Как держать форму. Массаж. Здоровье. Уход за волосами

Интересные факты о бабочках. Ожившие цветы Самые развитые органы чувств у бабочек

Насекомые , как и другие многоклеточные организмы , имеют множество различных рецепторов, или сенсилл, чувствительных к определённым раздражителям. Рецепторы насекомых очень разнообразны. У насекомых есть механорецепторы (слуховые рецепторы, проприоцепторы), фоторецепторы, терморецепторы, хеморецепторы. С их помощью насекомые улавливают энергию излучений в виде тепла и света, механические вибрации, включая широкий диапазон звуков, механическое давление, силу тяжести, концентрацию в воздухе водяных паров и летучих веществ, а также множество других факторов. Насекомые обладают развитым чувством обоняния и вкуса. Механорецепторами являются трихоидные сенсиллы, которые воспринимают тактильные стимулы. Некоторые сенсиллы могут улавливать малейшие колебания воздуха вокруг насекомого, а другие - сигнализируют о положении частей тела относительно друг друга. Воздушные рецепторы воспринимают скорость и направление потоков воздуха поблизости от насекомого и регулируют скорость полёта.

Зрение

Зрение играет большую роль в жизни большинства насекомых. У них встречаются три типа органов зрения - фасеточные глаза, латеральные (стеммы) и дорсальные (оцеллии) глазки. У дневных и летающих форм обычно имеется 2 сложных глаза и 3 оцеллия. Стеммы имеются у личинок насекомых с полным превращением. Они располагаются по бокам головы в количестве 1-30 с каждой стороны. Дорсальные глазки (оцеллии) встречаются вместе с фасеточными глазами и функционируют в качестве дополнительных органов зрения. Оцеллии отмечены у имаго большинства насекомых (отсутствуют у многих бабочек и двукрылых, у рабочих муравьёв и слепых форм) и у некоторых личинок (веснянки, подёнки, стрекозы). Как правило, они имеются только у хорошо летающих насекомых. Обычно имеется 3 дорсальных глазка, расположенных в виде треугольника в лобно-теменной области головы. Их основная функция, вероятно, заключается в оценке освещённости и её изменений. Предполагается, что они также принимают участие в зрительной ориентации насекомых и реакциях фототаксиса.

Особенности зрения насекомых обусловлены фасеточным строением глаз, которые состоят из большого числа омматидиев. Наибольшее число омматидиев обнаружено у бабочек (12-17 тысяч) и стрекоз (10-28 тысяч). Светочувствительной единицей омматидия является ретинальная (зрительная) клетка. В основе фоторецепции насекомых лежит преобразование зрительного пигмента родопсина под воздействием кванта света в изомер метародопсин. Обратное его восстановление даёт возможность многократного повторения элементарных зрительных актов. Обычно в фоторецепторах обнаруживаются 2-3 зрительных пигмента, различающихся по своей спектральной чувствительности. Набор данных зрительных пигментов определяет также особенности цветового зрения насекомых. Зрительные образы в фасеточных глазах формируются из множества точечных изображений, создаваемых отдельными омматидиями. Фасеточные глаза лишены способности к аккомодации и не могут приспосабливаться к зрению на разных расстояниях. Поэтому насекомых можно назвать «крайне близорукими». Насекомые характеризуются обратно пропорциональной связью между расстоянием до рассматриваемого объекта и числом различимых их глазом деталей: чем ближе находится объект, тем больше деталей они видят. Насекомые способны оценивать форму предметов, но на небольших расстояниях от них для этого требуется, чтобы очертания объектов вмещались в поле зрения фасеточного глаза.

Цветовое зрение насекомых может быть дихроматическим (муравьи, жуки-бронзовки) или трихроматическим (пчелиные и некоторые бабочки). Как минимум один вид бабочек обладает тетрахроматическим зрением. Существуют насекомые, которые способны различать цвета только одной (верхней или нижней) половинкой фасеточного глаза (четырёхпятнистая стрекоза). Для некоторых насекомых видимая часть спектра сдвинута в коротковолновую сторону. Например, пчёлы и муравьи не видят красного цвета (650-700 нм), но различают часть ультрафиолетового спектра (300-400 нм). Пчёлы и другие насекомые-опылители могут увидеть на цветках ультрафиолетовые рисунки, скрытые от зрения человека. Аналогично бабочки способны различать элементы окраски крыльев, видимые только в ультрафиолетовом излучении.

Восприятие звуков, передающихся через твёрдый субстрат, осуществляется у насекомых виброрецепторами, находящимися в голенях ног вблизи их сочленения с бедром. Многие насекомые обладают высокой чувствительностью к сотрясениям субстрата, на котором они находятся. Восприятие звуков через воздух или воду осуществляется фонорецепторами. Двукрылые воспринимают звуки при помощи джонстоновых органов. Наиболее сложными слуховыми органами насекомых являются тимпанальные органы. Количество сенсилл, входящих в состав одного тимпанального органа, варьирует от 3 (некоторые бабочки) до 70 (саранчовые) и даже до 1500 (у певчих цикад). У кузнечиков, сверчков и медведок тимпанальные органы находятся в голенях передних ног, у саранчовых - по бокам первого брюшного сегмента. Слуховые органы певчих цикад располагаются у основания брюшка в близости от звукопроизводящего аппарата. Слуховые органы ночных бабочек находятся в последнем грудном сегменте или в одном из двух передних сегментов брюшка и могут воспринимать ультразвуки, издаваемые летучими мышами. Медоносные пчёлы издают звуки, заставляя вибрировать часть торакса путём частых мышечных сокращений. Звук усиливается крыловыми пластинами. В отличие от многих насекомых пчёлы способны издавать звуки разной высоты и тембров, что позволяет им передавать информацию посредством разных характеристик звука.

Зрение

Насекомые обладают развитым обонятельным аппаратом. Восприятие запахов осуществляется благодаря хеморецепторам - обонятельным сенсиллам, расположенным на усиках, а иногда и на околоротовых придатках. На уровне хеморецепторов происходит первичное разделение обонятельных раздражителей благодаря наличию двух типов рецепторных нейронов. Нейроны-генералисты распознают очень широкий набор химических соединений, но при этом обладают низкой чувствительностью к запахам. Нейроны-специалисты реагируют только на одно или несколько родственных химических соединений. Они обеспечивают восприятие пахучих веществ, запускающих определённые поведенческие реакции (половые феромоны, пищевые аттрактанты и репелленты, углекислый газ). У самцов тутового шелкопряда обонятельные сенсиллы достигают теоретически возможного предела чувствительности: для возбуждения нейрона-специалиста достаточно всего лишь одной молекулы феромона самки. В своих опытах Ж. А. Фабр определил, что самцы грушевой павлиноглазки могут обнаруживать самок по феромонам на расстоянии до 10 км.

Контактные хеморецепторы образуют периферический отдел вкусового анализатора насекомых и позволяют им оценивают пригодность субстрата для питания или яйцекладки. Эти рецепторы располагаются на ротовых частях, кончиках лапок, антеннах и яйцекладе. Большинство насекомых способны распознавать растворы солей, глюкозы, сахарозы и других углеводов, а также воду. Хеморецепторы насекомых редко реагируют на искусственные вещества, имитирующие сладкий или горький вкус, в отличие от хеморецепторов позвоночных. Например, сахарин не воспринимается насекомыми как сладкое вещество.

Бабочки в зависимости от вида благодаря вкусовым ощущениям оказывают предпочтение тем или иным объектам питания. Органы хеморецепции бабочек находятся на лапках и реагируют на различные вещества через прикосновение. Экспериментально установлено, что если взять бабочку за крылья и коснуться лапками поверхности, смоченной сахарным сиропом, то на это отреагирует ее хоботок. Он тотчас свернется, хотя сам к сахарному сиропу не чувствителен. С помощью вкусового анализатора бабочки хорошо различают растворы хинина, сахарозы, соляной кислоты и др. Причем эти органы бабочек в тысячу раз чувствительнее рецепторов человеческого языка. Своими лапками бабочки могут почувствовать концентрацию сахара в воде в 2 000 раз меньшую, чем та, что дает нам ощущение сладковатого вкуса.

Высокочувствительное обоняние

Органы обоняния бабочек реагируют на присутствие даже очень малых концентраций вещества, удаленного от насекомого на большое расстояние. Их высокая чувствительность к запахам поражает. Самки бабочек многих видов обеспечены железами, выделяющими пахучие феромоны. Этот секрет выделяется ими в период размножения и улавливается самцами. Особым чутьем отличаются, например, самцы ночных шелкопрядущих бабочек, наделенные для этого пышными перистыми усиками. Они способны находить своих малоподвижных самок по еле уловимому запаху. Меченые самцы непарного тутового шелкопряда устремлялись на запах самки с расстояния 3,8 км. А самцы бабочки сатурнии улавливают запах самки своего вида на расстоянии 12 км. Но возможно, не только обоняние используется для такого поиска. Ученые пытались выяснить предельную границу, с которой самцы бабочек уже не находят самки. Они выпускали через окно движущегося поезда помеченных самцов бабочки-глазчатки с разных расстояний от места с клеткой, где находилась самка того же вида. С расстояния 11 км на ее запах прилетело 26 % выпущенных самцов.

Самый наглядный пример эффективности действия феромонов у насекомых демонстрирует тутовый шелкопряд. Для того чтобы показать свою готовность к спариванию, самка выделяет небольшое количество феромона (бомбикола). Даже если его будет всего одна миллионная грамма, самец способен расшифровать такое сообщение, важное для продолжения его рода. При этом достаточно всего одной молекулы бомбикола, выделяемого самкой, чтобы запустить нервный импульс в рецепторной клетке антенны самца. А если генерируется 200 импульсов в секунду, самец начинает искать самку, двигаясь против ветра, приносящего химическую информацию от подруги. Существует даже способ ловли самцов тутового и непарного шелкопряда, волнянок, павлиноглазок (сатурниц), коконопрядов. Самку сажают в клетку, и на ее запах слетаются многочисленные самцы.

Потомство серебристой бабочки-нимфалиды питается в основном листьями фиалки. Поэтому самка удивительным образом находит эти растения и откладывает яйца на коре растущих рядом деревьев. Науке не известно, как находит она фиалку, но, вероятнее всего, – по запаху.

Работа инфракрасных локаторов

Для поиска «своих» цветков, раскрытых в темноте, некоторые ночные бабочки обеспечены уникальными инфракрасными локаторами. Чтобы переводить невидимые тепловые лучи в видимое изображение в их глазах создается эффект флуоресценции. Инфракрасные лучи проходят здесь через построенную организмом сложную оптическую систему и фокусируются на специально подготовленном пигменте. Тот флуоресцирует, и таким образом инфракрасное изображение переходит в видимый свет. И тогда в глазах бабочки появляются видимые образы цветков, которые ночью испускают излучение именно в инфракрасной области спектра. В этом случае у цветков есть передатчики излучения, а у ночных бабочек – его приемники, то есть они целесообразно устроены друг для друга.

Инфракрасное излучение играет немаловажную роль и в сближении ночных бабочек различных полов. Как это происходит? В результате протекающих в организме бабочек физиологических процессов температура их тела значительно выше, чем температура окружающей среды и составляет около 35– 400 С. И что самое интересное – она мало зависит от температуры окружающего воздуха. То есть при понижении внешней температуры процессы внутри организма усиливаются. Более теплое тело бабочки является источником инфракрасных лучей. Взмахи крыльев прерывают поток этих лучей с определенной частотой. Предполагается, что самец отличает самку своего вида, воспринимая эти определенные ритмические колебания инфракрасного излучения.

Ультразвук для ориентации в пространстве

Благодаря акустическому анализу и использованию ультразвуковых сигналов бабочки не только избегают своих основных врагов – летучих мышей, как было показано выше, но и прекрасно ориентируются в пространстве. В экспериментах бабочка совка продемонстрировала способность к эхолокационной ориентации среди системы сферических преград. Представители этого вида могут определять наличие преграды на расстоянии свыше 12 см и производить сложные маневры при ее облете.

    Маскировка и демонстрация. Мимикрия. Пассивно-оборонительные реакции. Защитное устройство сверчка. Способы активной защиты. Использование ядов. Взрывная смесь.

    Немного о природе мужчин. Чем привлекательна женская грудь? Копулины сводят с ума обезьян, но не человека. Феромоны и сексуальный отбор. Человек - самый пахучий из приматов.

    Бабочки дневные, обширная группа насекомых, характеризующихся наличием двух пар относительно крупных крыльев, покрытых чешуйками (плоскими щетинками).

    Возможности для повсеместного обитания. Разнообразие типов организма и мест обитания насекомых. Холодоустойчивость насекомых. От влажных тропиков до безводных пустынь. От соленых вод до нефти.

    Успехи химической экологии во многом обязаны появлению новых физико-химических методов исследования, позволяющих установить структуру вещества в субмиллиграммовом количестве.

    Населяет преимущественно биотопы с песчаным и известковым грунтом: в Европейской части России его излюбленные местообитания - сухие боры и перелески.

    В процессе эволюции одни организмы начинают подражать другим - либо чтобы отпугнуть возможных хищников, сигнализируя об опасности, либо чтобы приобрести сходство с теми видами, которых принято избегать.

    Необычайно богатый разнообразием жизненных форм и занимающий практически все уголки планеты мир насекомых характерен тем, что постоянно сталкивается с различными сферами интересов человека.

    Что «делают» растения ночью? На этот вопрос так и хочется ответить: «Отдыхают». Ведь, казалось бы, вся «активная жизнь» растения происходит днем. В дневные часы цветы раскрываются и опыляются насекомыми, развертываются листья.

    Что общего у нервной системы позвоночных и беспозвоночных? Работа органов чувств и живых «приборов». Органы зрения. Где находятся «уши» насекомых?. Органы для улавливания и излучения ультразвуковых волн.

    Территориальность. Иерархичность. Биокоммуникация и «язык» насекомых. Химическая информация. Световая и звуковая сигнализация. Прост ли «язык» насекомых?

    Способы пищедобывания. Подстерегающий охотник. Охота в чужом «наряде». Активная охота. Насекомые-заготовители. Устройства и процессы для потребления пищи. Симбиотические связи.

Уникальность органов чувств бабочек

Жданова Т. Д.

Вкусовые ощущения

Бабочки в зависимости от вида благодаря вкусовым ощущениям оказывают предпочтение тем или иным объектам питания. Органы хеморецепции бабочек находятся на лапках и реагируют на различные вещества через прикосновение. Экспериментально установлено, что если взять бабочку за крылья и коснуться лапками поверхности, смоченной сахарным сиропом, то на это отреагирует ее хоботок. Он тотчас свернется, хотя сам к сахарному сиропу не чувствителен. С помощью вкусового анализатора бабочки хорошо различают растворы хинина, сахарозы, соляной кислоты и др. Причем эти органы бабочек в тысячу раз чувствительнее рецепторов человеческого языка. Своими лапками бабочки могут почувствовать концентрацию сахара в воде в 2 000 раз меньшую, чем та, что дает нам ощущение сладковатого вкуса.

Высокочувствительное обоняние

Органы обоняния бабочек реагируют на присутствие даже очень малых концентраций вещества, удаленного от насекомого на большое расстояние. Их высокая чувствительность к запахам поражает. Самки бабочек многих видов обеспечены железами, выделяющими пахучие феромоны. Этот секрет выделяется ими в период размножения и улавливается самцами. Особым чутьем отличаются, например, самцы ночных шелкопрядущих бабочек, наделенные для этого пышными перистыми усиками. Они способны находить своих малоподвижных самок по еле уловимому запаху. Меченые самцы непарного тутового шелкопряда устремлялись на запах самки с расстояния 3,8 км. А самцы бабочки сатурнии улавливают запах самки своего вида на расстоянии 12 км. Но возможно, не только обоняние используется для такого поиска. Ученые пытались выяснить предельную границу, с которой самцы бабочек уже не находят самки. Они выпускали через окно движущегося поезда помеченных самцов бабочки-глазчатки с разных расстояний от места с клеткой, где находилась самка того же вида. С расстояния 11 км на ее запах прилетело 26 % выпущенных самцов.

Самый наглядный пример эффективности действия феромонов у насекомых демонстрирует тутовый шелкопряд. Для того чтобы показать свою готовность к спариванию, самка выделяет небольшое количество феромона (бомбикола). Даже если его будет всего одна миллионная грамма, самец способен расшифровать такое сообщение, важное для продолжения его рода. При этом достаточно всего одной молекулы бомбикола, выделяемого самкой, чтобы запустить нервный импульс в рецепторной клетке антенны самца. А если генерируется 200 импульсов в секунду, самец начинает искать самку, двигаясь против ветра, приносящего химическую информацию от подруги. Существует даже способ ловли самцов тутового и непарного шелкопряда, волнянок, павлиноглазок (сатурниц), коконопрядов. Самку сажают в клетку, и на ее запах слетаются многочисленные самцы.

Потомство серебристой бабочки-нимфалиды питается в основном листьями фиалки. Поэтому самка удивительным образом находит эти растения и откладывает яйца на коре растущих рядом деревьев. Науке не известно, как находит она фиалку, но, вероятнее всего, – по запаху.

Работа инфракрасных локаторов

Для поиска «своих» цветков, раскрытых в темноте, некоторые ночные бабочки обеспечены уникальными инфракрасными локаторами. Чтобы переводить невидимые тепловые лучи в видимое изображение в их глазах создается эффект флуоресценции. Инфракрасные лучи проходят здесь через построенную организмом сложную оптическую систему и фокусируются на специально подготовленном пигменте. Тот флуоресцирует, и таким образом инфракрасное изображение переходит в видимый свет. И тогда в глазах бабочки появляются видимые образы цветков, которые ночью испускают излучение именно в инфракрасной области спектра. В этом случае у цветков есть передатчики излучения, а у ночных бабочек – его приемники, то есть они целесообразно устроены друг для друга.

Инфракрасное излучение играет немаловажную роль и в сближении ночных бабочек различных полов. Как это происходит? В результате протекающих в организме бабочек физиологических процессов температура их тела значительно выше, чем температура окружающей среды и составляет около 35– 400 С. И что самое интересное – она мало зависит от температуры окружающего воздуха. То есть при понижении внешней температуры процессы внутри организма усиливаются. Более теплое тело бабочки является источником инфракрасных лучей. Взмахи крыльев прерывают поток этих лучей с определенной частотой. Предполагается, что самец отличает самку своего вида, воспринимая эти определенные ритмические колебания инфракрасного излучения.

В мире существует более чем 30 000 видов бабочек и молей. Они составляют вторую по численности группу насекомых на нашей планете. Предлагаем небольшое путешествие в этот прекрасный мир. Интересные факты из мира бабочек и мотыльков на Интересном сайте.

Моль это бабочка.

Да, моль это ночная бабочка. Бабочки условно различают по внешнему виду и времени полета — дневные бабочки и мотыльки – активные ночью. Моли, как правило, толще и более «волосатые», а бабочки дневные стройнее и «менее волосатые».

Почему мотыльки летят на свет?

До сегодняшнего дня ученые не сходятся во мнении, что является причиной данного явления. Видимо, мотыльки имеют эволюционно развитый механизм навигации на основе света, который служит им как маяк кораблям.

Что такое пыльца на крыльях бабочек?

Бабочки — чешуекрылые насекомые и рисунок на их крыльях создают чешуйки, которые перекрывают друг друга, как уложенная черепица. Чешуйки охватывают все части тела бабочки, а они настолько тонкие, что создают впечатление пыльцы. Бабочка это очень нежное создание, наши прикосновения, даже самые нежные, повреждают ей крылья, после чего она не может свободно летать. В естественной среде обитания, бабочки с поврежденными крыльями становятся легкой добычей для хищников, им сложнее добывать еду, поэтому в итоге бабочка меньше живет.

Зачем бабочкам две пары крыльев?

Ученые доказали, что верхняя пара крыльев, отвечает за подъемную силу, то есть за полет, а нижняя служит для изменения направления полета. Бабочки летающие на большие расстояния, имеют длинные, узкие и резко заостренные крылья. Бабочка, которая умеет совершать быстрые повороты и уворачиваться, имеет широкие и четко округлые крылья. Дневная бабочка совершает крыльями 300 ударов в минуту. Самые быстрые бабочки умеют развивать скорость до 55 км/ч. Мотыльки имеют коренастое строение тела, я для полеты должны делать намного больше движений крыльями. Рекордсменом является Русский Колибри, который делает 5000 взмахов в минуту!

Органы чувств у бабочек.

В антеннах бабочек находятся рецепторы, отвечающие за улавливание запахов, а также органы чувств, отвечающие за вкус и осязание. На антеннах находится также «орган Джонстона», который отвечает за равновесие бабочки и является аналогом человеческого вестибулярного аппарата. Он реагирует на колебания воздуха и звуковые волны. Бабочка имеет на лапках вкусовые рецепторы, передвигаясь по листу, способна понять, является ли он съедобным и вкусным.

Как видят бабочки?

Бабочки имеют сложное строение глаз, поэтому они воспринимают окружающий мир в виде мозаики, состоящей из мелких картинок. Глаза у бабочек расположены с обеих сторон головы, поэтому они с легкостью видят движение, но отличают только самые яркие цвета. Скорее всего они видят только красный, зеленый и желтый цвета, поэтому садятся на цветы определенных цветов. Бабочки видят невидимое для человека ультрафиолетовое излучение, поэтому они видят цвета иначе, чем люди.

Бабочки кусаются?

Бабочки не кусаются, потому что не имеют ни зубов, ни даже рта. Они собирают корм через длинную трубку, которая свернута и спрятана под голову когда бабочка не ест.

Что едят бабочки?

Основной рацион взрослой бабочки — нектар цветов. Также любят ферменты фруктов, сок, вытекающий из поврежденных деревьев и даже жидкость из экскрементов и падали. Некоторые бабочки пьют воду, поэтому часто встречается на берегах рек. В западной Амазонии можно увидеть бабочек пьющих слезы черепах. Таким образом они пополняют уровень натрия в организме.

Существуют ли ядовитые бабочки?

Бабочки не могут уколоть или укусить. Не имеют ядовитой кожи. Однако ядовитые бабочки все же существуют. Токсичные вещества делают их несъедобными для птиц и других врагов. Яд вырабатывается в стадии гусеницы с потребляемыми ядовитыми растениями и хранится их в организмах на протяжении всей жизни.

Какое значение имеет цвет крыльев бабочки?

Бабочки, как и рептилии, относятся к хладнокровным животным, то есть они получают тепло из внешних источников. Греются в лучах солнца расправляя крылья так, чтобы улавливать тепло, чтобы самая большая их поверхность была выставлена на солнце. Цвета на крыльях полезны при абсорбции тепла. Бабочки которые имеют большие черные пятна поглощают больше тепла.

Вкусовые ощущения

Бабочки в зависимости от вида благодаря вкусовым ощущениям оказывают предпочтение тем или иным объектам питания. Органы хеморецепции бабочек находятся на лапках и реагируют на различные вещества через прикосновение. Экспериментально установлено, что если взять бабочку за крылья и коснуться лапками поверхности, смоченной сахарным сиропом, то на это отреагирует ее хоботок. Он тотчас свернется, хотя сам к сахарному сиропу не чувствителен. С помощью вкусового анализатора бабочки хорошо различают растворы хинина, сахарозы, соляной кислоты и др. Причем эти органы бабочек в тысячу раз чувствительнее рецепторов человеческого языка. Своими лапками бабочки могут почувствовать концентрацию сахара в воде в 2 000 раз меньшую, чем та, что дает нам ощущение сладковатого вкуса.

Высокочувствительное обоняние

Органы обоняния бабочек реагируют на присутствие даже очень малых концентраций вещества, удаленного от насекомого на большое расстояние. Их высокая чувствительность к запахам поражает. Самки бабочек многих видов обеспечены железами, выделяющими пахучие феромоны. Этот секрет выделяется ими в период размножения и улавливается самцами. Особым чутьем отличаются, например, самцы ночных шелкопрядущих бабочек, наделенные для этого пышными перистыми усиками. Они способны находить своих малоподвижных самок по еле уловимому запаху. Меченые самцы непарного тутового шелкопряда устремлялись на запах самки с расстояния 3,8 км. А самцы бабочки сатурнии улавливают запах самки своего вида на расстоянии 12 км. Но возможно, не только обоняние используется для такого поиска. Ученые пытались выяснить предельную границу, с которой самцы бабочек уже не находят самки. Они выпускали через окно движущегося поезда помеченных самцов бабочки-глазчатки с разных расстояний от места с клеткой, где находилась самка того же вида. С расстояния 11 км на ее запах прилетело 26 % выпущенных самцов.

Самый наглядный пример эффективности действия феромонов у насекомых демонстрирует тутовый шелкопряд. Для того чтобы показать свою готовность к спариванию, самка выделяет небольшое количество феромона (бомбикола). Даже если его будет всего одна миллионная грамма, самец способен расшифровать такое сообщение, важное для продолжения его рода. При этом достаточно всего одной молекулы бомбикола, выделяемого самкой, чтобы запустить нервный импульс в рецепторной клетке антенны самца. А если генерируется 200 импульсов в секунду, самец начинает искать самку, двигаясь против ветра, приносящего химическую информацию от подруги. Существует даже способ ловли самцов тутового и непарного шелкопряда, волнянок, павлиноглазок (сатурниц), коконопрядов. Самку сажают в клетку, и на ее запах слетаются многочисленные самцы.

Потомство серебристой бабочки-нимфалиды питается в основном листьями фиалки. Поэтому самка удивительным образом находит эти растения и откладывает яйца на коре растущих рядом деревьев. Науке не известно, как находит она фиалку, но, вероятнее всего, – по запаху.

Работа инфракрасных локаторов

Для поиска «своих» цветков, раскрытых в темноте, некоторые ночные бабочки обеспечены уникальными инфракрасными локаторами. Чтобы переводить невидимые тепловые лучи в видимое изображение в их глазах создается эффект флуоресценции. Инфракрасные лучи проходят здесь через построенную организмом сложную оптическую систему и фокусируются на специально подготовленном пигменте. Тот флуоресцирует, и таким образом инфракрасное изображение переходит в видимый свет. И тогда в глазах бабочки появляются видимые образы цветков, которые ночью испускают излучение именно в инфракрасной области спектра. В этом случае у цветков есть передатчики излучения, а у ночных бабочек – его приемники, то есть они целесообразно устроены друг для друга.

Инфракрасное излучение играет немаловажную роль и в сближении ночных бабочек различных полов. Как это происходит? В результате протекающих в организме бабочек физиологических процессов температура их тела значительно выше, чем температура окружающей среды и составляет около 35– 400 С. И что самое интересное – она мало зависит от температуры окружающего воздуха. То есть при понижении внешней температуры процессы внутри организма усиливаются. Более теплое тело бабочки является источником инфракрасных лучей. Взмахи крыльев прерывают поток этих лучей с определенной частотой. Предполагается, что самец отличает самку своего вида, воспринимая эти определенные ритмические колебания инфракрасного излучения.

Ультразвук для ориентации в пространстве

Благодаря акустическому анализу и использованию ультразвуковых сигналов бабочки не только избегают своих основных врагов – летучих мышей, как было показано выше, но и прекрасно ориентируются в пространстве. В экспериментах бабочка совка продемонстрировала способность к эхолокационной ориентации среди системы сферических преград. Представители этого вида могут определять наличие преграды на расстоянии свыше 12 см и производить сложные маневры при ее облете.


© Все права защищены