг излучения, которое имело бы энергию около 600000000000 Кал.

Сравните это с 140 000 Кал, выделяющимися при соединении того же количества водорода с кислородом в химическом взрыве.
Обычная кинетическая энергия дает заметный вклад в массу очень быстрых протонов, получаемых на циклотронах, и это создает трудности при работе с такими машинами.

Почему мы все же верим, что Е=mс2

Сейчас мы воспринимаем это как прямое следствие теории относительности, но первые подозрения возникли уже ближе к концу 19 века, в связи со свойствами излучения. Тогда казалось вероятным, что излучение обладает массой. А поскольку излучение переносит, как на крыльях, со скоростью с энергию, точнее, само есть энергия, то появился пример массы, принадлежащей чему-то «невещественному». Экспериментальные законы электромагнетизма предсказывали, что электромагнитные волны должны обладать «массой». Но до создания теории относительности только необузданная фантазия могла распространить соотношение m=Е/с2 на другие формы энергии.

Всем сортам электромагнитного излучения (радиоволнам, инфракрасному, видимому и ультрафиолетовому свету и т. д.) свойственны некоторые общие черты: все они распространяются в пустоте с одинаковой скоростью и все переносят энергию и импульс. Мы представляем себе свет и другое излучение в виде волн, распространяющихся с большой, но определенной скоростью с=3*108 м/сек. Когда свет падает на поглощающую поверхность, возникает теплота, показывающая, что поток света несет энергию. Эта энергия должна распространяться вместе с потоком с той же скоростью света. На деле скорость света именно так и измеряется: по времени пролета порцией световой энергии большого расстояния.

Когда свет падает на поверхность некоторых металлов, он выбивает электроны, вылетающие точно так же, как если бы их ударил компактный шарик. , по всей видимости, распространяется концентрированными порциями, которые мы называем «квантами». В этом и заключается квантовый характер излучения, несмотря на то, что эти порции, по-видимому, создаются волнами. Каждая порция света с одной и той же длиной волны обладает единой и той же энергией, определенным «квантом» энергии. Такие порции мчатся со скоростью света (собственно, они-то и есть свет), перенося энергию и количество движения (импульс). Все это позволяет приписать излучению некую массу - каждой порции приписывается определенная масса.

При отражении света от зеркала теплота не выделяется, ибо отраженный луч уносит всю энергию, но на зеркало действует давление, подобное давлению упругих шариков или молекул. Если же вместо зеркала свет попадает на черную поглощающую поверхность, давление становится вдвое меньше. Это свидетельствует о том, что луч несет количество движения, поворачиваемое зеркалом. Следовательно, свет ведет себя так, как если бы у него была масса. Но можно ли откуда-то еще узнать, что нечто обладает массой? Существует ли масса по своему собственному праву, как, например, длина, зеленый цвет или вода? Или это искусственное понятие, определяемое поведением наподобие Скромности? Масса, на самом деле, известна нам в трех проявлениях:

  • А. Туманное утверждение, характеризующее количество «вещества», (Масса с этой точки зрения присуща веществу - сущности, которую мы можем увидеть, потрогать, толкнуть).
  • Б. Определенные утверждения, увязывающие ее с иными физическими величинами.
  • В. Масса сохраняется.

Остается определить массу через количество движения и энергию. Тогда любая движущаяся вещь с количеством движения и энергией должна иметь «массу». Ее массой должно быть (количество движения)/(скорость).

Теория относительности

Стремление увязать воедино серию экспериментальных парадоксов, касающихся абсолютного пространства и времени, породило теорию относительности. Два сорта экспериментов со светом давали противоречивые результаты, а опыты с электричеством еще больше обострили этот конфликт. Тогда Эйнштейн предложил изменить простые геометрические правила сложения векторов. Это изменение и составляет сущность его «специальной теории относительности».

Для малых скоростей (от медлительной улитки до быстрейшей из ракет) новая теория согласуется со старой.
При высоких скоростях, сравнимых со скоростью света, наше измерение длин или времени модифицируется движением тела относительно наблюдателя, в частности масса тела становится тем больше, чем быстрее оно движется.

Затем теория относительности провозгласила, что это увеличение массы носит совершенно общий характер. При обычных скоростях никаких изменений нет, и только при скорости 100 000 000 км/час масса возрастает на 1%. Однако для электронов и протонов, вылетающих из радиоактивных атомов или современных ускорителей, оно достигает 10, 100, 1000%…. Опыты с такими высокоэнергетическими частицами великолепно подтверждают соотношение между массой и скоростью.

На другом краю находится излучение, не имеющее массы покоя. Это не вещество и его нельзя удержать в покое; оно просто имеет массу, и движется со скоростью с, так что его энергия равна mс2. О квантах, мы говорим как о фотонах, когда хотим отметить поведение света как потока частиц. Каждый фотон имеет определенную массу m, определенную энергию Е=mс2 и количество движения (импульс).

Ядерные превращения

В некоторых экспериментах с ядрами массы атомов после бурных взрывов, складываясь, не дают ту же самую полную массу. Освобожденная энергия уносит с собой и какую-то часть массы; кажется, что недостающая часть атомного материала исчезла. Однако если мы припишем измеренной энергии массу Е/с2, то обнаружим, что масса сохраняется.

Аннигиляция вещества

Мы привыкли думать о массе как о неизбежном свойстве материи, поэтом переход массы из вещества в излучение - от лампы к улетающему лучу света выглядит почти как уничтожение вещества. Еще один шаг - и мы с удивлением обнаружим то, что происходит на самом деле: положительный и отрицательный электроны, частички вещества, соединившись вместе, полностью превращаются в излучение. Масса их вещества превращается в равную ей массу излучения. Это случай исчезновения вещества в самом буквальном смысле. Как в фокусе, во вспышке света.

Измерения показывают, что (энергия, излучения при аннигиляции)/ с2 равна полной массе обоих электронов - положительного и отрицательного. Антипротон, соединяясь с протоном, аннигилирует, обычно с выбросом более легких частиц с большой кинетической энергией.

Создание вещества

Сейчас, когда мы научились распоряжаться высокоэнергетическим излучением (сверхкоротковолновыми рентгеновскими лучами), мы можем приготовить из излучения частицы вещества. Если такими лучами бомбардировать мишень, они дают иногда пару частиц, например положительный и отрицательный электроны. И если снова воспользоваться формулой m=Е/с2 как для излучения, так и для кинетической энергии, то масса будет сохраняться.

Просто о сложном – Ядерная (Атомная) энергия

  • Галерея изображений, картинки, фотографии.
  • Ядерная энергия, энергия атома – основы, возможности, перспективы, развитие.
  • Интересные факты, полезная информация.
  • Зеленые новости – Ядерная энергия, энергия атома.
  • Ссылки на материалы и источники – Ядерная (Атомная) энергия.

Минусы атомной энергетики после Чернобыльской аварии стали очевидными для мировой общественности, а события на «Фукусиме-1» окончательно доказали опасность использования «мирного атома». Считается, что вероятность крупных аварий на АЭС крайне низка, но за последние 50 лет произошло уже 3 крупных события, принесших значительный вред человечеству: Чернобыль, Фукусима и ПО «Маяк» (в 1957 году). На устранения последствий названных аварий уйдут десятки лет.
Минусы атомной энергетики заключаются не только в том, что существует угроза загрязнения окружающей среды в результате аварии, но и в том, что даже при работе в нормальном режиме АЭС производит радиоактивные отходы. Вода, охлаждающая турбины реакторов, обычно просто сбрасывается в ближайшие водоемы, а радиоактивный пар и другие газы выходят в атмосферу. А образующиеся в процессе выработки энергии радиоактивные отходы являются еще одним серьезным минусом атомной энергетики. В большинстве стран отработанное ядерное топливо не используется, и для его утилизации используются технологии складирования переработанного топлива в герметичных металлических контейнерах на свалках ядерных отходов. Но в ряде стран – во Франции, Японии, России и Великобритании – такое топливо подвергается дальнейшей переработке, что обеспечивает экономическую эффективность производства, но в результате получается еще большее количество радиоактивных отходов, ведь все оборудование, реактивы и даже одежда персонала подвергаются загрязнению. В настоящее время не разработана технология, которая позволила бы уменьшить эти явные минусы атомной энергетики и утилизировать ядерные отходы безопасно для окружающей среды.
Минусы атомной энергетики не ограничиваются только работой АЭС: ведь до того, как уран в виде ядерного топлива попадет в реактор, он проходит несколько этапов, и везде при этом оставляет за собой радиоактивный след. В процессе добычи урана в рудниках скапливаются радиоактивные газы – радий и радон, провоцирующие развитие разных форм онкологических заболеваний. Даже на этом начальном этапе минусы атомной энергетики очень велики – ведь здоровье тысяч людей, участвующих в процессе добычи или живущих рядом, подвергается большой опасности. В процессе последующей работы по обогащению урана количество радиоактивных отходов еще больше увеличивается. Сторонники использования атомной энергии обычно не озвучивают эти минусы атомной энергетики.
Следует отметить также, что в настоящее время не все минусы атомной энергетики оценены в должной мере, ведь в мире ни один реактор еще полностью не демонтирован. При этом уже сейчас большинство экспертов сходятся во мнении, что стоимость демонтажа будет очень высокой, по крайней мере, не меньше стоимости строительства реактора. В ближайшее десятилетие около 350 реакторов выработают свой ресурс, и они должны быть демонтированы, но способа сделать это безопасно и быстро пока не существует. Для этих целей в некоторых странах предлагают перевозить отработавшие реакторы в специальные могильники, а в других склоняются к строительству защитных саркофагов непосредственно над отработанным реактором.
Впрочем, несмотря на все озвученные минусы атомной энергетики, в мире сегодня работает 436 ядерных реакторов, их общая мощность около 351 тыс. МВт. Безусловно, это серьезный вклад в общемировую энергетическую систему, однако проводимые исследования гласят, что альтернативные источники энергии, не имеющие перечисленных минусов атомной энергетики, при существующих темпах развития технологий смогут вырабатывать такое количество электроэнергии уже через 10-15 лет. Антиядерные движения в разных странах мира занимают однозначную позицию: минусы атомной энергетики во много раз превышают получаемые выгоды, и потому строительство АЭС и производство ядерных отходов необходимо прекратить.