Как держать форму. Массаж. Здоровье. Уход за волосами

Ядерные источники питания. Атомные батарейки

ЯДЕРНЫЕ ИСТОЧНИКИ ПИТАНИЯ

Применение энергии ядерного распада дает в отличие, например, от солнечных источников питания качественно иные типы космических электростанций длительного действия. Дело в том, что источники энергии, космических ядерных установок (реактор или радиоактивный изотоп) не получают эту энергию из космоса, a являются как бы аккумуляторами. В то же время ядерный реактор не является непосредственно источником электроэнергии. Реактор или изотоп - это мощный источник тепла. Получение электрического тока в ядерном источнике питания сводится к преобразованию тепловой энергии в электрическую.

Ядерный источник энергии будет находиться непосредственно на борту ОКС, а это дает возможность получать энергию практически непрерывно и независимо от каких-либо внешних факторов.

Здесь мы не будем останавливаться на принципе действия и устройстве ядерного реактора, об этом написано достаточно много и обстоятельно. Рассмотрим лишь некоторые способы преобразования тепловой энергии в электрическую.

Турбогенераторная установка с ядерным реактором считается одной из наиболее перспективных систем для длительного применения в космосе, поэтому рассмотрим ее подробнее.

На рис. 31 показана принципиальная схема такой установки, с теплопередающим агентом и рабочим телом которой является жидкость.

Рис. 31. Схема ядерной турбогенераторной установки:

1 - реактор; 2 - кипятильник; 3 - насос; 4 - турбина; 5 - электрогенератор; 6 - холодильник; 7 - насос

Выделяющееся в ядерном реакторе тепло воспринимается теплоносителем первичного контура. Нагретая до высокой температуры жидкость поступает в теплообменный аппарат - кипятильник, где отдает свое тепло рабочему телу вторичного контура. После этого первичный теплоноситель насосом высокого давления перегоняется снова в реактор.

Основной рабочий цикл установки осуществляется во вторичном контуре. Рабочее тело (также жидкость) сначала нагревается до температуры кипения в кипятильнике, а затем здесь же полностью испаряется. Пар, который поступает на рабочие лопатки паровой турбину, приводит во вращение обыкновенный машинный электрогенератор. Отработанный пар по выходе из турбины поступает в холодильник, где полностью конденсируется, т. е. снова превращается в жидкость.

Как мы уже говорили, единственным способом отдача тепла в окружающее пространство в космосе является радиационное излучение. Поэтому холодильником любой космической установки является излучатель тепла. Рабочее тело, пришедшее к первоначальному жид-кому состоянию, перегоняется насосом снова в кипятильник. На этом цикл основного рабочего контура замыкается.

Схема, в которой основное рабочее тело не нагревается непосредственно в реакторе, а воспринимает тепло через промежуточный теплоноситель, называется двухконтурной .

Возможно применение и одноконтурной схемы теплопередачи, в которой нет первичного контура и рабочее тело нагревается и испаряется не в кипятильнике, а непосредственно в каналах тепловыделяющих элементов реактора.

Очевидно, что одноконтурная схема проще и легче, так как в ней нет теплообменного аппарата - кипятильника и магистралей первичного контура. Кроме того, при такой схеме можно было бы значительно увеличить съем тепла с тепловыделяющей поверхности реактора, получить более высокую температуру цикла, а следовательно, и больший к.п.д. Но несмотря на все эти преимущества, одноконтурную схему нельзя применить для ОКС. Главная причина - засорение теплоносителя системы радиоактивными продуктами распада и возникновение так называемой наведенной активности в элементах конструкции установки. А это влечет за собой увеличение веса антирадиационной защиты для экипажа и, кроме того, делает в значительной мере невозможным ремонт и профилактику установки в условиях эксплуатации. При двухконтурной схеме основное рабочее тело не имеет непосредственного контакта с ядерным реактором и вторичный контур системы вполне доступен для обслуживания.

Реальное осуществление космической электротурбоустановки с ядерным реактором связано с выбором подходящего рабочего тела для основного (вторичного) контура.

В наземных атомных электростанциях с турбогенератором в качестве рабочего тела применяется вода. Но высокая коррозионная активность, большие давления пара (до 280 атм и более), высокая наведенная радиоактивность, а главное, низкие максимальные температуры цикла (не выше 300 °C) делают воду совершенно неприменимой для космических энергоустановок.

Наилучшие свойства имеют жидкометаллические теплоносители. Жидкие металлы: ртуть, натрий, калий, рубидий, цезий и некоторые другие - обладают очень высокой теплопроводностью, большой скрытой теплотой парообразования, небольшими давлениями паров при высоких температурах, что и оправдывает их широкое распространение в конструктивных разработках ядерных турбогенераторных установок. Антикоррозионные свойства и наведенная активность их также вполне приемлемы.

Принципиально турбогенераторная схема может осуществляться не только на парах жидких металлов, но и с газом в качестве рабочего тела - по так называемому циклу Брайтона, т. е. как газотурбинная установка, в состав которой вместо насоса входит компрессор. Но такая схема при некоторых преимуществах (более высокие температуры и высокие эксплуатационные качества) имеет очень существенные недостатки, в частности очень большой удельный вес.

Конструктивное решение турбогенераторной ядерной установки можно рассмотреть на примере разработанной в США системы SNAP-2 с электрической мощностью 3 квт (рис. 32).

Рис. 32. Энергетическая установка SNAP-2:

1 - трубка конденсатора; 2 - излучатель; 3 - активная зона реактора; 4 - дополнительный подогреватель; 5 - насос теплоносителя; 6 - отражатель реактора; 7 - управление нагрузкой; 8 - полезная нагрузка; 9 - расширительный бак; 10 - ртутный насос; 11 - подшипник скольжения и упорные подшипники; 12 - статор электрогенератора; 13 - турбина; 14 - подшипник скольжения; 15 - насос

В качестве теплоносителя первичного контура применен сплав натрия с калием, температура которого на выходе из реактора 650 °C. Теплоноситель вторичного контура - ртуть. Максимальная температура рабочего цикла 621 °C. Турбина - двухступенчатая. Площадь радиационного холодильника - излучателя - 9,3 м 2 . Электрический генератор дает переменный ток напряжением 110 в, частотой 2000 гц.

Полный к. п. д. SNAP-2 равен всего лишь 6,5 %. Это значит, что из 50 квт тепловой мощности реактора около 47 квт рассеивается излучателем или уходит на нагрев конструкции. Общий вес системы SNAP-2 без биологической защиты - 270 кг (из них 90 кг приходится на реактор), т. е. удельный вес установки без защиты составляет 90 кг/квт.

Но и этот довольно высокий удельный вес ядерной установки заметно увеличится из-за веса биологической защиты, который в большой степени зависит от размещения энергоустановки на станции, а также от условии эксплуатации, в частности от места запуска реактора - будет ли он производиться на Земле или после выведения ОКС на орбиту.

Наземный запуск ядерной установки усложняет обслуживание стартовой площадки, но обеспечивает условия для полной проверки работы всей энергосистемы.

Запуск же на орбите связан со снижением надежности всей энергетической системы и довольно сложен в осуществлении. В случае запуска на Земле экипаж в момент подготовки к старту и в полете при прохождении атмосферы должен быть полностью защищен не только от направленной радиации, но и от «разбрызгивания» ее молекулами окружающего воздуха, т. е. практически защита должна быть круговой, сплошной. На орбите же достаточно лишь так называемой теневой защиты экипажа, вес которой, очевидно, намного меньше. Кроме того, на орбите энергоустановка может быть удалена от основной конструкции ОКС на некоторое расстояние, например с помощью выдвижной телескопической штанги или другим способом. А так как толщина защиты зависит от расстояния до источника радиации, то вес теневого защитного экрана можно будет сделать еще меньше. Сколько же должна весить биологическая защита для турбогенератора SNAP-2? При ее расчете исходят из допустимой дозы облучения экипажа. Если принять, что суммарная доза для экипажа ОКС за три месяца не должна превысить 15 рентген, то вес защиты при удавлении реактора от экипажа на 15 м составит от 200 до 450 кг в зависимости от взаимной компоновки реактора и кабины экипажа.

Таким образом, суммарный вес установки может достичь 720 кг, а удельный вес - 240 кг/квт. Следует заметить, однако, что с увеличением мощности установки эти Цифры значительно уменьшаются.

Турбогенераторная установка - не единственный способ использования энергии ядерного реактора в космосе. Существуют и другие способы преобразования ее в электричество. Об этих способах мы расскажем в разделе о немашинных методах преобразования энергии.

Энергия ядерного распада может быть получена не только в реакторе, но и с помощью радиоактивных изотопов . Основные достоинства этого источника энергии, применимого для небольших мощностей до 0,5 квт), - малый вес и длительное время непрерывной и стабильной работы.

Принципиальная схема использования изотопов ничем не отличается от схемы турбогенераторной установки с реактором - теплоноситель прокачивается через специальный котел с трубками из материала, насыщенного изотопом, например стронцием-90 или цезием-144. Но может использоваться я схема, применяемая в солнечных батареях: облученный теплом от изотопа слой люминофора излучает фотоны, которые попадают на кремниевый элемент, аналогичный солнечной батарее. Получить большую электрическую мощность с помощью радиоизотопов очень трудно, да и вряд ли выгодно, если учесть сложность получения изотопов и их высокую стоимость.

Из книги Битва за звезды-2. Космическое противостояние (часть I) автора Первушин Антон Иванович

Ядерные взрывы в космосе Перспектива использования околоземного космического пространства в качестве плацдарма для размещения ударных вооружений заставила задуматься над способами борьбы со спутниками еще до появления самих спутников.Наиболее радикальным по тем

Из книги Битва за звезды-2. Космическое противостояние (часть II) автора Первушин Антон Иванович

Советские ядерные двигатели В Советском Союзе работы над ядерными ракетными двигателями начались в середине 50-х годов. В НИИ-1 (научный руководитель - Мстислав Келдыш) инициатором и руководителем работ по ЯРД был Виталий Иевлев. В 1957 году он сделал по этой теме сообщение

Из книги Малая скоростная автоматизированная подводная лодка-истребитель пр. 705(705К) автора Автор неизвестен

Источники: 1. История отечественного судостроения, т.5. СПб.: "Судостроение", 1996.2. Шмаков Р.А. Опередившие время… (ПЛА проектов 705 и /05К). "Морской Сборник", 1996, 9 7.3. Адмиралтейские верфи. Люди, корабли, годы. 1926-1996, СПб: "Гангут", 1 9964. Михайловский А.П. Рабочая глубина. Записки

Из книги Эскадренные миноносцы типа "Новик" в ВМФ СССР автора Лихачев Павел Владимирович

ИСТОЧНИКИ РГА ВМФ. Фонды: р-12 опись 1 дело № 22 "О степени готовности кораблей Балтийского флота", р-35 1 № 6, р- 2293№ 56 "Журнал боевых действий эсминца "Энгельс", р-2571№ 62л. 97,139, р-2571№ 101, р-3511№ 7л.18, р-951№16л.З, р-2502№33л.89 "Приказы командира бригады эсминцев МСБМ. 1932., р-2571№ 50 "Тех.

Из книги Баллистическая теория Ритца и картина мироздания автора Семиков Сергей Александрович

§ 3.7 Ядерные спектры и эффект Мёссбауэра При максимально возможной опоре на механику или электродинамику необходимо указать физически наглядные математические операции, интерпретация которых через колебания подходящей модели приводит для неё к законам сериальных

Из книги Броненосец Двенадцать Апостолов автора Арбузов Владимир Васильевич

§ 3.13 Ядерные реакции и дефект массы Все перемены в натуре случающиеся такого суть состояния, что сколько чего от одного тела отнимается, столько присовокупится к другому. Так, ежели где убудет несколько материи, то умножится в другом месте… Сей всеобщий естественной

Из книги Импульсные блоки питания для IBM PC автора Куличков Александр Васильевич

Из книги Металл Века автора Николаев Григорий Ильич

ИСТОЧНИКИ РГА ВМФ Фонд 417. Главный морской штаб. Фонд 418. Морской генеральный штаб. Фонд 421. Морской Технический комитет. Фонд 427. Главное управление кораблестроения и снабжений Фонд 609. Штаб командующего флотом Черного моря. Фонд 870. Вахтенные и шканечные журналы (коллекция).

Из книги Источники питания и зарядные устройства автора

Глава 3 Импульсные источники питания персональных компьютеров типа АТ/ХТ Совершенствование персональных компьютеров и используемых в них источников электропитания происходило постепенно и параллельно. Появление новых функциональных возможностей у вычислительных

Из книги Сварка автора Банников Евгений Анатольевич

В ИНДУСТРИИ ПИТАНИЯ В нашей стране большое внимание уделяется увеличению выпуска товаров народного потребления и улучшению их качества. Важная отрасль нашего народного хозяйства - пищевая промышленность, на долю которой приходится более половины всех потребительских

Из книги Автономное электроснабжение частного дома своими руками автора Кашкаров Андрей Петрович

Источники питания. База знаний Предупреждение:если вы не маньяк-электронщик (или т.п.) с соответствующим опытом, то не используйте назащищенные (unprotected) LiCo аккумуляторы, особенно если они невнятного происхождения! Выигрыш в цене нивелируется нюансами эксплуатации (нельзя

Из книги Windows 10. Секреты и устройство автора Алмаметов Владимир

Из книги Основы рационального питания автора Омаров Руслан Сафербегович

Из книги Очень общая метрология автора Ашкинази Леонид Александрович

2.6. Блок питания Блок питания, как вы можете видеть из названия, отвечает за предоставление питания всем комплектующим компьютера, которые устанавливаются в материнскую плату и не имеют отдельной вилки для розетки. То есть, каждая деталь компьютера, чтобы работать,

Из книги автора

10. КУЛЬТУРА ПИТАНИЯ ЗДОРОВОГО ЧЕЛОВЕКА. РЕЖИМ ПИТАНИЯ Цель: ознакомиться с основными понятиями культуры и режима питанияКультура питания – это знание: основ правильного питания; свойств продуктов и их воздействия на организм, умение их правильно выбирать и

Из книги автора

Источники Источников по классической метрологии много. Полный анализ их невозможен, я бы рекомендовал следующие книги:Б.Г.Артемьев, Ю.Е.Лукашов «Справочное пособие для специалистов метрологических служб»;В.А.Кузнецов, Г.В.Ялунина «Общая метрология»;«Метрология,

Первые упоминания об атомной батарейке зафиксированы в 2005 году.

Как устроена и как работает атомная батарейка

Действительно, атомная батарейка существует. По-другому ее называют атомный аккумулятор или ядерный аккумулятор. Она предназначена для питания различных мобильных устройств. Создана батарейка самого продолжительного срока действия благодаря процессу ядерного распада, так как основным элементом, который способствует работе устройства, является тритий. Именно от этого вещества и питается атомная батарейка.

Внутри атомный аккумулятор содержит , на работу которой оказывает действие тритий. Отмечается, что радиоактивность, которая излучается атомной батарейкой, очень и очень мала, поэтому вред здоровью человека и окружающей среде устройство не приносит. Главное достижение – это продолжительность работы батарейки. Без дополнительной подзарядки ядерный аккумулятор может прослужить около 20 лет.

Где используются атомные батарейки

Атомные батарейки – это настоящее достижение, ведь только такие устройства современности способны выдерживать температуры от -50 до +150оC, работая в экстремальных условиях. К тому же доказано, что они способны выдерживать широчайший диапазон давлений и вибраций. В различной микроэлектронике срок службы атомной батарейки варьируется. Но, как указывалось выше, минимальный срок действия без подзарядки составляет 20 лет. Максимальный – 40 лет и больше.

Как правило, атомный аккумулятор используется для работы датчиков давления, всевозможных медицинских имплантантов, часов, для зарядки литиевых батареек. С помощью работы батареек данного типа осуществляется питание маломощных процессоров. Размер и вес ядерной батарейки минимален, поэтому устройство идеально подходит для заряда космических кораблей и исследовательских станций.

Возможный вред от работы атомной батарейки

Несмотря на то что говорят, что ядерная батарейка не оказывает никакого вредного действия на кожу человека, соприкасаясь с ней, стоит быть все-таки осторожным. Это относительно новое открытие современности, поэтому исследований проводилось достаточно мало. Если сейчас, используя такую батарейку для заряда наручных часов, человек не замечает никакого негативного воздействия, еще нельзя говорить о том, что это в дальнейшем не скажется на развитии всевозможных неприятных и опасных для жизни заболеваний.

Разрабатываемая атомная батарейка на основе углерода-14 отличается рядом преимуществ по сравнению с атомными батарейками на основе других радиоактивных изотопов, а именно: экологичностью, дешевизной и длительным периодом эксплуатации. Эти преимущества обеспечиваются, во-первых, за счет применения в атомной батарейке углерода-14 в качестве радиоактивного источника. Период полураспада этого элемента составляет 5700 лет и при этом, в отличие, например, от Ni-63, углерод-14 нетоксичен и отличается низкой стоимостью.

Технология находится в процессе разработки!

Атомная батарейка:

Атомная батарейка — эта технология , которая базируется на идее преобразования энергии, которую излучает радиоактивный источник, в электрическую энергию. Простейшая атомная батарейка состоит из источника излучения и отделенного от нее диэлектрической пленкой коллектора. При распаде радиоактивный источник испускает бета-излучение, вследствие чего он заряжается положительно, а коллектор — отрицательно и между ними возникает разность потенциалов.

Над созданием источников питания, которые могли бы работать за счет энергии радиоизотопов, сейчас трудятся ученые по всему миру. Образцы ядерных батареек существуют и в России, и в США, и в других странах. При этом в качестве радиоактивных источников используется тритий, Ni-63 и углерод-14.

Атомная батарейка на основе углерода -14 отличается рядом преимуществ по сравнению с атомными батарейками на основе других радиоактивных изотопов, а именно: экологичностью, дешевизной и длительным периодом эксплуатации.

Эти преимущества обеспечиваются, во-первых, за счет применения в атомной батарейке углерода-14 в качестве радиоактивного источника. Период полураспада этого элемента составляет 5700 лет и при этом, в отличие, например, от Ni-63, углерод-14 нетоксичен и отличается низкой стоимостью.

Второе отличие атомной батарейки на основе углерода-14 состоит в том, что в качестве «подложки» под радиоактивный элемент используется принципиально новая структура – пористая карбидокремниевая гетероструктура. Технология производства карбидной пленки путем ее наращивания на готовой кремниевой подложке «методом эндотаксии» позволяет уменьшить стоимость «подложки» в 100 раз, что делает атомную батарейку дешевой.

Неоспоримым плюсом карбидокремниевой гетероструктуры также является ее устойчивость к радиации . При излучении изотопа она остается практически неизменной, что и позволяет говорить о том, что такая атомная батарейка будет работать неограниченно долгое время.

Карбид кремния — это тоже полупроводниковый материал. Он химически более устойчив, способен работать при температуре до 350 градусов. Кремниевые датчики температур работают максимум до 200. Карбид кремния работает при температуре на 150 градусов выше. Он в 10 раз радиационно пассивнее и устойчивее, чем кремний.

Преимущества атомной батарейки на основе углерода-14:

— углерод-14 нетоксичен,

низкая стоимость атомной батарейки по сравнению с другими атомными батарейками на основе других радиоактивных источников,

— длительный период эксплуатации — срок службы более 100 лет,

безопасность. Бета-излучение обладает малой проникающей способностью и задерживается оболочкой атомной батарейки,

— возможность работать в экстремальных условиях – при сверх низких и высоких температурах.

Примечание: © Фото https://www.pexels.com, https://pixabay.com

Новая система земледелия Овсинского И.Е....

Стеклоткань

Биоразлагаемые пакеты

Резина для шин, экономящая до 30% горючего...

Утилизация опасных отходов, содержащих тяжелые мет...

Снижение вязкости нефти

Берегоукрепление дамбами в чрезвычайных ситуациях...

Утеплитель эковата для монолитного утепления и зву...

Российские инфракрасные обогреватели...

Эмаль антикоррозийная, супергидрофобная, со свойст...

Сегодня атомную батарейку уже можно купить в интернете. Во всяком случае такие предложения есть. За эту экзотику, произведенную, к примеру, в США, нужно выложить 1000 долларов. Китайская обойдется дешевле. Зачем нужны столь супердорогие "игрушки"?

Главное достоинство - долговечность. Срок службы может быть и 20, и 50, и 100, и даже тысяча лет. Все зависит от периода полураспада радиоактивного изотопа - источника энергии. Отсюда и возможные области применения. Конечно, медицина, прежде всего кардиостимуляторы. Химические батарейки разряжаются, их приходится периодически менять. С "вечным" источником энергии такой проблемы вообще нет. Еще сфера применения - космос. С атомной батарейкой можно отправляться в дальние миссии, не думая о том, чем питать электронику.

Но все это пока действительно экзотика. И причина не только цена. Характеристики атомных батареек далеки от требуемых. Речь прежде всего о низкой удельной мощности и низком КПД, что предельно ограничивает сферу применения. Как изменить ситуацию? Над этим бьются в ведущих лабораториях мира. И здесь работа группы российских ученых из МФТИ, ФГБНУ "Технологический институт сверхтвердых и новых углеродных материалов" и МИСиС может стать прорывом. Ими создана батарейка, у которой удельная мощность и КПД в 10 раз выше, чем у всех созданных на сегодня аналогов. За счет чего это удалось?

Источником энергии у нас служит изотоп никель-63 с периодом полураспада около 100 лет, - говорит руководитель разработки доктор физико-математических наук Владимир Бланк. - Этот изотоп испускает бета-частицы, которые создают электрический ток в полупроводнике из алмаза. Ноу-хау нашей разработки именно в этом материале. Его уникальные свойства позволили на порядок улучшить параметры атомной батарейки.

Бланк подчеркивает, что хотя, с одной стороны, алмаз имеет ряд привлекательных качеств, но никто из конкурентов с ним не работает. Достаточно сказать, что в созданном нашими учеными устройстве толщина полупроводников из алмаза должна быть как у обычного полиэтиленового пакета - несколько десятков микрон. Как "настрогать" такие тонкие пластины из самого твердого минерала во Вселенной? Российским ученым удалось решить проблему, создать оригинальную технологию обработки алмаза.

Наша ядерная батарейка это своего рода слоеный пирог, между 200 алмазными полупроводниками установлены 200, изготовленных из никеля-63, источников энергии, - говорит Бланк. - Высота батарейки 3-4 миллиметра, вес 250 миллиграмм. Это в разы меньше, чем у всех современных аналогов.

Такие габариты - еще один плюс российской разработки. Расчеты показывают, что все известные на данный момент прототипы ядерных батарей имеют лишний объем. Вообще поиск оптимальных размеров - очень непростая задача. Если толщина изотопа слишком велика, рождающиеся в нем электроны не смогут его покинуть. С другой стороны, сильно уменьшать толщину тоже невыгодно, поскольку уменьшается число бета-распадов в единицу времени. Аналогичная ситуация и с толщиной полупроводника.

Чтобы найти максимум параметров, мы построили модель движения электронов в изотопе и полупроводниках, - говорит Бланк. - Оказалось, что эффективнее всего батарейка работает при толщине изотопа около двух микрон, а алмазного полупроводника 10 микрон.

По словам Бланка, достигнутая рекордная удельная мощность - это не предел. Ученые знают, как ее повысить еще минимум в три раза. Понятно, что чем она выше, тем больше сфер применения атомной батарейки. И ниже цена, ведь она уменьшается при масштабном серийном выпуске. Впрочем, по мнению Бланка, даже сейчас при разумной организации производства цена такой батарейки сравнима с ценой химических источников питания, которые применяются в кардиостимуляторах. Атомные батарейки безопасны для человека, так как излучение полностью поглощается внутри корпуса.

Инфографика "РГ": Антон Переплетчиков / Юрий Медведев

Сорок лет назад был создан первый мобильный телефон, а сегодня уже изобретена атомная батарея для него. Технологический прогресс в последние годы идет настолько уверенно, что на прилавках магазинов электроники появляются такие новинки, о которых еще совсем недавно писали фантасты.

Как вы считаете, сколько способен продержаться без подзарядки современный смартфон? Среднее время автономной работы подобного устройства составляет 1-3 суток. А если его оснастить аккумулятором, работающим на основе реакции трития, то это время можно будет растянуть до 20 лет!

Неужели телефоны могут работать на атомных аккумуляторах?

Подобная идея среди ученых появилась относительно недавно. По их предположению, использование атомной энергетики в работе современных гаджетов может решить множество проблем, связанных с постоянной необходимостью подзарядки.

Тритий является радиоактивным веществом, но его излучение слишком слабое. Оно неспособно навредить здоровью человека. От него не пострадает ни кожа, ни внутренние органы – это известно ученым с незапамятных времен. Именно радиоактивный тритий выступает своего рода топливом, которое будет содержаться в этих батареях.

Батарея представляет собой интегральную микросхему, источником энергии которой является ядерная реакция трития. Такой принцип работы позволяет производить 0.8 – 2.4 ватт энергии. И этот уровень вырабатываемой электроэнергии может поддерживаться на протяжении 20 лет, при этом радиоактивную батарею не придется подзаряжать.

Многие не подозревают, что тритий уже давно используется во многих сферах производства. Каждый из нас видел, либо носил часы, стрелки которых отчетливо светятся в темноте. В большинстве случаев для создания такого эффекта используется именно этот радиоактивный элемент. Он не получил распространения в основной сфере атомной энергетики из-за своего минимального радиоактивного излучения.

Среди особенностей аккумулятора, которому посвящен сегодняшний обзор, следует также выделить его устойчивость к внешним факторам. Он отлично работает при резких перепадах высоты, давления и температуры, а также демонстрирует хорошую стойкость при сильных вибрациях. Что касается температуры, то ее диапазон составляет от -50 до +150 градусов по Цельсию.

Несмотря на то, что эта идея еще не внедрена в производство, известна приблизительная стоимость атомной батареи - 124 доллара. Но далеко не каждый человек, даже если ему нужна высокая производительность его телефона, согласится на ношение в своем кармане крохотного радиоактивного источника энергии.