Как держать форму. Массаж. Здоровье. Уход за волосами

Формула для нахождения площади полной поверхности конуса. Площадь полной поверхности конуса равна

Здесь представлены задачи с конусами, условие связано с его площадью поверхности. В частности в некоторых задачах стоит вопрос об изменении площади при увеличении (уменьшении) высоты конуса или радиуса его основания. Теория для решения задач в . Рассмотрим следующие задачи:

27135. Длина окружности основания конуса равна 3, образующая равна 2. Найдите площадь боковой поверхности конуса.

Площадь боковой поверхности конуса равна:

Подставляем данные:

75697. Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 36 раз, а радиус основания останется прежним?

Площадь боковой поверхности конуса:

Образующая увеличивается в 36 раз. Радиус остался прежним, значит длина окружности основания не изменилась.

Значит площадь боковой поверхности изменённого конуса будет иметь вид:

Таким образом, она увеличится в 36 раз.

*Зависимость прямолинейная, поэтому эту задачу без труда можно решить устно.

27137. Во сколько раз уменьшится площадь боковой поверхности конуса, если радиус его основания уменьшить в 1,5 раза?

Площадь боковой поверхности конуса равна:

Радиус уменьшается в 1,5 раза, то есть:

Получили, что площадь боковой поверхности уменьшилась в 1,5 раза.

27159. Высота конуса равна 6, образующая равна 10. Найдите площадь его полной поверхности, деленную на Пи.

Полная поверхность конуса:

Необходимо найти радиус:

Известна высота и образующая, по теореме Пифагора вычислим радиус:

Таким образом:

Полученный результат разделим на Пи и запишем ответ.

76299. Площадь полной поверхности конуса равна 108. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсеченного конуса.

Сечение проходит через середину высоты параллельно основанию. Значит радиус основания и образующая отсеченного конуса будут в 2 раза меньше радиуса и образующей исходного конуса. Запишем чему равна площадь поверхности отсечённого конуса:

Получили, что она будет в 4 раза меньше площади поверхности исходного, то есть 108:4 = 27.

*Так как исходный и отсечённый конус являются подобными телами, то также можно было воспользоваться свойством подобия:

27167. Радиус основания конуса равен 3, высота равна 4. Найдите площадь полной поверхности конуса, деленную на Пи.

Формула полной поверхности конуса:

Радиус известен, необходимо найти образующую.

По теореме Пифагора:

Таким образом:

Результат разделим на Пи и запишем ответ.

Задача. Площадь боковой поверхности конуса в четыре раза больше площади основания. Найдите чему равен косинус угла между образующей конуса и плоскостью основания.

Площадь основания конуса равна:

То есть косинус будет равен:

Ответ: 0,25

Решить самостоятельно:

27136. Во сколько раз увеличится площадь боковой поверхности конуса, если его образующую увеличить в 3 раза?

27160. Площадь боковой поверхности конуса в два раза больше площади основания. Найдите угол между образующей конуса и плоскостью основания. Ответ дайте в градусах. .

27161. Площадь полной поверхности конуса равна 12. Параллельно основанию конуса проведено сечение, делящее высоту пополам. Найдите площадь полной поверхности отсеченного конуса.

На этом всё. Успеха вам!

С уважением, Александр.

*Делитесь с друзьями информацией о сайте через социальные сети.

Мы знаем, что такое конус, попробуем найти площадь его поверхности. Зачем нужно решать такую задачу? Например, нужно понять, сколько теста пойдет на изготовление вафельного рожка? Или сколько кирпичей понадобится, чтобы сложить кирпичную крышу замка?

Измерить площадь боковой поверхности конуса просто так не получится. Но представим себе все тот же рожок, обмотанный тканью. Чтобы найти площадь куска ткани, нужно разрезать и разложить ее на столе. Получится плоская фигура, ее площадь мы сможем найти.

Рис. 1. Разрез конуса по образующей

Сделаем так же с конусом. «Разрежем» его боковую поверхность вдоль любой образующей, например, (см. рис. 1).

Теперь «размотаем» боковую поверхность на плоскость. Получаем сектор. Центр этого сектора - вершина конуса, радиус сектора равен образующей конуса, а длина его дуги совпадает с длиной окружности основания конуса. Такой сектор называется разверткой боковой поверхности конуса (см. рис. 2).

Рис. 2. Развертка боковой поверхности

Рис. 3. Измерение угла в радианах

Попробуем найти площадь сектора по имеющимся данным. Сперва введем обозначение: пусть угол при вершине сектора в радианах (см. рис. 3).

С углом при вершине развертки нам придется часто сталкиваться в задачах. Пока же попробуем ответить на вопрос: а не может ли этот угол получиться больше 360 градусов? То есть не получится ли так, что развертка наложится сама на себя? Конечно же, нет. Докажем это математически. Пусть развертка «наложилась» сама на себя. Это означает, что длина дуги развертки больше длины окружности радиуса . Но, как уже было сказано, длина дуги развертки есть длина окружности радиуса . А радиус основания конуса, разумеется, меньше образующей, например, потому, что катет прямоугольного треугольника меньше гипотенузы

Тогда вспомним две формулы из курса планиметрии: длина дуги . Площадь сектора: .

В нашем случае роль играет образующая , а длина дуги равна длине окружности основания конуса, то есть . Имеем:

Окончательно получаем: .

Наряду с площадью боковой поверхности можно найти и площадь полной поверхности. Для этого к площади боковой поверхности надо прибавить площадь основания. Но основание - это круг радиуса , чья площадь по формуле равна .

Окончательно имеем: , где - радиус основания цилиндра, - образующая.

Решим пару задач на приведенные формулы.

Рис. 4. Искомый угол

Пример 1 . Разверткой боковой поверхности конуса является сектор с углом при вершине. Найти этот угол, если высота конуса равна 4 см, а радиус основания равен 3 см (см. рис. 4).

Рис. 5. Прямоугольный треугольник, образующий конус

Первым действием, по теореме Пифагора, найдем образующую: 5 см (см. рис. 5). Далее, мы знаем, что .

Пример 2 . Площадь осевого сечения конуса равна , высота равна . Найти площадь полной поверхности (см. рис. 6).

Тела вращения, изучаемые в школе, - это цилиндр, конус и шар.

Если в задаче на ЕГЭ по математике вам надо посчитать объем конуса или площадь сферы - считайте, что повезло.

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, - снизу.

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Всё просто - рисуем вид снизу. Видим, что радиус большего круга в раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в раза больше.

Еще один важный момент. Помним, что в задачах части В вариантов ЕГЭ по математике ответ записывается в виде целого числа или конечной десятичной дроби. Поэтому никаких или у вас в ответе в части В быть не должно. Подставлять приближенное значение числа тоже не нужно! Оно обязательно должно сократиться!. Именно для этого в некоторых задачах задание формулируется, например, так: «Найдите площадь боковой поверхности цилиндра, деленную на ».

А где же еще применяются формулы объема и площади поверхности тел вращения? Конечно же, в задаче С2 (16). Мы тоже расскажем о ней.

Площадь поверхности конуса (или просто поверхность конуса) равна сумме площадей основания и боковой поверхности.

Площадь боковой поверхности конуса вычисляется по формуле: S = πRl , где R - радиус основания конуса, а l - образующая конуса.

Так как площадь основания конуса равна πR 2 (как площадь круга), то площадь полной поверхности конуса будет равна: πR 2 + πRl = πR (R + l ).

Получение формулы площади боковой поверхности конуса можно пояснить такими рассуждениями. Пусть на чертеже изображена развёртка боковой поверхности конуса. Разделим дугу АВ на возможно большее число равных частей и все точки деления соединим с центром дуги, а соседние - друг с другом хордами.

Получим ряд равных треугольников. Площадь каждого треугольника равна ah / 2 , где а - длина основания треугольника, a h - его высота.

Сумма площадей всех треугольников составит: ah / 2 n = anh / 2 , где n - число треугольников.

При большом числе делений сумма площадей треугольников становится весьма близкой к площади развёртки, т. е. площади боковой поверхности конуса. Сумма оснований треугольников, т. е. an , становится весьма близкой к длине дуги АВ, т. е. к длине окружности основания конуса. Высота каждого треугольника становится весьма близкой к радиусу дуги, т. е. к образующей конуса.

Пренебрегая незначительными различиями в размерах этих величин, получаем формулу площади боковой поверхности конуса (S):

S = Cl / 2 , где С - длина окружности основания конуса, l - образующая конуса.

Зная, что С = 2πR, где R - радиус окружности основания конуса, получаем: S = πRl .

Примечание. В формуле S = Cl / 2 поставлен знак точного, а не приближённого равенства, хотя на основании проведённого рассуждения мы могли бы это равенство считать приближённым. Но в старших классах средней школы доказывается, что равенство

S = Cl / 2 точное, а не приближённое.

Теорема. Боковая поверхность конуса равна произведению длины окружности основания на половину образующей.

Впишем в конус (рис.) какую-нибудь правильную пирамиду и обозначим буквами р и l числа, выражающие длины периметра основания и апофемы этой пирамиды.

Тогда боковая поверхность её выразится произведением 1 / 2 р l .

Предположим теперь, что число сторон вписанного в основание многоугольника неограниченно возрастает. Тогда периметр р будет стремиться к пределу, принимаемому за длину С окружности основания, а апофема l будет иметь пределом образующую конуса (так как из ΔSAK следует, что SA - SK
1 / 2 р l , будет стремиться к пределу 1 / 2 С L. Этот предел и принимается за величину боковой поверхности конуса. Обозначив боковую поверхность конуса буквой S, можем написать:

S = 1 / 2 С L = С 1 / 2 L

Следствия.
1) Так как С = 2π R, то боковая поверхность конуса выразится формулой:

S = 1 / 2 2π R L = π RL

2) Полную поверхность конуса получим, если боковую поверхность сложим с площадью основания; поэтому, обозначая полную поверхность через Т, будем иметь:

T = π RL + π R 2 = π R(L + R)

Теорема. Боковая поверхность усечённого конуса равна произведению полусуммы длин окружностей оснований на образующую.

Впишем в усечённый конус (рис.) какую-нибудь правильную усечённую пирамиду и обозначим буквами р, р 1 и l числа, выражающие в одинаковых линейных единицах длины периметров нижнего и верхнего оснований и апофемы этой пирамиды.

Тогда боковая поверхность вписанной пирамиды равна 1 / 2 (р + р 1) l

При неограниченном возрастании числа боковых граней вписанной пирамиды периметры р и р 1 стремятся к пределам, принимаемым за длины С и С 1 окружностей оснований, а апофема l имеет пределом образующую L усечённого конуса. Следовательно, величина боковой поверхности вписанной пирамиды стремится при этом к пределу, равному (С + С 1) L. Этот предел и принимается за величину боковой поверхности усечённого конуса. Обозначив боковую поверхность усечённого конуса буквой S, будем иметь:

S = 1 / 2 (С + С 1) L

Следствия.
1) Если R и R 1 означают радиусы окружностей нижнего и верхнего оснований, то боковая поверхность усечённого конуса будет:

S = 1 / 2 (2π R + 2π R 1) L = π (R + R 1) L.

2) Если в трапеции OO 1 А 1 А (рис.), от вращения которой получается усечённый конус, проведём среднюю линию ВС, то получим:

ВС = 1 / 2 (OA + O 1 A 1) = 1 / 2 (R + R 1),

R + R 1 = 2ВС.

Следовательно,

S = 2π BC L,

т. е. боковая поверхность усечённого конуса равна произведению длины окружности среднего сечения на образующую.

3) Полная поверхность Т усечённого конуса выразится так:

T = π (R 2 + R 1 2 + RL + R 1 L)