Как держать форму. Массаж. Здоровье. Уход за волосами

C 4 сложение и вычитание алгебраических дробей. Сложение и вычитание алгебраических дробей с разными знаменателями

Обыкновенных дробей.

Сложение алгебраических дробей

Запомните!

Складывать можно только дроби с одинаковыми знаменателями!

Нельзя складывать дроби без преобразований

Можно складывать дроби

При сложении алгебраических дробей с одинаковыми знаменателями :

  1. числитель первой дроби складывается с числителем второй дроби;
  2. знаменатель остаётся прежним.

Рассмотрим пример сложения алгебраических дробей.

Так как знаменатель у обеих дробей «2а », значит, дроби можно сложить.

Сложим числитель первой дроби с числителем второй дроби, а знаменатель оставим прежним. При сложении дробей в полученном числителе приведем подобные .

Вычитание алгебраических дробей

При вычитании алгебраических дробей с одинаковыми знаменателями :

  1. из числителя первой дроби вычитается числитель второй дроби.
  2. знаменатель остаётся прежним.

Важно!

Обязательно заключите в скобки весь числитель вычитаемой дроби.

Иначе вы сделаете ошибку в знаках при раскрытии скобок вычитаемой дроби.

Рассмотрим пример вычитания алгебраических дробей.

Так как у обеих алгебраических дробей знаменатель «2с », значит, эти дроби можно вычитать.

Вычтем из числителя первой дроби «(a + d) » числитель второй дроби «(a − b) ». Не забудем заключить числитель вычитаемой дроби в скобки. При раскрытии скобок используем правило раскрытия скобок .

Приведение алгебраических дробей к общему знаменателю

Рассмотрим другой пример. Требуется сложить алгебраические дроби.

В таком виде сложить дроби нельзя, так как у них разные знаменатели.

Прежде чем складывать алгебраические дроби их необходимо привести к общему знаменателю .

Правила приведения алгебраических дробей к общему знаменателю очень похожи на правила приведения к общему знаменателю обыкновенных дробей. .

В итоге мы должны получить многочлен, который без остатка разделится на каждый прежний знаменатель дробей.

Чтобы привести алгебраические дроби к общему знаменателю необходимо сделать следующее.

  1. Работаем с числовыми коэффициентами. Определяем НОК (наименьшее общее кратное) для всех числовых коэффициентов.
  2. Работаем с многочленами. Определяем все различные многочлены в наибольших степенях.
  3. Произведение числового коэффициента и всех различных многочленов в наибольших степенях и будет общим знаменателем.
  4. Определяем, на что нужно умножить каждую алгебраическую дробь, чтобы получить общий знаменатель.

Вернемся к нашему примеру.

Рассмотрим знаменатели «15a » и «3 » обеих дробей и найдем для них общий знаменатель.

  1. Работаем с числовыми коэффициентами. Находим НОК (наименьшее общее кратное — это число, которое без остатка делится на каждый числовый коэффициент). Для «15 » и «3 » — это «15 ».
  2. Работаем с многочленами. Необходимо перечислить все многочлены в наибольших степенях. В знаменателях «15a » и «5 » есть только
    один одночлен — «а ».
  3. Перемножим НОК из п.1 «15 » и одночлен «а » из п.2. У нас получится «15a ». Это и будет общим знаменателем.
  4. Для каждой дроби зададим себе вопрос: «На что нужно умножить знаменатель этой дроби, чтобы получить «15a »?».

Рассмотрим первую дробь. В этой дроби и так знаменатель «15a », значит, ее не требуется ни на что умножать.

Рассмотрим вторую дробь. Зададим вопрос: «На что нужно умножить «3 », чтобы получить «15a »?» Ответ — на «5a ».

При приведении к общему знаменателю дроби умножаем на «5a » и числитель, и знаменатель .

Сокращенную запись приведения алгебраической дроби к общему знаменателю можно записать через «домики» .

Для этого держим в уме общий знаменатель. Над каждой дробью сверху «в домике» пишем, на что умножаем каждую из дробей.


Теперь, когда у дробей одинаковые знаменатели, дроби можно сложить.

Рассмотрим пример вычитания дробей с разными знаменателями.

Рассмотрим знаменатели «(x − y) » и «(x + y) » обеих дробей и найдем для них общий знаменатель.

У нас есть два различных многочлена в знаменателях «(x − y) » и «(x + y) ». Их произведение будет общим знаменателем, т.е. «(x − y)(x + y) » — общий знаменатель.


Сложение и вычитание алгебраических дробей с помощью формул сокращенного умножения

В некоторых примерах, чтобы привести алгебраические дроби к общему знаменателю, нужно использовать формулы сокращенного умножения .

Рассмотрим пример сложения алгебраических дробей, где нам потребуется использовать формулу разности квадратов.

В первой алгебраической дроби знаменатель «(p 2 − 36) ». Очевидно, что к нему можно применить формулу разности квадратов .

После разложения многочлена «(p 2 − 36) » на произведение многочленов
«(p + 6)(p − 6) » видно, что в дробях повторяется многочлен «(p + 6) ». Значит, общим знаменателем дробей будет произведение многочленов «(p + 6)(p − 6) ».

В данном уроке будет рассмотрено сложение и вычитание алгебраических дробей с одинаковыми знаменателями. Мы уже знаем, как складывать и вычитать обыкновенные дроби с одинаковыми знаменателями. Оказывается, что алгебраические дроби подчиняются тем же самым правилам. Умение работать с дробями с одинаковыми знаменателями является одним из краеугольных камней в изучении правил работы с алгебраическими дробями. В частности, понимание данной темы позволит легко освоить более сложную тему - сложение и вычитание дробей с разными знаменателями. В рамках урока мы изучим правила сложения и вычитания алгебраических дробей с одинаковыми знаменателями, а также разберём целый ряд типовых примеров

Правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями

Сфор-му-ли-ру-ем пра-ви-ло сло-же-ния (вы-чи-та-ния) ал-геб-ра-и-че-ских дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми (оно сов-па-да-ет с ана-ло-гич-ным пра-ви-лом для обык-но-вен-ных дро-бей): То есть для сло-же-ния или вы-чи-та-ния ал-геб-ра-и-че-ских дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми необ-хо-ди-мо со-ста-вить со-от-вет-ству-ю-щую ал-геб-ра-и-че-скую сумму чис-ли-те-лей, а зна-ме-на-тель оста-вить без из-ме-не-ний.

Это пра-ви-ло мы раз-бе-рём и на при-ме-ре обык-но-вен-ных дро-бей, и на при-ме-ре ал-геб-ра-и-че-ских дро-бей.

Примеры применения правила для обыкновенных дробей

При-мер 1. Сло-жить дроби: .

Ре-ше-ние

Сло-жим чис-ли-те-ли дро-бей, а зна-ме-на-тель оста-вим таким же. После этого раз-ло-жим чис-ли-тель и зна-ме-на-тель на про-стые мно-жи-те-ли и со-кра-тим. По-лу-чим: .

При-ме-ча-ние: стан-дарт-ная ошиб-ка, ко-то-рую до-пус-ка-ют при ре-ше-нии по-доб-но-го рода при-ме-ров, за-клю-ча-ет-ся в сле-ду-ю-щем спо-со-бе ре-ше-ния: . Это гру-бей-шая ошиб-ка, по-сколь-ку зна-ме-на-тель оста-ёт-ся таким же, каким был в ис-ход-ных дро-бях.

При-мер 2. Сло-жить дроби: .

Ре-ше-ние

Дан-ная за-да-ча ничем не от-ли-ча-ет-ся от преды-ду-щей: .

Примеры применения правила для алгебраических дробей

От обык-но-вен-ных дро-бей пе-рей-дём к ал-геб-ра-и-че-ским.

При-мер 3. Сло-жить дроби: .

Ре-ше-ние:как уже го-во-ри-лось выше, сло-же-ние ал-геб-ра-и-че-ских дро-бей ничем не от-ли-ча-ет-ся от сло-же-ния обык-но-вен-ных дро-бей. По-это-му метод ре-ше-ния такой же: .

При-мер 4. Вы-честь дроби: .

Ре-ше-ние

Вы-чи-та-ние ал-геб-ра-и-че-ских дро-бей от-ли-ча-ет-ся от сло-же-ния толь-ко тем, что в чис-ли-тель за-пи-сы-ва-ет-ся раз-ность чис-ли-те-лей ис-ход-ных дро-бей. По-это-му .

При-мер 5. Вы-честь дроби: .

Ре-ше-ние: .

При-мер 6. Упро-стить: .

Ре-ше-ние: .

Примеры применения правила с последующим сокращением

В дроби, ко-то-рая по-лу-ча-ет-ся в ре-зуль-та-те сло-же-ния или вы-чи-та-ния, воз-мож-ны со-кра-ще-ния. Кроме того, не стоит за-бы-вать об ОДЗ ал-геб-ра-и-че-ских дро-бей.

При-мер 7. Упро-стить: .

Ре-ше-ние: .

При этом . Во-об-ще, если ОДЗ ис-ход-ных дро-бей сов-па-да-ет с ОДЗ ито-го-вой, то его можно не ука-зы-вать (ведь дробь, по-лу-чен-ная в от-ве-те, также не будет су-ще-ство-вать при со-от-вет-ству-ю-щих зна-че-ни-ях пе-ре-мен-ных). А вот если ОДЗ ис-ход-ных дро-бей и от-ве-та не сов-па-да-ет, то ОДЗ ука-зы-вать необ-хо-ди-мо.

При-мер 8. Упро-стить: .

Ре-ше-ние: . При этом y (ОДЗ ис-ход-ных дро-бей не сов-па-да-ет с ОДЗ ре-зуль-та-та).

Сложение и вычитание обыкновенных дробей с разными знаменателями

Чтобы скла-ды-вать и вы-чи-тать ал-геб-ра-и-че-ские дроби с раз-ны-ми зна-ме-на-те-ля-ми, про-ве-дём ана-ло-гию с обык-но-вен-ны-ми дро-бя-ми и пе-ре-не-сём её на ал-геб-ра-и-че-ские дроби.

Рас-смот-рим про-стей-ший при-мер для обык-но-вен-ных дро-бей.

При-мер 1. Сло-жить дроби: .

Ре-ше-ние:

Вспом-ним пра-ви-ло сло-же-ния дро-бей. Для на-ча-ла дроби необ-хо-ди-мо при-ве-сти к об-ще-му зна-ме-на-те-лю. В роли об-ще-го зна-ме-на-те-ля для обык-но-вен-ных дро-бей вы-сту-па-ет наи-мень-шее общее крат-ное (НОК) ис-ход-ных зна-ме-на-те-лей.

Опре-де-ле-ние

Наи-мень-шее на-ту-раль-ное число, ко-то-рое де-лит-ся од-но-вре-мен-но на числа и .

Для на-хож-де-ния НОК необ-хо-ди-мо раз-ло-жить зна-ме-на-те-ли на про-стые мно-жи-те-ли, а затем вы-брать все про-стые мно-жи-те-ли, ко-то-рые вхо-дят в раз-ло-же-ние обоих зна-ме-на-те-лей.

; . Тогда в НОК чисел долж-ны вхо-дить две двой-ки и две трой-ки: .

После на-хож-де-ния об-ще-го зна-ме-на-те-ля, необ-хо-ди-мо для каж-дой из дро-бей найти до-пол-ни-тель-ный мно-жи-тель (фак-ти-че-ски, по-де-лить общий зна-ме-на-тель на зна-ме-на-тель со-от-вет-ству-ю-щей дроби).

Затем каж-дая дробь умно-жа-ет-ся на по-лу-чен-ный до-пол-ни-тель-ный мно-жи-тель. По-лу-ча-ют-ся дроби с оди-на-ко-вы-ми зна-ме-на-те-ля-ми, скла-ды-вать и вы-чи-тать ко-то-рые мы на-учи-лись на про-шлых уро-ках.

По-лу-ча-ем: .

Ответ: .

Рас-смот-рим те-перь сло-же-ние ал-геб-ра-и-че-ских дро-бей с раз-ны-ми зна-ме-на-те-ля-ми. Сна-ча-ла рас-смот-рим дроби, зна-ме-на-те-ли ко-то-рых яв-ля-ют-ся чис-ла-ми.

Сложение и вычитание алгебраических дробей с разными знаменателями

При-мер 2. Сло-жить дроби: .

Ре-ше-ние:

Ал-го-ритм ре-ше-ния аб-со-лют-но ана-ло-ги-чен преды-ду-ще-му при-ме-ру. Легко по-до-брать общий зна-ме-на-тель дан-ных дро-бей: и до-пол-ни-тель-ные мно-жи-те-ли для каж-дой из них.

.

Ответ: .

Итак, сфор-му-ли-ру-ем ал-го-ритм сло-же-ния и вы-чи-та-ния ал-геб-ра-и-че-ских дро-бей с раз-ны-ми зна-ме-на-те-ля-ми :

1. Найти наи-мень-ший общий зна-ме-на-тель дро-бей.

2. Найти до-пол-ни-тель-ные мно-жи-те-ли для каж-дой из дро-бей (по-де-лив общий зна-ме-на-тель на зна-ме-на-тель дан-ной дроби).

3. До-мно-жить чис-ли-те-ли на со-от-вет-ству-ю-щие до-пол-ни-тель-ные мно-жи-те-ли.

4. Сло-жить или вы-честь дроби, поль-зу-ясь пра-ви-ла-ми сло-же-ния и вы-чи-та-ния дро-бей с оди-на-ко-вы-ми зна-ме-на-те-ля-ми.

Рас-смот-рим те-перь при-мер с дро-бя-ми, в зна-ме-на-те-ле ко-то-рых при-сут-ству-ют бук-вен-ные вы-ра-же-ния.

В этой статье мы детально разберем сложение и вычитание алгебраических дробей . Начнем со сложения и вычитания алгебраических дробей с одинаковыми знаменателями. После этого запишем соответствующее правило для дробей с разными знаменателями. В заключение покажем, как сложить алгебраическую дробь с многочленом и как выполнить их вычитание. Всю информацию по традиции снабдим характерными примерами с разъяснением каждого шага процесса решения.

Навигация по странице.

Когда знаменатели одинаковые

Принципы переносятся и на алгебраические дроби. Нам известно, что при сложении и вычитании обыкновенных дробей с одинаковыми знаменателями складываются или вычитаются их числители, а знаменатель остается прежним. Например, и .

Аналогично формулируется и правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями : чтобы сложить или вычесть алгебраические дроби с одинаковыми знаменателями, нужно соответственно сложить или вычесть числители дробей, а знаменатель оставить без изменения.

Из этого правила следует, что в результате сложения или вычитания алгебраических дробей получается новая алгебраическая дробь (в частном случае многочлен, одночлен или число).

Приведем пример применения озвученного правила.

Пример.

Найдите сумму алгебраических дробей и .

Решение.

Нам нужно сложить алгебраические дроби с одинаковыми знаменателями. Правило нам указывает, что надо выполнить сложение числителей этих дробей, а знаменатель оставить прежним. Итак, складываем многочлены , находящиеся в числителях: x 2 +2·x·y−5+3−x·y= x 2 +(2·x·y−x·y)−5+3=x 2 +x·y−2 . Следовательно, сумма исходных дробей равна .

На практике обычно решение записывается кратко в виде цепочки равенств, отражающих все выполняемые действия. В нашем случае краткая запись решения такова:

Ответ:

.

Заметим, что если в результате сложения или вычитания алгебраических дробей получается сократимая дробь, то ее желательно сократить.

Пример.

Выполните вычитание из алгебраической дроби дроби .

Решение.

Так как знаменатели алгебраических дробей равны, то нужно из числителя первой дроби вычесть числитель второй, а знаменатель оставить прежним: .

Несложно заметить, что можно выполнить сокращение алгебраической дроби . Для этого преобразуем ее знаменатель, применив формулу разности квадратов . Имеем .

Ответ:

.

Абсолютно аналогично складываются или вычитаются три и большее количество алгебраических дробей с одинаковыми знаменателями. Например, .

Сложение и вычитание алгебраических дробей с разными знаменателями

Напомним, как мы выполняем сложение и вычитание обыкновенных дробей с разными знаменателями: сначала приводим их к общему знаменателю, после чего складываем эти дроби с одинаковыми знаменателями. Например, или .

Существует аналогичное правило сложения и вычитания алгебраических дробей с разными знаменателями :

  • сначала все дроби приводятся к общему знаменателю;
  • после чего выполняется сложение и вычитание полученных дробей с одинаковыми знаменателями.

Для успешного применения озвученного правила, нужно хорошо разобраться с приведением алгебраических дробей к общему знаменателю. Этим и займемся.

Приведение алгебраических дробей к общему знаменателю.

Приведение алгебраических дробей к общему знаменателю представляет собой тождественное преобразование исходных дробей, после которого знаменатели всех дробей становятся одинаковыми. Удобно использовать следующий алгоритм приведения алгебраических дробей к общему знаменателю :

  • сначала находится общий знаменатель алгебраических дробей;
  • дальше определяются дополнительные множители для каждой из дробей, для чего общий знаменатель делится на знаменатели исходных дробей;
  • наконец, числители и знаменатели исходных алгебраических дробей умножаются на соответствующие дополнительные множители.

Пример.

Приведите алгебраические дроби и к общему знаменателю.

Решение.

Сначала определим общий знаменатель алгебраических дробей . Для этого раскладываем знаменатели всех дробей на множители: 2·a 3 −4·a 2 =2·a 2 ·(a−2) , 3·a 2 −6·a=3·a·(a−2) и 4·a 5 −16·a 3 =4·a 3 ·(a−2)·(a+2) . Отсюда находим общий знаменатель 12·a 3 ·(a−2)·(a+2) .

Теперь приступаем к нахождению дополнительных множителей. Для этого разделим общий знаменатель на знаменатель первой дроби (удобно взять его разложение), имеем 12·a 3 ·(a−2)·(a+2):(2·a 2 ·(a−2))=6·a·(a+2) . Таким образом, дополнительный множитель для первой дроби равен 6·a·(a+2) . Аналогично находим дополнительные множители для второй и третьей дробей: 12·a 3 ·(a−2)·(a+2):(3·a·(a−2))=4·a 2 ·(a+2) и 12·a 3 ·(a−2)·(a+2):(4·a 3 ·(a−2)·(a+2))=3 .

Осталось умножить числители и знаменатели исходных дробей на соответствующие дополнительные множители:

На этом приведение исходных алгебраических дробей к общему знаменателю завершено. При необходимости полученные дроби можно преобразовать к виду алгебраических дробей, выполнив умножение многочленов и одночленов в числителях и знаменателях.

Итак, с приведением алгебраических дробей к общему знаменателю разобрались. Теперь мы подготовлены к выполнению сложения и вычитания алгебраических дробей с разными знаменателями. Да, чуть не забыли предупредить: общий знаменатель до самого последнего момента удобно оставлять представленным в виде произведения – возможно придется сокращать дробь, которая получится после сложения или вычитания.

Пример.

Выполните сложение алгебраических дробей и .

Решение.

Очевидно, исходные дроби имеют разные знаменатели, поэтому, чтобы выполнить их сложение, сначала нужно привести их к общему знаменателю. Для этого раскладываем знаменатели на множители: x 2 +x=x·(x+1) , а x 2 +3·x+2=(x+1)·(x+2) , так как корнями квадратного трехчлена x 2 +3·x+2 являются числа −1 и −2 . Отсюда находим общий знаменатель, он имеет вид x·(x+1)·(x+2) . Тогда дополнительным множителем первой дроби будет x+2 , а второй дроби – x .

Итак, и .

Осталось сложить дроби, приведенные к общему знаменателю:

Полученную дробь можно сократить. Действительно, если в числителе вынести двойку за скобки, то станет виден общий множитель x+1 , на который дробь и сокращается: .

Наконец, полученную дробь представляем в виде алгебраической, для чего произведение в знаменателе заменяем многочленом: .

Оформим краткое решение, учитывающее все наши рассуждения:

Ответ:

.

И еще один момент: алгебраические дроби перед их сложением или вычитанием целесообразно предварительно преобразовать, чтобы упростить, (если, конечно, есть такая возможность).

Пример.

Выполните вычитание алгебраических дробей и .

Решение.

Выполним некоторые преобразования алгебраических дробей , возможно, они позволят упростить процесс решения. Для начала вынесем за скобки числовые коэффициенты у переменных в знаменателе: и . Уже интересно – стал виден общий множитель знаменателей дробей.

Алгоритм сложения (вычитания) алгебраических дробей

1. Привести все дроби к общему знаменателю; если они с самого начала имели одинаковые знаменатели, то этот шаг алгоритма опускают.
2. Выполнить сложение (вычитание) полученных дробей с одинаковыми знаменателями.

Пример 1. Выполнить действия:

а) ; б) ; в) .

Решение. Для каждой пары заданных здесь алгебраических дробей общий знаменатель был найден выше, в уроке "Основное свойство алгебраической дроби". Опираясь на указанный пример, получаем:

Самое трудное в приведенном алгоритме - это, конечно, первый шаг: отыскание общего знаменателя и приведение дробей к общему знаменателю. В примере 1 вы этой трудности, может быть, не ощутили, поскольку мы воспользовались готовыми результатами из § 2.
Чтобы выработать правило отыскания общего знаменателя, проанализируем пример 1.

Для дробей и общим знаменатель есть число 15 - оно делится и на 3 и на 5, является их общим кратным (даже наименьшим общим кратным).

Для дробей и общим знаменателем является одночлен . Он делится и на и на , т. е. на оба одночлена, служащие знаменателями дробей. Обратите внимание: число 12 - наименьшее общее кратное чисел 4 и 6. Переменная входит в знаменатель первой дроби с показателем 2, в знаменатель второй дроби - с показателем 3. Это наибольшее значение показателя 3 фигурирует в общем знаменателе.
Для дробей и общим знаменателем служит произведение - оно делится и на знаменатель и на знаменатель.
При отыскании общего знаменателя приходится, естественно, все заданные знаменатели разлагать на множители (если это не было подготовлено в условии). А далее следует провести работу по этапам: найти наименьшее общее кратное для числовых коэффициентов (речь идет о целочисленных коэффициентах), определить для каждого несколько раз встречающегося буквенного множителя наибольший показатель степени, собрать все это в одно произведение.
Теперь можно оформить соответствующий алгоритм.

Алгоритм отыскания общего знаменателя для нескольких алгебраических дробей

    Разложить все знаменатели на множители (числовые коэффициенты, степени переменных, двучлены, трехчлены).

    Найти наименьшее общее кратное для числовых коэффициентов, имеющихся в разложениях на множители, составленных на первом шаге.

    Составить произведение, включив в него в качестве множителей все буквенные множители разложений, полученных на первом шаге алгоритма. Если некоторый множитель (степень переменной, двучлен, трехчлен) имеется в нескольких разложениях, то его следует взять с показателем степени, равным наибольшему из имеющихся.

    Приписать к произведению, полученному на третьем шаге, числовой коэффициент, найденный на втором шаге; в итоге получится общий знаменатель.

Замечание. На самом деле общих знаменателей для двух алгебраических дробей можно найти сколько угодно. Например, для дробей и общим знаменателем может быть и число 30, и число 60, и даже одночлен . Дело в том, что и 30, и 60, и можно разделить как на 3, так и на 5. Для дробей и общим знаменателем, кроме найденного выше одночлена , может быть и и . Чем же одночлен лучше, чем , чем ? Он проще (по виду). Его иногда называют даже не общим знаменателем, а наименьшим общим знаменателем. Таким образом, приведенный алгоритм - это алгоритм отыскания самого простого из общих знаменателей нескольких алгебраических дробей, алгоритм отыскания наименьшего общего знаменателя.

Снова вернемся к примеру 1, а. Чтобы сложить алгебраические дроби и , надо было не только найти общий знаменатель (число 15), но и отыскать для каждой из дробей дополнительные множители, которые позволили бы привести дроби к общему знаменателю. Для дроби таким дополнительным множителем служит число 5 (числитель и знаменатель этой дроби умножили дополнительно на 5), для дроби - число 3 (числитель и знаменатель этой дроби умножили дополнительно на 3). Дополнительный множитель есть частное от деления общего знаменателя на знаменатель данной дроби.

Обычно используют следующую запись:

Снова вернемся к примеру 1,6. Общим знаменателем для дробей и является одночлен . Дополнительный множитель для первой дроби равен (поскольку ), для второй дроби он равен 2 (поскольку ). Значит, решение примера 1,6 можно оформить так:

.

Выше был сформулирован алгоритм отыскания общего знаменателя для нескольких алгебраических дробей. Но опыт показывает, что этот алгоритм не всегда бывает понятен учащимся, поэтому мы дадим несколько видоизмененную формулировку.

Правило приведения алгебраических дробей к общему знаменателю

    Разложить все знаменатели на множители.

    Из первого знаменателя выписать произведение всех его множителей, из остальных знаменателей приписать к этому произведению недостающие множители. Полученное произведение и будет общим (новым) знаменателем.

    Найти дополнительные множители для каждой из дробей: это будут произведения тех множителей, которые имеются в новом знаменателе, но которых нет в старом знаменателе.

    Найти для каждой дроби новый числитель: это будет произведение старого числителя и дополнительного множителя.

    Записать каждую дробь с новым числителем и новым (общим) знаменателем.

Пример 2. Упростить выражение .

Решение.
Первый этап. Найдем общий знаменатель и дополнительные множители.
Имеем

Первый знаменатель берем целиком, а из второго - добавляем множитель , которого нет в первом знаменателе. Получим общий знаменатель .

Удобно расположить записи в виде таблицы:

Знаменатели

Общий знаменатель

Дополнительные множители

Второй этап.
Выполним преобразования:

При наличии некоторого опыта первый этап можно не выделять, выполняя его одновременно со вторым этапом.
В заключение рассмотрим более сложный пример (для желающих).

Пример 3. Упростить выражение

Решение. Первый этап.
Разложим все знаменатели на множители:

Первый знаменатель берем целиком, из второго возьмем недостающие множители и (или ), из третьего - недостающий множитель (поскольку третий знаменатель содержит множитель ).

Знаменатели

Общий знаменатель

Дополнительные множители

СЛОЖЕНИЕ И ВЫЧИТАНИЕ АЛГЕБРАИЧЕСКИХ ДРОБЕЙ С РАЗНЫМИ ЗНАМЕНАТЕЛЯМИ

Сложение и вычитание алгебраических дробей с разными знаменателями выполняют по тому же алгоритму, что используется для сложения и вычитания обыкновенных дробей с разными знаменателями: сначала приводят дроби к общему знаменателю с помощью соответствующих дополнительных множи-
телей, а затем складывают или вычитают полученные дроби с одинаковыми знаменателями по правилу из § 3. Можно сформулировать алгоритм, охватывающий любые случаи сложения (вычитания) алгебраических дробей.

Алгоритм сложения (вычитания) алгебраических дробей

Пример 1. Выполнить действия:

Решение. Для каждой пары заданных здесь алгебраических дробей общий знаменатель был найден выше, в примере из § 2. Опираясь на указанный пример, получаем:

Самое трудное в приведенном алгоритме — это, конечно, первый шаг: отыскание общего знаменателя и приведение дробей к общему знаменателю. В примере 1 вы этой трудности, может быть, не ощутили, поскольку мы воспользовались готовыми результатами из § 2.

Чтобы выработать правило отыскания общего знаменателя, проанализируем пример 1.
Для дробей общий знаменатель есть число 15 оно делится и на 3 и на 5, является их общим кратным (даже наименьшим общим кратным).
Для дробей — общим знаменателем является одночлен 12b 3 . Он делится и на 4b 2 и на 6b 3 , т. е. на оба одночлена, служащие знаменателями дробей.

Обратите внимание: число 12 — наименьшее общее кратное чисел 4 и 6. Переменная b входит в знаменатель первой дроби с показателем 2, в знаменатель
второй дроби — с показателем 3. Это наибольшее значение показателя 3 фигурирует в общем знаменателе.
Для дробей


общим знаменателем служит произведение (х + у)(х - у) — оно делится и на знаменатель х + у и на знаменатель х-у.

При отыскании общего знаменателя приходится, естественно, все заданные знаменатели разлагать на множители (если это не было подготовлено в условии). А далее следует провести работу по этапам: найти наименьшее общее кратное для числовых коэффициентов (речь идет о целочисленных коэффициентах), определить для каждого несколько раз встречающегося буквенного множителя наибольший показатель степени, собрать все это в одно произведение.

Теперь можно оформить соответствующий алгоритм.

Алгоритм отыскания общего знаменателя для нескольких алгебраических дробей


Прежде чем двигаться дальше, попробуйте применить этот алгоритм к обоснованию поиска общего знаменателя для алгебраических дробей из примера 1.
Замечание. На самом деле общих знаменателей для двух алгебраических дробей можно найти сколько угодно. Например, для дробей общим
знаменателем может быть и число 30, и число 60, и даже одночлен 15а2Ь. Дело в том, что и 30, и 60, и 15а 2 b можно разделить как на 3, так и на 5. Для
дробей —
общим знаменателем, кроме найденного выше одночлена 12b , может быть и 24b 3 и 48а 2 b 4 . Чем же одночлен 12b 3 лучше, чем 24b 3 , чем 48а 2 b 4 ? Он проще (по виду). Его иногда называют даже не общим знаменателем, а наименьшим общим знаменателем. Таким образом, приведенный алгоритм — это алгоритм
отыскания самого простого из общих знаменателей нескольких алгебраических дробей, алгоритм отыскания наименьшего общего знаменателя.

Снова вернемся к примеру 1, а. Чтобы сложить алгебраические дроби , надо было не только найти общий знаменатель (число 15), но и отыскать для каждой из дробей дополнительные множители, которые позволили бы привести дроби к общему знаменателю. Для дроби таким дополнительным мно-
жителем служит число 5 (числитель и знаменатель этой дроби умножили дополнительно на 5), для дроби число 3 (числитель и знаменатель этой дроби умножили дополнительно на 3).

Дополнительный множитель есть частное от деления общего знаменателя на знаменатель данной дроби.
Обычно используют следующую запись:


Снова вернемся к примеру 1,6. Общим знаменателем для дробей является одночлен 12b 3 . Дополнительный множитель для первой дроби равен Зb (поскольку 12b 3: 4b 2 = З Ь), для второй дроби он равен 2 (поскольку 12b 3: 6b 3 = 2). Значит, решение примера 1,6 можно оформить так:


Выше был сформулирован алгоритм отыскания общего знаменателя для нескольких алгебраических дробей. Но опыт показывает, что этот алгоритм не всегда бывает понятен учащимся, поэтому мы дадим несколько видоизмененную формулировку.

Правило приведения алгебраических дробей к общему знаменателю

Пример 2. Упростить выражение

Решение.
Первый этап. Найдем общий знаменатель и дополнительные множители.

Имеем
4а 2 - 1 = (2а - 1) (2а + 1),
2а 2 + а = а(2а + 1).
Первый знаменатель берем целиком, а из второго — добавляем множитель а, которого нет в первом знаменателе. Получим общий знаменатель

a(2a - 1) (2a +1).

Удобно расположить записи в виде таблицы:


Второй этап.
Выполним преобразования:

При наличии некоторого опыта первый этап можно не выделять, выполняя его одновременно со вторым этапом.

В заключение рассмотрим более сложный пример (для желающих).

Пример 3 . Упростить выражение

Решение.
Первый этап.
Разложим все знаменатели на множители:

1) 2а 4 + 4а 3 b + 2a 2 b 2 = 2а 2 (а 2 + 2аb + b 2) = 2а 2 (а + b) 2 ;

2) 3ab 2 - За 3 = За (b 2 - а 2) = За (b - а) (b + а);

3) 6а 4 -6а 3 b = 6а 3 (а- b).

Первый знаменатель берем целиком, из второго возьмем недостающие множители 3 и b - а (или a — b), из третьего — недостающий множитель а (поскольку третий знаменатель содержит множитель а 3).

Алгебраические дроби


Заметим, что если у дополнительного множителя появляется знак «-», то его обычно ставят перед всей дробью, т. е. перед второй дробью придется поменять знак.

Второй этап.
Выполним преобразования:

Отметим, что замена выражения, данного в примере 3, той алгебраической дробью, которая получилась в результате, есть тождественное преобразование при допустимых значениях переменных. В данном случае допустимыми являются любые значения переменных а и Ь, кроме a = 0, a = b, a = - b (в этих
случаях знаменатели обращаются в нуль).