Как держать форму. Массаж. Здоровье. Уход за волосами

Закон радиоактивного распада выражается формулой. Закон радиоактивного распада

Лекция 2. Основной закон радиоактивного распада и активность радионуклидов

Скорость распада радионуклидов различна – одни распадаются быстрее, другие – медленнее. Показателем скорости радиоактивного распада является постоянная радиоактивного распада, λ [сек -1], которая характеризует вероятность распада одного атома за одну секунду. Для каждого радионуклида постоянная распада имеет своё значение, чем оно больше, тем быстрее распадаются ядра вещества.

Число распадов, регистрируемых в радиоактивном образце за единицу времени, называют активностью (a ), или радиоактивностью образца. Значение активности прямо пропорционально количеству атомов N радиоактивного вещества:

a =λ· N , (3.2.1)

где λ – постоянная радиоактивного распада, [сек-1].

В настоящее время, согласно действующей Международной системе единиц СИ, за единицу измерения радиоактивности принят беккерель [Бк ]. Своё название эта единица получила в честь французского учёного Анри Беккереля, открывшего в 1856 г. явление естественной радиоактивности урана. Один беккерель равен одному распаду в секунду 1 Бк = 1 .

Однако до сих пор достаточно часто применяется внесистемная единица активностикюри [Ки ], введённая супругами Кюри как мера скорости распада одного грамма радия (в котором происходит ~3,7·1010 распадов в секунду), поэтому

1 Ки = 3,7·1010 Бк .

Эта единица удобна для оценки активности больших количеств радионуклидов.

Снижение концентрации радионуклида во времени в результате распада подчиняется экспоненциальной зависимости:

, (3.2.2)

где N t – количество атомов радиоактивного элемента оставшихся через время t после начала наблюдения; N 0 – количество атомов в начальный момент времени (t =0 ); λ – постоянная радиоактивного распада.

Описанная зависимость называется основным законом радиоактивного распада .

Время, за которое распадается половина от общего количества радионуклидов, называется периодом полураспада, Т ½ . Через один период полураспада из 100 атомов радионуклида остаются только 50 (рис. 2.1). За следующий такой же период из этих 50 атомов остаются лишь 25 и так далее.

Связь между периодом полураспада и постоянной распада выводится из уравнения основного закона радиоактивного распада:

при t =T ½ и

получаем https://pandia.ru/text/80/150/images/image006_47.gif" width="67" height="41 src="> Þ ;

https://pandia.ru/text/80/150/images/image009_37.gif" width="76" height="21">;

т. е..gif" width="81" height="41 src=">.

Поэтому закон радиоактивного распада можно записать следующим образом:

https://pandia.ru/text/80/150/images/image013_21.gif" width="89" height="39 src=">, (3.2.4)

где at – активность препарата через время t ; a 0 – активность препарата в начальный момент наблюдения.

Часто необходимо определить активность заданного количества любого радиоактивного вещества.

Вспомним, что единица количества вещества – моль. Моль – это количество вещества, содержащее столько же атомов, сколько их содержится в 0,012 кг=12 г изотопа углерода 12С.

В одном моле любого вещества содержится число Авогадро NA атомов:

NA = 6,02·1023 атомов.

Для простых веществ (элементов) масса одного моля численно соответствует атомной массе А элемента

1моль = А г.

Например: Для магния: 1 моль 24Mg = 24 г.

Для 226Ra: 1 моль 226Ra = 226 г и т. д.

С учётом сказанного в m граммах вещества будет N атомов:

https://pandia.ru/text/80/150/images/image015_20.gif" width="156" height="43 src="> (3.2.6)

Пример: Подсчитаем активность 1-го грамма 226Ra, у которого λ = 1.38·10-11 сек-1.

a = 1.38·10-11·1/226·6,02·1023 = 3,66·1010 Бк.

Если радиоактивный элемент входит в состав химического соединения, то при определении активности препарата необходимо учитывать его формулу. С учётом состава вещества определяется массовая доля χ радионуклида в веществе, которая определяется соотношением:

https://pandia.ru/text/80/150/images/image017_17.gif" width="118" height="41 src=">

Пример решения задачи

Условие:

Активность А0 радиоактивного элемента 32Р в день наблюдения составляет 1000 Бк . Определить активность и количество атомов этого элемента через неделю. Период полураспада Т ½ 32Р = 14,3 дня.

Решение:

а) Найдём активность фосфора-32 через 7 суток:

https://pandia.ru/text/80/150/images/image019_16.gif" width="57" height="41 src=">

Ответ: через неделю активность препарата 32Р составит 712 Бк, а количество атомов радиоактивного изотопа 32Р – 127,14·106 атомов.

Контрольные вопросы

1) Что такое активность радионуклида?

2) Назовите единицы радиоактивности и связь между ними.

3) Что такое постоянная радиоактивного распада?

4) Дайте определение основному закону радиоактивного распада.

5) Что такое период полураспада?

6) Какая существует связь между активностью и массой радионуклида? Напишите формулу.

Задачи

1. Рассчитайте активность 1 г 226Ra. Т½ = 1602 года.

2. Рассчитайте активность 1 г 60Со. Т½ = 5,3 года.

3. Один танковый снаряд М-47 содержит 4,3 кг 238U. Т½ = 2,5·109 лет. Определите активность снаряда.

4. Рассчитайте активность 137Cs через 10 лет, если в начальный момент наблюдения она равна 1000 Бк . Т½ = 30 лет.

5. Рассчитайте активность 90Sr год назад, если в настоящий момент времени она равна 500 Бк . Т½ = 29 лет.

6. Какую активность будет создавать 1 кг радиоизотопа 131I, Т½ = 8,1 дня?

7. Пользуясь справочными данными, определите активность 1 г 238U. Т½ = 2,5·109 лет.

Пользуясь справочными данными, определите активность 1 г 232Th, Т½ = 1,4·1010 лет.

8. Рассчитайте активность соединения: 239Pu316O8.

9. Вычислите массу радионуклида активностью в 1 Ки :

9.1. 131I, Т1/2=8,1 дня;

9.2. 90Sr, Т1/2=29 лет;

9.3. 137Cs, Т1/2=30 лет;

9.4. 239Pu, Т1/2=2,4·104 лет.

10. Определите массу 1 мКи радиоактивного изотопа углерода 14С, Т½ = 5560 лет.

11. Необходимо приготовить радиоактивный препарат фосфора 32P. Через какой промежуток времени останется 3 % препарата? Т½ = 14,29 сут.

12. В природной смеси калия содержится 0,012 % радиоактивного изотопа 40К.

1) Определите массу природного калия, в котором содержится 1 Ки 40К. Т½ = 1,39·109 лет = 4,4·1018 сек.

2) Рассчитайте радиоактивность грунта по 40К, если известно, что содержание калия в образце грунта – 14 кг/т.

13. Сколько периодов полураспада требуется для того, чтобы первоначальная активность радиоизотопа снизилась до 0,001 %?

14. Для определения влияния 238U на растения семена замачивали в 100 мл раствора UO2(NO3)2·6H2O, в котором масса радиоактивной соли составляла 6 г . Определите активность и удельную активность 238U в растворе. Т½ = 4,5·109 лет .

15. Определите активность 1 грамма 232Th, Т½ = 1,4·1010 лет.

16. Определите массу 1 Ки 137Cs, Т1/2=30 лет.

17. Соотношение между содержанием стабильных и радиоактивного изотопов калия в природе – величина постоянная. Содержание 40К равно 0,01%. Рассчитайте радиоактивность грунта по 40К, если известно, что содержание калия в образце грунта – 14 кг/т .

18. Литогенная радиоактивность окружающей среды формируется преимущественно за счёт трёх основных природных радионуклидов: 40К, 238U, 232Th. Доля радиоактивных изотопов в природной сумме изотопов составляет 0,01, 99,3, ~100 соответственно. Рассчитайте радиоактивность 1 т грунта, если известно, что относительное содержание калия в образце грунта 13600 г/т , урана – 1·10-4 г/т , тория – 6·10-4 г/т.

19. В раковинах двустворчатых моллюсков обнаружено 23200 Бк/кг 90Sr. Определите активность образцов через 10, 30, 50, 100 лет.

20. Основное загрязнение замкнутых водоёмов Чернобыльской зоны состоялось в первый год после аварии на АЭС . В донных отложениях оз. Азбучин в 1999 г. обнаружен 137Cs с удельной активностью 1,1·10 Бк/м2 . Определите концентрацию (активность) выпавшего 137Cs на м2 донных отложений по состоянию на 1986-1987гг. (12 лет назад).

21. 241Am (Т½ = 4,32·102 лет) образуется из 241Pu (Т½ = 14,4 лет) и является активным геохимическим мигрантом. Пользуясь справочными материалами, рассчитайте с точностью до 1% уменьшение активности плутония-241 во времени, в каком году после Чернобыльской катастрофы образование 241Am в окружающей среде будет максимальным.

22. Рассчитайте активность 241Am в продуктах выбросах Чернобыльского реактора по состоянию на апрель
2015 г., при условии, что в апреле 1986 г. активность 241Am составила 3,82·1012 Бк, Т½ = 4,32·102 лет.

23. В образцах грунта обнаружено 390 нКи/кг 137Cs. Рассчитайте активность образцов через 10, 30, 50, 100 лет.

24. Средняя концентрация загрязнения ложа оз. Глубокого, расположенного в Чернобыльской зоне отчуждения, составляет 6,3·104 Бк 241Am и 7,4·104 238+239+240Pu на 1 м2. Рассчитайте, в каком году получены эти данные.

Явление радиоактивности было открыто в 1896 г. А. Беккерелем, который наблюдал спонтанное испускание солями урана неизвестного излучения. Вскоре Э. Резерфорд и супруги Кюри установили, что при радиоактивном распаде испускаются ядра Не (α-частицы), электроны (β-частицы) и жесткое электромагнитное излучение (γ-лучи).

В 1934 г. был открыт распад с вылетом позитронов (β + -распад), а в 1940 г. был открыт новый тип радиоактивности - спонтанное деление ядер: делящееся ядро разваливается на два осколка сравнимой массы с одновременным испусканием нейтронов и γ -квантов. Протонная радиоактивность ядер наблюдалась в 1982 г. Таким образом, существуют следующие виды радиоактивного распада: α-распад; -распад; - распад; е - захват.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием частиц.

Атомные ядра состоят из протонов и нейтронов , которые имеют обобщающее название - нуклоны. Количество протонов в ядре определяет химические свойства атома и обозначается Z (порядковый номер элемента). Количество нуклонов в ядре называют массовым числом и обозначают А . Ядра с одинаковым порядковым номером и различными массовыми числами называются изотопами . Все изотопы одного химического элемента имеют одинаковыехимические свойства, а физические свойства могут различаться весьма сильно. Для обозначения изотопов используют символ химического элемента с двумя индексами: A Z Х . Нижний индекс - порядковый номер, верхний - массовое число. Часто нижний индекс опускают, так как на него указывает сам символ элемента.

Например, пишут 14 С вместо 14 6 С.

Способность ядра к распаду зависит от его состава. У одного и того же элемента могут быть и стабильный, и радиоактивный изотопы.

Например, изотоп углерода 12 С стабилен, а изотоп 14 С радиоактивен.

Радиоактивный распад - явление статистическое. Способность изотопа к распаду характеризует постоянная распадаλ.

Постоянная распада λ- вероятность того, что ядро данного изотопа распадется за единицу времени.



Обозначим число N ядер радиоактивного распада в момент времени t, dN 1 - число ядер распавшихся за время dt. Поскольку количество ядер в веществе огромно, то выполняется закон больших чисел. Вероятность распада ядра за малое время dt находится по формуле dP = λdt .Частота равна вероятности: d N 1 / N = dP = λdt. d N 1 / N = λdt - формула определяющая количество распавшихся ядер.

Решением уравнения является: , - формула называется законом радиоактивного распада: Число радиоактивных ядер убывает со временем по экспоненциальному закону.

Здесь N- число нераспавшихся ядер к моменту времени t; N о - первоначальное число нераспавшихся ядер; λ - постоянная радиоактивного распада.

На практике используют не постоянную распада λ , а величину, называемую периодом полураспада Т .

Период полураспада (Т) - время, в течение которого распадается половинарадиоактивных ядер.

Закон радиоактивного распада черезпериодполураспада (Т) имеет вид:

Связь между периодом полураспада и постоянной распада определяется формулой: T = ln(2/λ) = 0,69/λ

Периодом полураспада может быть как очень большим, так и очень маленьким.

Для оценки степени активности радиоактивного изотопа используют величину, называемую активностью.

Активность число ядер радиоактивного препарата распадающихся за единицу времени: А = dN расп /dt

За единицу активности в СИ принимают 1 беккерель (Бк) = 1 распад/с - активность препарата, в котором за 1 с происходит 1 распад. Более крупная единица активности - 1 резерфорд (Рд) = Бк. Часто используется внесистемная единица активности - кюри (Ки), равная активности 1 г радия : 1 Ки = 3,7 Бк.

Со временем активность убывает по тому же экспоненциальному закону, по которому распадается сам радионуклид:

= .
На практике для расчетаактивности применяют формулу:

А = = λN = 0,693 N/T.

Если выразим число атомов через массу и малярную массу, тогда формула для расчетаактивности примет вид: А = = 0,693 (μТ)

где - число Авогадро; μ - молярная масса.

Радиоактивность

Ионизирующее излучение

Радиационные воздействия

Земля находится под постоянным воздействием потока быстрых частиц и квантов жесткого электромагнитного излучения, приходящих из космоса. Этот поток называют космическими лучами. Космические лучи приходят из глубин вселенной и от Солнца. Часть потока космических лучей достигает поверхности Земли, а часть поглощается атмосферой, порождая вторичное излучение и приводя к образованию различных радионуклидов. Взаимодействие космических лучей с веществом приводит к его ионизации.

Поток частиц или электромагнитных квантов, взаимодействие которых со средой приводит к ионизации ее атомов, называется ионизирующим излучением.

Ионизирующее излучение может иметь и земное происхождение. Например, возникать при радиоактивном распаде.

Явление радиоактивности было открыто в 1896 г. А. Беккерелем.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием частиц.

Существуют два вида радиоактивности:

Естественная, которая встречается у природных неустойчивых ядер;

Искусственная, которая встречается у радиоактивных ядер, образованных в результате различных ядерных реакций.

Оба вида радиоактивности имеют общие закономерности.

Радиоактивный распад - явление статистическое. Можно установить вероятность распада одного ядра за определенный промежуток времени. За равные промежутки времени распадаются одинаковые доли наличных (т. е. еще не распавшихся к началу данного промежутка времени) ядер радиоактивного элемента.

Пусть за малое время dt распадается dN ядер. Это число пропорционально интервалу времени dt и общему числу радиоактивных ядер N:

где λ - постоянная распада, пропорциональная вероятности распада радиоактивного ядра и зависящая от природы элемента; знак «-» указывает на убывание количества радиоактивных ядер.

Решением дифференциального уравнения (12.23) является экспоненциальная функция:

где N 0 - число радиоактивных ядер в момент t = 0, a N - число не распавшихся ядер в текущий момент времени t.

Формула (12.24) выражает закон радиоактивного распада.

Число радиоактивных ядер убывает со временем по экспоненциальному закону.

На практике вместо постоянной распада А, часто используют другую величину, называемую периодом полураспада.

Период полураспада (Т) - это время, в течение которого распадается половина радиоактивных ядер.

Период полураспада может быть как очень большим, так и очень маленьким. Например, для урана Т = 4,5·10 9 лет, а для лития Т Li = 0,89 с.



Характеристики распада Т и λ, связаны соотношением:

Закон радиоактивного распада с использованием периода полураспада записывается так:

На рис. 12.7 изображены процессы радиоактивного распада для двух веществ с различными периодами полураспада.

Рис. 12.7. Убывание количества ядер исходного вещества при радиоактивном распаде

Радиоактивный распад ядер одного и того же элемента происходит постепенно и с разной скоростью для разных радиоактивных элементов. Нельзя указать заранее момент распада ядра, но можно установить вероятность распада одного ядра за единицу времени. Вероятность распада характеризуется коэффициентом "λ" - постоянной распада, который зависит только от природы элемента.

Закон радиоактивного распада. (Слайд 32)

Экспериментально установлено, что:

За равные промежутки времени распадается одинаковая доля наличных (т.е. еще не распавшихся к началу данного промежутка) ядер данного элемента.

Дифференциальная форма закона радиоактивного распада. (слайд 33)

Устанавливает зависимость количества не распавшихся атомов в данный момент времени от начального количества атомов в нулевой момент начала отсчета, а так же от времени распада"t" и постоянной распада "λ".

N t - наличное количество ядер.

dN - убыль наличного количества атомов;

dt - время распада.

dN ~ N t · dt Þ dN = –λ N t dt

"λ" - коэффициент пропорциональности, постоянная распада, характеризует долю наличных, еще не распавшихся ядер;

"–" - говорит том, что с течением времени количество распадающихся атомов уменьшается.

Следствие № 1: (слайд 34)

λ = –dN/N t · dt - относительная скорость радиоактивного распада для данного вещества есть величина постоянная.

Следствие № 2:

dN/N t = – λ · Nt - абсолютная скорость радиоактивного распада пропорциональна количеству не распавшихся ядер к моменту времени dt. Она не является "const", т.к. уменьшатся с течением времени.

4. Интегральная форма закона радиоактивного распада. (слайд 35)

Устанавливает зависимость числа оставшихся атомов в данный момент времени (N t) от их исходного количества (N o), времени (t) и постоянной распада "λ". Интегральная форма получается из дифференциальной:

1. Разделим переменные:

2. Проинтегрируем обе части равенства:

3. Найдем интегралы Þ -общее решение

4. Найдем частное решение:

Если t = t 0 = 0 Þ N t = N 0 , подставим эти условия в общее решение

(начало (исходное число

распада) атомов)

Þ Таким образом:

интегральная форма закона р/акт. распада

N t - число не распавшихся атомов к моменту времени t ;

N 0 - исходное число атомов при t = 0 ;

λ - постоянная распада;

t - время распада

Вывод: Наличное количество не распавшихся атомов ~ исходному количеству и убывает с течением времени по экспоненциальному закону. (слайд 37)

Nt= N 0 ·2 λ 1 λ 2 >λ 1 Nt = N 0 ·e λ · t

5. Период полураспада и его связь с постоянной распада. (слайд 38,39)

Период полураспада (Т) - это время, в течение которого распадается половина исходного числа радиоактивных ядер.

Он характеризует скорость распада различных элементов.

Основные условия определения "Т":

1. t = Т - период полураспада.

2. - половина от исходного числа ядер за "Т".

Формулу связи можно получить, если эти условия подставить в интегральную форму закона радиоактивного распада

1.

2. Сократим «N 0 ». Þ

3.

4. Потенцируем.

Þ

5.

Период полураспада изотопов различается в широких пределах: (слайд40)

238 U ® T = 4,51· 10 9 лет

60 Co ® T = 5,3 года

24 Na ® T = 15,06 часов

8 Li ® T = 0,84 c

6. Активность. Её виды, единицы измерения и количественная оценка. Формула активности. (слайд 41)

На практике основное значение имеет общее число распадов, приходящихся в источнике радиоактивного излучения в единицу времени => количественно меру распада определяют активностью радиоактивного вещества.

Активность (А) зависит от относительной скорости распада "λ" и от наличного числа ядер (т.е. от массы изотопа).

"А" - характеризует абсолютную скорость распада изотопа.

3 варианта записи формулы активности: (слайд 42,43)

I. Из закона радиоактивного распада в дифференциальной форме следует:

Þ

активность (абсолютная скорость радиоактивного распада).

активность

II. Из закона радиоактивного распада в интегральной форме следует:

1. (домножим обе части равенства на «λ»).

2. ; ( исходная активность при t = 0)

3. убыль активности идет по экспоненциальному закону

III. При использовании формулы связи постоянной распада "λ" с периодом полураспада "Т" следует:

1. (домножим обе части равенства на «N t », что бы получить активность). Þ и получаем формулу для активности

2.

Единицы измерения активности: (слайд 44)

А. Системные единицы измерения.

A = dN/dt

1[расп/с] = 1[Бк] – беккерель

1Мрасп/с =10 6 расп/с = 1 [Рд] - резерфорд

Б. Внесистемные единицы измерения.

[Ки] - кюри (соответствует активности 1г радия).

1[Ки] = 3,7 · 10 10 [расп/с] - в 1г радия за 1с распадается 3,7· 10 10 радиоактивных ядер.

Виды активности: (слайд 45)

1. Удельная - это активность единицы массы вещества.

А уд. = dA/dm [Бк/кг].

Её используют для характеристики порошкообразных и газообразных веществ.

2. Объёмная - это активность в единице объёма вещества или среды.

А об = dA/dV [Бк/м 3 ]

Её используют для характеристики жидких веществ.

На практике убыль активности измеряется с помощью специальных радиометрических приборов. Например, зная активность препарата и продукта, образующегося при распаде 1 ядра, можно вычислить, сколько частиц каждого вида испускает препарат за 1 секунду.

Если при делении ядра образуется нейтронов"n", то за 1с испускается поток нейтронов "N". N = n · А.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-08-08

Изменение числа радиоактивных ядер во времени. Резерфорд и Содди в 1911 г., обобщая экспериментальные результаты, показали, что атомы некоторых элементов испытывают последовательные превращения, образуя радиоактивные семейства, где каждый член возникает из предыдущего и, в свою очередь, образует последующий.

Это удобно проиллюстрировать на примере образования радона из радия. Если поместить в запаянную ампулу то анализ газа через несколько дней покажет, что в нем появляется гелий и радон. Гелий устойчив, и поэтому он накапливается, радон же сам распадается. Кривая 1 на рис. 29 характеризует закон распада радона в отсутствие радия. При этом на оси ординат отложено отношение числа нераспавшихся ядер радона к их начальному числу Видно, что убывание содержания идет по экспоненциальному закону. Кривая 2 показывает, как изменяется число радиоактивных ядер радона в присутствии радия.

Опыты, проведенные с радиоактивными веществами, показали, что никакие внешние условия (нагревание до высоких температур,

магнитные и электрические поля, большие давления) не могут повлиять на характер и скорость распада.

Радиоактивность является свойством атомного ядра и для данного типа ядер, находящихся в определенном энергетическом состоянии, вероятность радиоактивного распада за единицу времени постоянна.

Рис. 29. Зависимость числа активных ядер радона от времени

Так как процесс распада самопроизвольный (спонтанный), то изменение числа ядер из-за распада за промежуток времени определяется только количеством радиоактивных ядер в момент и пропорционально промежутку времени

где постоянная, характеризующая скорость распада. Интегрируя (37) и считая, что получаем

т. е. число ядер убывает по экспоненциальному закону.

Этот закон относится к статистическим средним величинам и справедлив лишь при достаточно большом числе частиц. Величина X называется постоянной радиоактивного распада, имеет размерность и характеризует вероятность распада одного атома в одну секунду.

Для характеристики радиоактивных элементов вводится также понятие периода полураспада Под ним понимается время, в течение которого распадается половина наличного числа атомов. Подставляя условие в уравнение (38), получим

откуда, логарифмируя, найдем, что

и период полураспада

При экспоненциальном законе радиоактивного распада в любой момент времени имеется отличная от нуля вероятность найти еще не распавшиеся ядра. Время жизни этих ядер превышает

Наоборот, другие ядра, распавшиеся к этому времени, прожили разное время, меньшее Среднее время жизни для данного радиоактивного изотопа определяется как

Обозначив получим

Следовательно, среднее время жизни радиоактивного ядра равно обратной величине от постоянной распада Я. За время первоначальное число ядер уменьшается в раз.

Для обработки экспериментальных результатов удобно представить уравнение (38) в другой форме:

Величина называется активностью данного радиоактивного препарата, она определяет число распадов в секунду. Активность является характеристикой всего распадающегося вещества, а не отдельного ядра. Практической единицей активности является кюри. 1 кюри равно ислу распавшихся ядер содержащихся в радия за 1 сек распадов/сек). Используются и более мелкие единицы - милликюри и микрокюри . В практике физического эксперимента используется иногда другая единица активности - Резерфорд распадов/сек.

Статистический характер радиоактивного распада. Радиоактивный распад - явление принципиально статистическое. Мы не можем сказать, когда именно распадется данное ядро, а можем лишь указать, с какой вероятностью оно распадается за тот или иной промежуток времени.

Радиоактивные ядра не «стареют» в процессе своего существования. К ним вообще неприменимо понятие возраста, а можно лишь говорить о среднем времени их жизни.

Из статистического характера закона радиоактивного распада следует, что он выполняется строго, когда велико, а при небольших должны наблюдаться флуктуации. Число распадающихся ядер в единицу времени должно флуктуировать вокруг среднего значения, харак теризуемого приведенным выше законом. Это подтверждается экспериментальными измерениями числа -частиц, испускаемых радиоактивным веществом в единицу времени.

Рис. 30. Зависимость логарифма активности от времени

Флуктуации подчиняются закону Пуассона. Производя измерения с радиоактивными препаратами, надо всегда это учитывать и определять статистическую точность опытных результатов.

Определение постоянной распада X. При определении постоянной распада X радиоактивного элемента опыт сводится к регистрации числа частиц, вылетающих из препарата за единицу времени, т. е. определяется его активность Затем строится график изменения активности со временем, обычно в полулогарифмическом масштабе. Вид получаемых зависимостей при исследованиях чистого изотопа, смеси изотопов или радиоактивного семейства оказывается различным.

Рассмотрим в качестве примера несколько случаев.

1. Исследуется один радиоактивный элемент, при распаде которого образуются стабильные ядра. Логарифмируя выражение (41), получим

Следовательно, в этом случае логарифм активности является линейной функцией времени. График этой зависимости имеет вид прямой, тангенс угла наклона которой (рис. 30)

2. Исследуется радиоактивное семейство, в котором происходит целая цепь радиоактивных превращений. Ядра, получающиеся после распада, в свою очередь сами оказываются радиоактивными:

Примером такой цепочки может служить распад:

Найдем закон, описывающий в этом случае изменение числа радиоактивных атомов во времени. Для простоты выделим всего два элемента: считая А исходным, а В промежуточным.

Тогда изменение числа ядер А и ядер В определится из системы уравнений

Количество ядер А убывает за счет их распада, а количество ядер В убывает из-за распада ядер В и возрастает за счет распада ядер А.

Если при имеется ядер А, а ядер В нет, то начальные условия запишутся в виде

Решение уравнений (43) имеет вид

и полная активность источника, состоящего из ядер А и В:

Рассмотрим теперь зависимость логарифма радиоактивности от времени при разных соотношениях между и

1. Первый элемент короткоживущий, второй - долгоживущий, т. е. . В этом случае кривая, показывающая изменение суммарной активности источника, имеет вид, представленный на рис. 31, а. В начале ход кривой определяется в основном быстрым уменьшением числа активных ядер ядра В тоже распадаются, но медленно, и поэтому их распад не очень сильно влияет на наклон кривой на участке . В дальнейшем ядер типа А остается в смеси изотопов мало, и наклон кривой определяется постоянной распада Если нужно найти и то по наклону кривой при большом значении времени находят (в выражении (45) первый экспоненциальный член в этом случае может быть отброшен). Для определения величины надо учесть также влияние распада долгоживущего элемента на наклон первой части кривой. Для этого экстраполируют прямую в область малых времен, в нескольких точках вычитают из суммарной активности активность, определяемую элементом В, по полученным значениям

строят прямую для элемента А и по углу находят (при этом надо переходить от логарифмов к антилогарифмам и обратно).

Рис. 31. Зависимость логарифма активности смеси двух радиоактивных веществ от времени: а - при при

2. Первый элемент долгоживущий, а второй короткоживущий: Зависимость в этом случае имеет вид, представленный на рис. 31,б. В начале активность препарата увеличивается за счет накопления ядер В. Затем наступает радиоактивное равновесие, при котором отношение числа ядер А к числу ядер В становится постоянным. Этот тип равновесия называется переходным. Спустя некоторое время, оба вещества начинают убывать со скоростью распада материнского элемента.

3. Период полураспада первого изотопа много больше второго (следует заметить, что период полураспада некоторых изотопов измеряется миллионами лет). В этом случае через время устанавливается так называемое вековое равновесие, при котором количество ядер каждого изотопа пропорционально периоду полураспада этого изотопа. Соотношение