Как держать форму. Массаж. Здоровье. Уход за волосами

Проценты в математике. Задачи на проценты

Среднее общее образование

Линия УМК Г. К. Муравина. Алгебра и начала математического анализа (10-11) (углуб.)

Линия УМК Мерзляка. Алгебра и начала анализа (10-11) (У)

Математика

Подготовка к ЕГЭ по математике (профильный уровень): задания, решения и объяснения

Разбираем задания и решаем примеры с учителем

Экзаменационная работа профильного уровня длится 3 часа 55 минут (235 минут).

Минимальный порог - 27 баллов.

Экзаменационная работа состоит из двух частей, которые различаются по содержанию, сложности и числу заданий.

Определяющим признаком каждой части работы является форма заданий:

  • часть 1 содержит 8 заданий (задания 1-8) с кратким ответом в виде целого числа или конечной десятичной дроби;
  • часть 2 содержит 4 задания (задания 9-12) с кратким ответом в виде целого числа или конечной десятичной дроби и 7 заданий (задания 13–19) с развернутым ответом (полная запись решения с обоснованием выполненных действий).

Панова Светлана Анатольевна , учитель математики высшей категории школы, стаж работы 20 лет:

«Для того чтобы получить школьный аттестат, выпускнику необходимо сдать два обязательных экзамена в форме ЕГЭ, один из которых математика. В соответствии с Концепцией развития математического образования в Российской Федерации ЕГЭ по математике разделен на два уровня: базовый и профильный. Сегодня мы рассмотрим варианты профильного уровня».

Задание № 1 - проверяет у участников ЕГЭ умение применять навыки, полученные в курсе 5 - 9 классов по элементарной математике, в практической деятельности. Участник должен владеть вычислительными навыками, уметь работать с рациональными числами, уметь округлять десятичные дроби, уметь переводить одни единицы измерения в другие.

Пример 1. В квартире, где проживает Петр, установили прибор учета расхода холодной воды (счетчик). Первого мая счетчик показывал расход 172 куб. м воды, а первого июня - 177 куб. м. Какую сумму должен заплатить Петр за холодную воду за май, если цена 1 куб. м холодной воды составляет 34 руб 17 коп? Ответ дайте в рублях.

Решение:

1) Найдем количество потраченной воды за месяц:

177 - 172 = 5 (куб м)

2) Найдем сколько денег заплатят за потраченную воду:

34,17 · 5 = 170,85 (руб)

Ответ: 170,85.


Задание № 2 -является одним из простейших заданий экзамена. С ней успешно справляется большинство выпускников, что свидетельствует о владении определением понятия функции. Тип задания № 2 по кодификатору требований - это задание на использования приобретённых знаний и умений в практической деятельности и повседневной жизни. Задание № 2 состоит из описания с помощью функций различных реальных зависимостей между величинами и интерпретация их графиков. Задание № 2 проверяет умение извлекать информацию, представленную в таблицах, на диаграммах, графиках. Выпускникам нужно уметь определять значение функции по значению аргумента при различных способах задания функции и описывать поведение и свойства функции по её графику. Также необходимо уметь находить по графику функции наибольшее или наименьшее значение и строить графики изученных функций. Допускаемые ошибки носят случайный характер в чтении условия задачи, чтении диаграммы.

#ADVERTISING_INSERT#

Пример 2. На рисунке показано изменение биржевой стоимости одной акции добывающей компании в первой половине апреля 2017 года. 7 апреля бизнесмен приобрёл 1000 акций этой компании. 10 апреля он продал три четверти купленных акций, а 13 апреля продал все оставшиеся. Сколько потерял бизнесмен в результате этих операций?


Решение:

2) 1000 · 3/4 = 750 (акций) - составляют 3/4 от всех купленных акций.

6) 247500 + 77500 = 325000 (руб) - бизнесмен получил после продажи 1000 акций.

7) 340000 – 325000 = 15000 (руб) - потерял бизнесмен в результате всех операций.

Ответ: 15000.

Задание № 3 - является заданием базового уровня первой части, проверяет умения выполнять действия с геометрическими фигурами по содержанию курса «Планиметрия». В задании 3 проверяется умение вычислять площадь фигуры на клетчатой бумаге, умение вычислять градусные меры углов, вычислять периметры и т.п.

Пример 3. Найдите площадь прямоугольника, изображенного на клетчатой бумаге с размером клетки 1 см на 1 см (см. рис.). Ответ дайте в квадратных сантиметрах.

Решение: Для вычисления площади данной фигуры можно воспользоваться формулой Пика:

Для вычисления площади данного прямоугольника воспользуемся формулой Пика:

S = В +

Г
2
где В = 10, Г = 6, поэтому

S = 18 +

6
2
Ответ: 20.

Читайте также: ЕГЭ по физике: решение задач о колебаниях

Задание № 4 - задача курса «Теория вероятностей и статистика». Проверяется умение вычислять вероятность события в простейшей ситуации.

Пример 4. На окружности отмечены 5 красных и 1 синяя точка. Определите, каких многоугольников больше: тех, у которых все вершины красные, или тех, у которых одна из вершин синяя. В ответе укажите, на сколько одних больше, чем других.

Решение: 1) Воспользуемся формулой числа сочетаний из n элементов по k :

у которых все вершины красные.

3) Один пятиугольник, у которого все вершины красные.

4) 10 + 5 + 1 = 16 многоугольников, у которых все вершины красные.

у которых вершины красные или с одной синей вершиной.

у которых вершины красные или с одной синей вершиной.

8) Один шестиуголник, у которого вершины красные с одной синей вершиной.

9) 20 + 15 + 6 + 1 = 42 многоуголника, у которых все вершины красные или с одной синей вершиной.

10) 42 – 16 = 26 многоугольников, в которых используется синяя точка.

11) 26 – 16 = 10 многоугольников – на сколько многоугольников, у которых одна из вершин - синяя точка, больше, чем многоугольников, у которых все вершины только красные.

Ответ: 10.

Задание № 5 - базового уровня первой части проверяет умения решать простейшие уравнения (иррациональные, показательные, тригонометрические, логарифмические).

Пример 5. Решите уравнение 2 3 + x = 0,4 · 5 3 + x .

Решение. Разделим обе части данного уравнения на 5 3 + х ≠ 0, получим

2 3 + x = 0,4 или 2 3 + х = 2 ,
5 3 + х 5 5

откуда следует, что 3 + x = 1, x = –2.

Ответ: –2.

Задание № 6 по планиметрии на нахождение геометрических величин (длин, углов, площадей), моделирование реальных ситуаций на языке геометрии. Исследование построенных моделей с использованием геометрических понятий и теорем. Источником трудностей является, как правило, незнание или неверное применение необходимых теорем планиметрии.

Площадь треугольника ABC равна 129. DE – средняя линия, параллельная стороне AB . Найдите площадь трапеции ABED .


Решение. Треугольник CDE подобен треугольнику CAB по двум углам, так как угол при вершине C общий, угол СDE равен углу CAB как соответственные углы при DE || AB секущей AC . Так как DE – средняя линия треугольника по условию, то по свойству средней линии | DE = (1/2)AB . Значит, коэффициент подобия равен 0,5. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

Следовательно, S ABED = S ΔABC S ΔCDE = 129 – 32,25 = 96,75.

Задание № 7 - проверяет применение производной к исследованию функции. Для успешного выполнения необходимо содержательное, не формальное владение понятием производной.

Пример 7. К графику функции y = f (x ) в точке с абсциссой x 0 проведена касательная, которая перпендикулярна прямой, проходящей через точки (4; 3) и (3; –1) этого графика. Найдите f ′(x 0).

Решение. 1) Воспользуемся уравнением прямой, проходящей через две заданные точки и найдём уравнение прямой, проходящей через точки (4; 3) и (3; –1).

(y y 1)(x 2 – x 1) = (x x 1)(y 2 – y 1)

(y – 3)(3 – 4) = (x – 4)(–1 – 3)

(y – 3)(–1) = (x – 4)(–4)

y + 3 = –4x + 16| · (–1)

y – 3 = 4x – 16

y = 4x – 13, где k 1 = 4.

2) Найдём угловой коэффициент касательной k 2 , которая перпендикулярна прямой y = 4x – 13, где k 1 = 4, по формуле:

3) Угловой коэффициент касательной – производная функции в точке касания. Значит, f ′(x 0) = k 2 = –0,25.

Ответ: –0,25.

Задание № 8 - проверяет у участников экзамена знания по элементарной стереометрии, умение применять формулы нахождения площадей поверхностей и объемов фигур, двугранных углов, сравнивать объемы подобных фигур, уметь выполнять действия с геометрическими фигурами, координатами и векторами и т.п.

Объём куба, описанного около сферы, равен 216. Найдите радиус сферы.


Решение. 1) V куба = a 3 (где а – длина ребра куба), поэтому

а 3 = 216

а = 3 √216

2) Так как сфера вписана в куб, значит, длина диаметра сферы равна длине ребра куба, поэтому d = a , d = 6, d = 2R , R = 6: 2 = 3.

Задание № 9 - требует от выпускника навыков преобразования и упрощения алгебраических выражений. Задание № 9 повышенного уровня сложности с кратким ответом. Задания из раздела «Вычисления и преобразования» в ЕГЭ подразделяются на несколько видов:

    преобразования числовых рациональных выражений;

    преобразования алгебраических выражений и дробей;

    преобразования числовых/буквенных иррациональных выражений;

    действия со степенями;

    преобразование логарифмических выражений;

  1. преобразования числовых/буквенных тригонометрических выражений.

Пример 9. Вычислите tgα, если известно, что cos2α = 0,6 и

< α < π.
4

Решение. 1) Воспользуемся формулой двойного аргумента: cos2α = 2 cos 2 α – 1 и найдём

tg 2 α = 1 – 1 = 1 – 1 = 10 – 1 = 5 – 1 = 1 1 – 1 = 1 = 0,25.
cos 2 α 0,8 8 4 4 4

Значит, tg 2 α = ± 0,5.

3) По условию

< α < π,
4

значит, α – угол II четверти и tgα < 0, поэтому tgα = –0,5.

Ответ: –0,5.

#ADVERTISING_INSERT# Задание № 10 - проверяет у учащихся умение использовать приобретенные раннее знания и умения в практической деятельности и повседневной жизни. Можно сказать, что это задачи по физике, а не по математике, но все необходимые формулы и величины даны в условии. Задачи сводятся к решению линейного или квадратного уравнения, либо линейного или квадратного неравенства. Поэтому необходимо уметь решать такие уравнения и неравенства, и определять ответ. Ответ должен получиться в виде целого числа или конечной десятичной дроби.

Два тела массой m = 2 кг каждое, движутся с одинаковой скоростью v = 10 м/с под углом 2α друг к другу. Энергия (в джоулях), выделяющаяся при их абсолютно неупругом соударении определяется выражением Q = mv 2 sin 2 α. Под каким наименьшим углом 2α (в градусах) должны двигаться тела, чтобы в результате соударения выделилось не менее 50 джоулей?
Решение. Для решения задачи нам необходимо решить неравенство Q ≥ 50, на интервале 2α ∈ (0°; 180°).

mv 2 sin 2 α ≥ 50

2· 10 2 sin 2 α ≥ 50

200 · sin 2 α ≥ 50

Так как α ∈ (0°; 90°), то будем решать только

Изобразим решение неравенства графически:


Так как по условию α ∈ (0°; 90°), значит 30° ≤ α < 90°. Получили, что наименьший угол α равен 30°, тогда наименьший угол 2α = 60°.

Задание № 11 - является типовым, но оказывается непростым для учащихся. Главным источником затруднений является построение математической модели (составление уравнения). Задание № 11 проверяет умение решать текстовые задачи.

Пример 11. На весенних каникулах 11-классник Вася должен был решить 560 тренировочных задач для подготовки к ЕГЭ. 18 марта в последний учебный день Вася решил 5 задач. Далее ежедневно он решал на одно и то же количество задач больше по сравнению с предыдущим днём. Определите, сколько задач Вася решил 2 апреля в последний день каникул.

Решение: Обозначим a 1 = 5 – количество задач, которые Вася решил 18 марта, d – ежедневное количество задач, решаемых Васей, n = 16 – количество дней с 18 марта по 2 апреля включительно, S 16 = 560 – общее количество задач, a 16 – количество задач, которые Вася решил 2 апреля. Зная, что ежедневно Вася решал на одно и то же количество задач больше по сравнению с предыдущим днём, то можно использовать формулы нахождения суммы арифметической прогрессии:

560 = (5 + a 16) · 8,

5 + a 16 = 560: 8,

5 + a 16 = 70,

a 16 = 70 – 5

a 16 = 65.

Ответ: 65.

Задание № 12 - проверяют у учащихся умение выполнять действия с функциями, уметь применять производную к исследованию функции.

Найти точку максимума функции y = 10ln(x + 9) – 10x + 1.

Решение: 1) Найдем область определения функции: x + 9 > 0, x > –9, то есть x ∈ (–9; ∞).

2) Найдем производную функции:

4) Найденная точка принадлежит промежутку (–9; ∞). Определим знаки производной функции и изобразим на рисунке поведение функции:


Искомая точка максимума x = –8.

Скачать бесплатно рабочую программу по математике к линии УМК Г.К. Муравина, К.С. Муравина, О.В. Муравиной 10-11 Скачать бесплатно методические пособия по алгебре

Задание № 13 -повышенного уровня сложности с развернутым ответом, проверяющее умение решать уравнения, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

а) Решите уравнение 2log 3 2 (2cosx ) – 5log 3 (2cosx ) + 2 = 0

б) Найдите все корни этого уравнения, принадлежащие отрезку .

Решение: а) Пусть log 3 (2cosx ) = t , тогда 2t 2 – 5t + 2 = 0,


log 3 (2cosx ) = 2
2cosx = 9
cosx = 4,5 ⇔ т.к. |cosx | ≤ 1,
log 3 (2cosx ) = 1 2cosx = √3 cosx = √3
2 2
то cosx = √3
2

x = π + 2πk
6
x = – π + 2πk , k Z
6

б) Найдём корни, лежащие на отрезке .


Из рисунка видно, что заданному отрезку принадлежат корни

11π и 13π .
6 6
Ответ: а) π + 2πk ; – π + 2πk , k Z ; б) 11π ; 13π .
6 6 6 6
Задание № 14 -повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Расстояние между хордами равно 2√197.

а) Докажите, что центры оснований цилиндра лежат по одну сторону от этой плоскости.

б) Найдите угол между этой плоскостью и плоскостью основания цилиндра.

Решение: а) Хорда длиной 12 находится на расстоянии = 8 от центра окружности основания, а хорда длиной 16, аналогично, – на расстоянии 6. Поэтому расстояние между их проекциями на плоскость, параллельную основаниям цилиндров, составляет либо 8 + 6 = 14, либо 8 − 6 = 2.

Тогда расстояние между хордами составляет либо

= = √980 = = 2√245

= = √788 = = 2√197.

По условию реализовался второй случай, в нем проекции хорд лежат по одну сторону от оси цилиндра. Значит, ось не пересекает данную плоскость в пределах цилиндра, то есть основания лежат по одну сторону от нее. Что требовалось доказать.

б) Обозначим центры оснований за О 1 и О 2 . Проведем из центра основания с хордой длины 12 серединный перпендикуляр к этой хорде (он имеет длину 8, как уже отмечалось) и из центра другого основания - к другой хорде. Они лежат в одной плоскости β, перпендикулярной этим хордам. Назовем середину меньшей хорды B, большей A и проекцию A на второе основание - H (H ∈ β). Тогда AB,AH ∈ β и значит, AB,AH перпендикулярны хорде, то есть прямой пересечения основания с данной плоскостью.

Значит, искомый угол равен

∠ABH = arctg AH = arctg 28 = arctg14.
BH 8 – 6

Задание № 15 - повышенного уровня сложности с развернутым ответом, проверяет умение решать неравенства, наиболее успешно решаемое среди заданий с развернутым ответом повышенного уровня сложности.

Пример 15. Решите неравенство |x 2 – 3x | · log 2 (x + 1) ≤ 3x x 2 .

Решение: Областью определения данного неравенства является интервал (–1; +∞). Рассмотри отдельно три случая:

1) Пусть x 2 – 3x = 0, т.е. х = 0 или х = 3. В этом случае данное неравенство превращается в верное, следовательно, эти значения входят в решение.

2) Пусть теперь x 2 – 3x > 0, т.е. x ∈ (–1; 0) ∪ (3; +∞). При этом данное неравенство можно переписать в виде (x 2 – 3x ) · log 2 (x + 1) ≤ 3x x 2 и разделить на положительное выражение x 2 – 3x . Получим log 2 (x + 1) ≤ –1, x + 1 ≤ 2 –1 , x ≤ 0,5 –1 или x ≤ –0,5. Учитывая область определения, имеем x ∈ (–1; –0,5].

3) Наконец, рассмотрим x 2 – 3x < 0, при этом x ∈ (0; 3). При этом исходное неравенство перепишется в виде (3x x 2) · log 2 (x + 1) ≤ 3x x 2 . После деления на положительное выражение 3x x 2 , получим log 2 (x + 1) ≤ 1, x + 1 ≤ 2, x ≤ 1. Учитывая область, имеем x ∈ (0; 1].

Объединяя полученные решения, получаем x ∈ (–1; –0.5] ∪ ∪ {3}.

Ответ: (–1; –0.5] ∪ ∪ {3}.

Задание № 16 - повышенного уровня относится к заданиям второй части с развернутым ответом. Задание проверяет умения выполнять действия с геометрическими фигурами, координатами и векторами. Задание содержит два пункта. В первом пункте задание нужно доказать, а во втором пункте вычислить.

В равнобедренном треугольнике ABC с углом 120° при вершине A проведена биссектриса BD. В треугольник ABC вписан прямоугольник DEFH так, что сторона FH лежит на отрезке BC, а вершина E – на отрезке AB. а) Докажите, что FH = 2DH. б) Найдите площадь прямоугольника DEFH, если AB = 4.

Решение: а)


1) ΔBEF – прямоугольный, EF⊥BC, ∠B = (180° – 120°) : 2 = 30°, тогда EF = BE по свойству катета, лежащего против угла 30°.

2) Пусть EF = DH = x , тогда BE = 2x , BF = x √3 по теореме Пифагора.

3) Так как ΔABC равнобедренный, значит, ∠B = ∠C = 30˚.

BD – биссектриса ∠B, значит ∠ABD = ∠DBC = 15˚.

4) Рассмотрим ΔDBH – прямоугольный, т.к. DH⊥BC.

2x = 4 – 2x
2x (√3 + 1) 4
1 = 2 – x
√3 + 1 2

√3 – 1 = 2 – x

x = 3 – √3

EF = 3 – √3

2) S DEFH = ED · EF = (3 – √3 ) · 2(3 – √3 )

S DEFH = 24 – 12√3.

Ответ: 24 – 12√3.


Задание № 17 - задание с развернутым ответом, это задание проверяет применение знаний и умений в практической деятельности и повседневной жизни, умение строить и исследовать математические модели. Это задание - текстовая задача с экономическим содержанием.

Пример 17. Вклад в размере 20 млн рублей планируется открыть на четыре года. В конце каждого года банк увеличивает вклад на 10% по сравнению с его размером в начале года. Кроме того, в начале третьего и четвёртого годов вкладчик ежегодно пополняет вклад на х млн. рублей, где х - целое число. Найдите наибольшее значение х , при котором банк за четыре года начислит на вклад меньше 17 млн рублей.

Решение: В конце первого года вклад составит 20 + 20 · 0,1 = 22 млн рублей, а в конце второго – 22 + 22 · 0,1 = 24,2 млн рублей. В начале третьего года вклад (в млн рублей) составит (24,2 + х ), а в конце - (24,2 + х) + (24,2 + х) · 0,1 = (26,62 + 1,1х ). В начале четвёртого года вклад составит (26,62 + 2,1х) , а в конце - (26,62 + 2,1х ) + (26,62 + 2,1х ) · 0,1 = (29,282 + 2,31х ). По условию, нужно найти наибольшее целое х, для которого выполнено неравенство

(29,282 + 2,31x ) – 20 – 2x < 17

29,282 + 2,31x – 20 – 2x < 17

0,31x < 17 + 20 – 29,282

0,31x < 7,718

x < 7718
310
x < 3859
155
x < 24 139
155

Наибольшее целое решение этого неравенства - число 24.

Ответ: 24.


Задание № 18 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 18 необходим, кроме прочных математических знаний, также высокий уровень математической культуры.

При каких a система неравенств

x 2 + y 2 ≤ 2ay a 2 + 1
y + a ≤ |x | – a

имеет ровно два решения?

Решение: Данную систему можно переписать в виде

x 2 + (y a ) 2 ≤ 1
y ≤ |x | – a

Если нарисовать на плоскости множество решений первого неравенства, получится внутренность круга (с границей) радиуса 1 с центром в точке (0, а ). Множество решений второго неравенства – часть плоскости, лежащая под графиком функции y = | x | – a , причём последний есть график функции
y = | x | , сдвинутый вниз на а . Решение данной системы есть пересечение множеств решений каждого из неравенств.

Следовательно, два решения данная система будет иметь лишь в случае, изображённом на рис. 1.


Точки касания круга с прямыми и будут двумя решениями системы. Каждая из прямых наклонена к осям под углом 45°. Значит, треугольник PQR – прямоугольный равнобедренный. Точка Q имеет координаты (0, а ), а точка R – координаты (0, –а ). Кроме того, отрезки PR и PQ равны радиусу окружности, равному 1. Значит,

Qr = 2a = √2, a = √2 .
2
Ответ: a = √2 .
2


Задание № 19 - задание повышенного уровня сложности с развернутым ответом. Это задание предназначено для конкурсного отбора в вузы с повышенными требованиями к математической подготовке абитуриентов. Задание высокого уровня сложности - это задание не на применение одного метода решения, а на комбинацию различных методов. Для успешного выполнения задания 19 необходимо уметь осуществлять поиск решения, выбирая различные подходы из числа известных, модифицируя изученные методы.

Пусть Sn сумма п членов арифметической прогрессии (а п ). Известно, что S n + 1 = 2n 2 – 21n – 23.

а) Укажите формулу п -го члена этой прогрессии.

б) Найдите наименьшую по модулю сумму S n .

в) Найдите наименьшее п , при котором S n будет квадратом целого числа.

Решение : а) Очевидно, что a n = S n S n – 1 . Используя данную формулу, получаем:

S n = S (n – 1) + 1 = 2(n – 1) 2 – 21(n – 1) – 23 = 2n 2 – 25n ,

S n – 1 = S (n – 2) + 1 = 2(n – 1) 2 – 21(n – 2) – 23 = 2n 2 – 25n + 27

значит, a n = 2n 2 – 25n – (2n 2 – 29n + 27) = 4n – 27.

Б) Так как S n = 2n 2 – 25n , то рассмотрим функцию S (x ) = | 2x 2 – 25x| . Ее график можно увидеть на рисунке.


Очевидно, что наименьшее значение достигается в целочисленных точках, расположенных наиболее близко к нулям функции. Очевидно, что это точки х = 1, х = 12 и х = 13. Поскольку, S (1) = |S 1 | = |2 – 25| = 23, S (12) = |S 12 | = |2 · 144 – 25 · 12| = 12, S (13) = |S 13 | = |2 · 169 – 25 · 13| = 13, то наименьшее значение равно 12.

в) Из предыдущего пункта вытекает, что Sn положительно, начиная с n = 13. Так как S n = 2n 2 – 25n = n (2n – 25), то очевидный случай, когда данное выражение является полным квадратом, реализуется при n = 2n – 25, то есть при п = 25.

Осталось проверить значения с 13 до 25:

S 13 = 13 · 1, S 14 = 14 · 3, S 15 = 15 · 5, S 16 = 16 · 7, S 17 = 17 · 9, S 18 = 18 · 11, S 19 = 19 · 13, S 20 = 20 · 13, S 21 = 21 · 17, S 22 = 22 · 19, S 23 = 23 · 21, S 24 = 24 · 23.

Получается, что при меньших значениях п полный квадрат не достигается.

Ответ: а) a n = 4n – 27; б) 12; в) 25.

________________

*С мая 2017 года объединенная издательская группа «ДРОФА-ВЕНТАНА» входит в корпорацию «Российский учебник». В корпорацию также вошли издательство «Астрель» и цифровая образовательная платформа «LECTA». Генеральным директором назначен Александр Брычкин, выпускник Финансовой академии при Правительстве РФ, кандидат экономических наук, руководитель инновационных проектов издательства «ДРОФА» в сфере цифрового образования (электронные формы учебников, «Российская электронная школа», цифровая образовательная платформа LECTA). До прихода в издательство «ДРОФА» занимал позицию вице-президента по стратегическому развитию и инвестициям издательского холдинга «ЭКСМО-АСТ». Сегодня издательская корпорация «Российский учебник» обладает самым крупным портфелем учебников, включенных в Федеральный перечень - 485 наименований (примерно 40%, без учета учебников для коррекционной школы). Издательствам корпорации принадлежат наиболее востребованные российскими школами комплекты учебников по физике, черчению, биологии, химии, технологии, географии, астрономии - областям знаний, которые нужны для развития производственного потенциала страны. В портфель корпорации входят учебники и учебные пособия для начальной школы, удостоенные Премии Президента в области образования. Это учебники и пособия по предметным областям, которые необходимы для развития научно-технического и производственного потенциала России.

Проценты в математике. Задачи на проценты.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Проценты в математике.

Что такое проценты в математике ? Как решать задачи на проценты ? Эти вопросы всплывают, увы, внезапно… Когда выпускник читает задание ЕГЭ. И ставят его в тупик. А зря. Это очень простые понятия.

Единственно, что нужно запомнить железно – что такое один процент . Это понятие - и есть главный ключ к решению задач на проценты, да и к работе с процентами вообще.

Один процент – это одна сотая часть какого-то числа . И всё. Нет больше никаких мудростей.

Резонный вопрос – а сотая часть какого числа ? А вот того числа, о котором идёт речь в задании. Если там говорится о цене, один процент – это одна сотая часть цены. Если о скорости, один процент – это одна сотая часть скорости. И так далее. Понятно, что само число, о котором идёт речь, составляет всегда 100%. А если нет самого числа, то и проценты смысла не имеют…

Другое дело, что в сложных задачах само число так запрячут, что и не найдёшь. Но мы на сложное пока не замахиваемся. Разбираемся с процентами в математике .

Я не зря акцентирую слова один процент, одна сотая . Запомнив, что такое один процент , вы легко найдёте и два процента, и тридцать четыре, и семнадцать, и сто двадцать шесть! Сколько надо, столько и найдёте.

А это, между прочим, основное умение для решения задач на проценты.

Попробуем?

Давайте найдём 3% от 400. Сначала найдём один процент . Это будет одна сотая, т.е. 400/100 = 4. Один процент – это 4. А нам сколько процентов надо? Три. Вот и умножаем 4 на три. Получим 12. Всё. Три процента от 400 – это 12.

5% от 20 это будет 20 поделить на 100 (одна сотая – 1%), и умножить на пять (5%):

5% от 20 это будет 1. Всё.

Проще некуда. Давайте-ка быстро, пока не забылось, потренируемся!

Найдите, сколько будет:
5% от 200 рублей.
8% от 350 километров.
120% от 10 литров.
15% от 60 градусов.
4% отличников от 25 учащихся.
10% двоечников из 20 человек.

Ответы (в полном беспорядке): 9, 10, 2, 1, 28, 12.

Эти числа – количество рублей, градусов, учеников и т.д. Я не написал, сколько чего, чтобы решать интересней было…

А если нам нужно записать х% от какого-то числа, например, от 50? Да всё то же самое. Один процент от 50 – это сколько? Правильно, 50/100 = 0,5. А у нас этих процентов – х . Ну и умножим 0,5 на х ! Получим, что х% от 50 это – 0,5х.

Надеюсь, что такое проценты в математике вы уяснили. И легко сможете найти любое количество процентов от любого числа. Это просто. Вам сейчас по силам примерно 60% от всех задач на проценты! Уже больше половины. Ну что, добиваем оставшееся? Ладно, как скажете!

В задачах на проценты частенько встречаются обратная ситуация. Нам дают величины (какие угодно), а надо найти проценты . Освоим и этот нехитрый процесс.

3 человека из 120 – это сколько процентов? Не знаете? Ну, тогда, пусть это будет х процентов.

Вычислим х% от 120 человек. В человеках. Это мы умеем. 120 делим на 100 (вычисляем 1%) и умножаем на х (вычисляем х% ). Получаем 1,2х .

Осмыслим результат.

х процентов от 120 человек, это 1,2х человек . А таких человек у нас три. Остаётся приравнять:

Вспоминаем, что за икс мы брали количество процентов. Значит 3 человека от 120 человек – это 2,5%.

Вот и всё.

Можно и по-другому. Обойтись простой смекалкой, безо всяких уравнений. Соображаем, во сколько раз 3 человека меньше 120? Делим 120 на 3 и получаем 40. Значит, 3 меньше 120 в 40 раз.

Искомое количество людей в процентах будет во столько же раз меньше 100%. Ведь 120 человек – это и есть 100%. Делим 100 на 40, 100/40 = 2,5

Вот и всё. Получили 2,5%.

Есть ещё способ пропорций, но это, в сущности, то же самое в сокращенном варианте. Все эти способы – правильные. Как вам удобнее, привычнее, понятнее – так и считайте.

Опять тренируемся.

Посчитайте, сколько процентов составляют:
3 человека из 12.
10 рублей от 800.
4 учебника из 160 книг.
24 правильных ответа на 32 вопроса.
2 угаданных ответа на 32 вопроса.
9 попаданий из 10 выстрелов.

Ответы (в беспорядке): 75%, 25%, 90%, 1,25%, 2,5%, 6,25%.

В процессе вычислений вы вполне можете столкнуться с дробями. В том числе и неудобными, типа 1,333333… А кто вам велел калькулятором пользоваться? Сами? Не надо. Считайте без калькулятора , как написано в теме «Дроби». Проценты всякие бывают…

Вот мы и освоили переход от величин к процентам и обратно. Можно браться за задачки.

Задачи на проценты.

В ЕГЭ задачи на проценты очень популярны. От самых простых до сложных. В этом разделе мы работаем с простыми задачами. В простых задачах, как правило, нужно перейти от процентов к тем величинам, о которых идёт речь в задаче. К рублям, килограммам, секундам, метрам, и так далее. Или наоборот. Это мы уже умеем. После этого задача становится понятной и легко решается. Не верите? Смотрите сами.
Пусть у нас есть такая задачка.

«Проезд на автобусе стоит 14 рублей. В дни школьных каникул для учащихся ввели скидку 25%. Сколько стоит проезд на автобусе в дни школьных каникул?»

Как решать? Если мы узнаем, сколько 25% в рублях – то и решать-то нечего. Отнимем скидку от исходной цены – и все дела!

Но мы уже умеем это узнавать! Сколько будет один процент от 14 рублей? Одна сотая часть. То есть 14/100 = 0,14 рубля. А таких процентов у нас 25. Вот и умножим 0,14 рубля на 25. Получим 3,5 рублей. Вот и всё. Величину скидки в рублях мы установили, остаётся узнать новую стоимость проезда:

14 – 3,5 = 10,5.

Десять с половиной рублей. Это ответ.

Как только от процентов перешли к рублям, всё стало просто и понятно. Это общий подход к решению задач на проценты.

Понятное дело, не все задачи одинаково элементарны. Есть и посложнее. Подумаешь! Мы и их сейчас порешаем. Сложность в том, что всё наоборот. Нам даны какие-то величины, а найти надо проценты. Например, такая задача:

«Раньше Вася решал правильно две задачи на проценты из двадцати. После изучения темы на одном полезном сайте, Вася стал решать правильно 16 задач из 20. На сколько процентов поумнел Вася? За стопроцентный ум считаем 20 решённых задач.»

Раз вопрос про проценты (а не рубли, килограммы, секунды и т.д.), то и переходим к процентам. Узнаем, сколько процентов Вася решал до поумнения, сколько процентов после – и дело в шляпе!

Считаем. Две задачки из 20 – это сколько процентов? 2 меньше 20 в 10 раз, правильно? Значит, количество задачек в процентах будет в 10 раз меньше, чем 100%. То есть 100/10 = 10.

10%. Да, немного решал Вася… На ЕГЭ делать нечего. Но вот он поумнел, и решает 16 задач из 20. Считаем, сколько это будет процентов? Во сколько раз 16 меньше 20? Навскидку и не скажешь… Придётся делить.

В 5/4 раза. Ну а теперь делим 100 на 5/4:

Вот. 80% это уже солидно. А главное – не предел!

Но это ещё не ответ! Читаем задачу снова, чтобы не ошибиться на ровном месте. Да, нас спрашивают, на сколько процентов поумнел Вася? Ну, это просто. 80% - 10% = 70%. На 70%.

70% - это правильный ответ.

Как видите, в простых задачках достаточно перевести заданные величины в проценты, или заданные проценты – в величины, как всё и проясняется. Ясное дело, что в задачке вполне могут быть и дополнительные навороты. Которые, часто, к процентам отношения и не имеют вовсе. Тут, главное, внимательно условие читать и по шагам, не спеша, разворачивать задачку. Об этом мы в следующей теме поговорим.

Но есть в задачах на проценты одна серьёзная засада! Многие в неё попадают, да… Выглядит эта засада вполне невинно. Например, вот такая задачка.

«Красивая тетрадка летом стоила 40 рублей. Перед началом учебного года, продавец поднял цену на 25%. Однако, тетрадки стали покупать так плохо, что он снизил цену на 10%. Всё равно не берут! Пришлось ему снизить цену ещё на 15%. Вот тут торговля пошла! Какова была окончательная цена тетрадки?»

Ну, как? Элементарно?

Если вы стремительно и радостно дали ответ «40 рублей!», то вы попали в засаду…

Фокус в том, что проценты всегда считаются от чего-то .

Вот и считаем. На сколько рублей продавец взвинтил цену? 25% от 40 рублей - это 10 рублей. То есть, подорожавшая тетрадка стала стоить 50 рублей. Это понятно, да?

А теперь нам надо сбросить цену на 10% от 50 рублей. От 50, а не 40! 10% от 50 рублей – это 5 рублей. Следовательно, после первого удешевления тетрадь стала стоить 45 рублей.

Считаем второе удешевление. 15% от 45 рублей (от 45, а не 40, или 50! ) – это 6,75 рубля. Стало быть, окончательная цена тетрадки:

45 – 6,75 = 38,25 рубля.

Как видите, засада заключается в том, что проценты считаются каждый раз от новой цены. От последней. Так бывает практически всегда. Если в задаче на последовательное повышение-понижение величины открытым текстом не сказано, от чего считать проценты, надо считать их от последнего значения. И то, правда. Продавец откуда знает, сколько раз эта тетрадка дорожала-дешевела до него и сколько она стоила в самом начале…

Кстати, теперь вы можете подумать, зачем в задачке про умного Васю написана последняя фраза? Вот эта: «За стопроцентный ум считаем 20 решённых задач»? Вроде и так всё ясно… Э-э-э… Как сказать. Если этой фразы не будет, Вася вполне может посчитать за 100% свои начальные успехи. То есть две решённые задачки. А 16 задач – в восемь раз больше. Т.е. 800% ! Вася сможет вполне оправданно говорить о собственном поумнении аж на 700%!

А ещё можно и 16 задач взять за 100%. И получить новый ответ. Тоже правильный…

Отсюда вывод: самое главное в задачах на проценты – чётко определить, от чего надо считать тот или иной процент.

Это, кстати, и в жизни надо. Там, где проценты используются. В магазинах, банках, на акциях всяких. А то ждёшь 70% скидки, а получаешь 7%. И не скидки, а удорожания… И всё честно, сам просчитался.

Ну вот, представление о процентах в математике вы получили. Отметим самое важное.

Практические советы:

1. В задачах на проценты – переходим от процентов к конкретным величинам. Или, если надо – от конкретных величин к процентам. Внимательно читаем задачу !

2. Очень тщательно изучаем, от чего нужно считать проценты. Если об этом не сказано прямым текстом, то обязательно подразумевается. При последовательном изменении величины, проценты подразумеваются от последнего значения. Внимательно читаем задачу!

3. Закончив решать задачу, читаем её ещё раз. Вполне возможно, вы нашли промежуточный ответ, а не окончательный. Внимательно читаем задачу!

Решите несколько задач на проценты. Для закрепления, так сказать. В этих задачках я постарался собрать все главные трудности, которые поджидают решающих. Те грабли, на которые чаще всего наступают. Вот они:

1. Элементарная логика при анализе простых задачек.

2. Правильный выбор величины, от которой нужно считать проценты. Сколько народу споткнулось на этом! А ведь есть оч-ч-чень простое правило...

3. Проценты от процентов. Мелочь, а смущает здорово...

4. И ещё одни вилы. Связь процентов с дробями и частями. Перевод их друг в друга.

«В олимпиаде по математике принимали участие 50 человек. 68% учеников решили мало задач. 75% оставшихся решили средне, а остальные – много задач. Сколько человек решило много задач?»

Подсказка. Если у вас получаются дробные ученики – это неправильно. Читайте внимательно задачу, есть там одно важное слово… Ещё задачка:

«Вася (да-да, тот самый!) очень любит пончики с повидлом. Которые пекут в булочной, через одну остановку от дома. Стоят пончики по 15 рублей за штуку. Имея в наличии 43 рубля, Вася поехал в булочную на автобусе за 13 рублей. А в булочной шла акция «Скидка на всё – 30%!!!». Вопрос: сколько дополнительных пончиков не смог купить Вася из-за своей лени (мог бы и пешком прогуляться, правда?)»

Короткие задачки.

На сколько процентов 4 меньше 5?

На сколько процентов 5 больше 4?

Длинная задача...

Коля устраивался на несложную работу, связанную с расчётом процентов. При собеседовании начальник с хитрой улыбкой предложил Коле два варианта оплаты труда. По первому варианту Коле сразу назначалась ставка 15000 руб в месяц. По второму Коле, если он согласится, первые 2 месяца будут выплачивать пониженную на 50% зарплату. Типа, как новичку. Зато потом увеличат его пониженную зарплату аж на 80%!

Коля посещал один полезный сайт в Интернете... Поэтому, подумав шесть секунд, с лёгкой улыбкой выбрал первый вариант. Начальник улыбнулся в ответ и установил Коле постоянную зарплату в 17000 руб.

Вопрос: Сколько денег в расчёте за год (в тысячах рублей) Коля выиграл на этом собеседовании? Если сравнивать с самым неудачным вариантом? И ещё: что они всё время улыбались-то!?)

Опять короткая задачка.

Найти 20% от 50%.

И снова длинная.)

Скорый поезд №205 "Красноярск - Анапа" сделал остановку на станции "Сызрань-город". Василий и Кирилл пошли в привокзальный магазинчик за мороженым для Лены и гамбургером для себя. Когда они купили всё необходимое, уборщица магазина сообщила, что их поезд уже поехал... Василий и Кирилл быстро-быстро побежали и успели заскочить в вагон. Вопрос: успел бы в этих условиях заскочить в вагон чемпион мира по бегу?
Считаем, что в обычных условиях чемпион мира бежит на 30% быстрее Василия и Кирилла. Однако, стремление догнать вагон (он был последний), угостить Лену мороженым и съесть гамбургер, увеличило их скорость на 20%. А мороженое с гамбургером в руках чемпиона и шлёпанцы на ногах уменьшили бы его скорость на 10%...

А вот задачка без процентов... Интересно, зачем она здесь?)

Определить, сколько весит 3/4 яблока, если всё яблоко весит 200 граммов?

И последняя.

В скором поезде №205 "Красноярск - Анапа" попутчики разгадывали сканворд. Лена отгадала 2/5 всех слов, а Василий отгадал одну треть оставшихся. Затем подключился Кирилл и разгадал 30% всего сканворда! Серёжа отгадал последние 5 слов. Сколько всего слов было в сканворде? Верно ли, что Лена отгадала больше всех слов?

Ответы в традиционном беспорядке и без наименований единиц. Где пончики, где ученики, где рубли с процентами – это вы уж сами…

10; 50; да; 4; 20; нет; 54; 2; 25; 150.

Ну и как? Если всё сошлось - поздравляю! Проценты - не ваша проблема. Можно смело идти работать в банк.)

Что-то не так? Не получается? Не умеете быстро считать проценты от числа? Не знаете очень простых и понятных правил? От чего считать проценты, например? Или, как перевести дроби в проценты?

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

В курсе математики обязательно встречаются разного рода уравнения и задачи, но у многих они вызывают затруднения. Все дело в том, что необходимо отработать и автоматизировать эти процессы. Как научиться по математике, понимать их, вы узнаете в данной статье.

Простейшие задачи

Начнем с самого легкого. Чтобы получить правильный ответ на задачу, необходимо понять ее суть, поэтому тренироваться необходимо на простейших примерах для младшей школы. Как научиться решать задачи по математике, мы опишем вам в данном разделе на конкретных примерах.

Пример 1: Ваня и Дима ловили вместе рыбу, но у Димы клевало плохо. Какой улов у ребят? Дима поймал на 18 рыб меньше, чем весь улов, у одного из ребят на 14 рыб меньше, чем у другого.

Данный пример взят из курса математики за четвертый класс. Чтобы решить задачу, необходимо понять ее суть, точный вопрос, что в итоге необходимо найти. Этот пример решается в два простых действия:

18-14=4 (рыбы) - поймал Дима;

18+4=22 (рыбы) - поймали ребята.

Теперь можно смело записывать ответ. Вспоминаем главный вопрос. Какой общий улов? Ответ: 22 рыбы.

Летят воробей и орел, известно, что воробей за два часа пролетел четырнадцать километров, а орел за три часа пролетел 210 километров. Во сколько раз скорость орла больше.

Обратим внимание на то, что в этом примере два вопроса, записывая итог, не забываем указывать два ответа.

Переходим к решению. В этой задаче необходимо знать формулу: S=V*T. Она, наверняка, известна многим.

14/2=7 (км/ч) - скорость воробья;

210/3=70 (км/ч) - скорость орла;

70/7=10 - во столько раз скорость орла превосходит скорость воробья;

70-7=63 (км/ч) - на сколько скорость воробья меньше скорости орла.

Записываем ответ: в 10 раз скорость орла превосходит скорость воробья; на 63 км/ч орел быстрей воробья.

Более сложный уровень

Как научиться решать задачи по математике, используя таблицы? Все очень просто! Как правило, таблицы используются для упрощения и систематизации условия. Чтобы понять суть данного метода, разберем пример.

Перед вами книжный шкаф с двумя полками, на первой книг в три раза больше, чем на второй. Если с первой полки убрать восемь книг, а на вторую поставить 32, то их станет поровну. Ответьте на вопрос: сколько книг было первоначально на каждой полке?

Как научиться решать текстовые задачи по математике, сейчас все наглядно покажем. Для упрощения восприятия условия составим таблицу.

Теперь можем составить уравнение:

х=20 (книг) - было на второй полке;

20*3=60 (книг) - было на первой полке.

Ответ:60;20.

Вот наглядный пример решения задачи на составление уравнения с использованием вспомогательной таблицы. Она значительно упрощает восприятие.

Логика

В курсе математики встречаются и более сложные задания. Как научиться решать логические задачи по математике, мы рассмотрим в данном разделе. Для начала вчитываемся в условие, оно состоит из нескольких пунктов:

  1. Перед нами лист с числами от 1 до 2009.
  2. Мы вычеркнули все нечетные числа.
  3. Из оставшихся вычеркнули числа, стоящие на нечетных местах.
  4. Последнее действие выполняли до тех пор, пока не осталось одно число.

Вопрос: какое число осталось не зачеркнутым?

Как быстро научиться решать задачи по математике на логику? Для начала не спешим писать все эти числа и вычеркивать по одному, поверьте, это очень долгое и глупое занятие. Задачу данного типа несложно решить и в несколько действий. Предлагаем вместе поразмыслить над решением.

Ход решения

Давайте предположим, какие числа останутся после первого действия. Если исключить все нечетные, то остаются: 2, 4, 6, 8, ... , 2008. Заметим, что все они кратны двум.

Убираем числа на нечетных местах. Что у нас остается? 4, 8, 12, ... , 2008. Замечаем, что все они кратны четырем (то есть делятся без остатка на четыре).

Нетрудно догадаться о наших последующих действиях. Далее оставляем 16, затем 32, далее 64, 128, 256.

Когда мы дошли до чисел, кратных 512, то у нас остаются всего три числа: 512, 1024, 1536. Следующим этапом оставляем число, кратное 1024, оно в нашем списке одно: 1024.

Как видите, задача решается элементарно, без особых усилий и массы потраченного времени.

Олимпиада

В школе существует такое понятие, как олимпиада. Туда попадают дети с особыми навыками. Как научиться решать олимпиадные задачи по математике, и что они собой представляют, рассмотрим далее.

Олимпиада, 5 класс. Пример.

На нашей ферме живет девять свиней, они за три дня съедают двадцать семь мешков корма. Сосед фермер попросил оставить пять своих свиней на пять дней. Сколько же нужно корма пяти свиньям на пять дней?

Олимпиада, 6 класс. Пример.

Большой орел пролетает три метра за одну секунду, а орленок один метр за полсекунды. Они одновременно стартовали с одной вершины на другую. Сколько взрослому орлу придется ждать своего детеныша, если расстояние между вершинами 240 метров?

Решения

В прошлом разделе мы рассмотрели две простых олимпиадных задачи за пятый и шестой класс. Как научиться решать задачи по математике олимпиадного уровня, предлагаем рассмотреть прямо сейчас.

Начнем с пятого класса. Что нужно нам для начала? Узнать сколько мешков съедают девять поросят за один день, для этого сделаем простейшее вычисление: 27:3=9. Мы нашли количество мешков для девяти поросят на один день.

Теперь вычисляем сколько необходимо мешков одному поросенку на один день: 9:9=1. Вспоминаем, что говорилось в условии, сосед оставил пять свиней на пять дней, следовательно, нам необходимо 5*5=25 (мешков корма). Ответ: 25 мешков.

Решение задачи за шестой класс:

240:3=80 секунд летел взрослый орел;

орленок за 1 секунду пролетает два метра, следовательно: 80*2=160 метров пролетит орленок за 80 секунд;

240-180=80 метров останется пролететь орленку, когда взрослый орел уже приземлился на скалу;

80:2=40 секунд еще потребуется орленку, чтобы долететь до взрослого орла.

За все школьные годы вашему ребенку придется решить множество задач, и несмотря на то, что все они кажутся разноплановыми, в алгоритме их решения все же есть общие моменты, и, уяснив их и следуя этому алгоритму, ребенок сможет решить практически любую задачу. Если ученик еще в 1-3 классе освоит тактику решения задач, в старших классах он будет щелкать задачки как семечки не только по математике, но и по физике, химии, геометрии тоже.

Ошибки в решении задач

Задачи можно условно разделить на части: условие, вопрос, решение, ответ.

Первая и самая главная ошибка - ребенок невнимательно, вскользь прочитал условие задачи.

К примеру задачка. У Пети 8 монет, это на 3 меньше, чем у Васи. Сколько монет у Васи.

Ребенок видит "на 3 меньше", значит надо что-то отнять, а отнять можно только от 8, так и получается 8-3=5 монет у Васи. Но если внимательно прочитать условие, то меньше то конфет как раз у Пети.

Чтобы такой путаницы не было, требуйте с ребенка записать условие задачи.

П.- 8 м. на 3 м. <

Ошибка вторая - в решении.

Когда вопрос в задаче один, тут все просто. Но когда в задаче есть несколько неизвестных - решение затрудняется. Решаем по действиям. Для начала определим, каких данных нам не хватает, затем найдем эти числа, подставим их и решим задачу.

Ошибка третья - неправильная запись ответа.

К примеру, требуется найти сколько монет, а ребенок пишет сколько человек. Нужно внимательно еще раз прочитать вопрос задачи, перед тем, как записать ответ. Что требуется найти, то и пишем в ответе. Ответ начинается с числа.

Алгоритм решения

  1. Внимательно прочти задачу и представь, о чем в ней говорится.
  2. Запиши в виде схемы, что известно и что не известно, что нужно найти.
  3. Подумай, можно ли сразу ответить на вопрос задачи.
  4. Сначала вычисли значения, которых не хватает для нахождения ответа.
  5. Найти ответ на главный вопрос задачи.
  6. Проверь ответ.
  7. Прочти еще раз вопрос задачи.
  8. Запиши ответ.

В решении любой задачи мы по двум известным данным находим третье. В решении рассуждаем с конца, как бы разматывая клубок. Чтобы узнать то, нам нужно это, а чтобы узнать это, у нас есть все данные.

Учите ребенка рассуждать. Если для него это затруднительно, потренируйтесь на задачах с лишними или недостающими данными.

Васе 8 лет. Он живет в доме номер 7 в 5-й квартире. У него есть двоюродный брат, который живет в квартире напротив. Брат на 3 года старше Васи. Еще у них вместе есть 2 кошки и хомячок.

Нужно вычеркнуть данные, которые не понадобятся для поиска ответа и дописать вопрос задачи.

Васе 8 лет. Он живет в доме номер 7 в 5-й квартире. У него есть двоюродный брат, который живет в квартире напротив. Брат на 3 года старше Васи. Еще у них вместе есть 2 кошки и хомячок. Сколько лет брату?

Второй вариант тренинга - самому придумать несколько задач на одно решение.

К примеру: 8+3

Вася получил за четверть 8 четверок, а пятерок на 3 больше. Сколько пятерок получил Вася?

В аквариуме было 8 гуппи и 3 сомика. Сколько рыбок было в аквариуме?

Третий вариант - дополнить условие, в котором не хватает данных.

Пример: У Васи 4 конфеты, а у Сони меньше. Сколько конфет у Сони?

Дополним условие: У Васи 4 конфеты , а у Сони на 2 меньше . Сколько конфет у Сони ?

При прочтении для наглядности можно подчеркнуть нужные для решения данные.

Основные типы задач

Простые задачи на сложение и вычитание

Решение задачи обычно сводится к тому, чтобы путем логических рассуждений и вычислений найти значение какой-нибудь величины. Например, найти скорость, время, расстояние, массу какого-нибудь предмета или количество чего-то.

Такую задачу можно решить с помощью уравнения. Для этого искомое значение обозначают через переменную, затем путем логических рассуждений составляют и решают уравнение. Решив уравнение, производят проверку на то, удовлетворяет ли решение уравнения условиям задачи.

Содержание урока

Запись выражений, содержащих неизвестное

Решение задачи сопровождается составлением уравнения к этой задаче. На начальном этапе изучения задач желательно научиться составлять буквенные выражения, описывающие ту или иную жизненную ситуацию. Этот этап не является сложным и его можно изучать в процессе решения самой задачи.

Рассмотрим несколько ситуаций, которые можно записать с помощью математического выражения.

Задача 1 . Возраст отца x лет. Мама на два года младше. Сын младше отца в 3 раза. Запишите возраст каждого с помощью выражений.

Решение:

Задача 2 . Возраст отца x лет, мама на 2 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Запишите возраст каждого с помощью выражений.

Решение:

Задача 3 . Возраст отца x лет, мама на 3 года младше отца. Сын младше отца в 3 раза, дочь младше матери в 3 раза. Сколько лет каждому, если общий возраст отца, мамы, сына и дочери составляет 92 года?

Решение:

В данной задаче помимо записи выражений, необходимо вычислить возраст каждого члена семьи.

Сначала запишем возраст каждого члена семьи с помощью выражений. За переменную x примем возраст отца, и далее пользуясь этой переменной составим остальные выражения:

Теперь определим возраст каждого члена семьи. Для этого нам нужно составить и решить уравнение. Все компоненты уравнения у нас уже готовы. Осталось только собрать их воедино.

Общий возраст в 92 года получился путем сложения возрастов папы, мамы, сына и дочери:

Для каждого возраста мы составили математическое выражение. Эти выражения и будут компонентами нашего уравнения. Давайте соберем наше уравнение согласно данной схеме и таблице, которая была приведена выше. То есть, слова папа, мама, сын, дочь заменим на соответствующее им в таблице выражение:

Выражение, отвечающее за возраст мамы x − 3, для наглядности было взято в скобки.

Теперь решим получившееся уравнение. Для начала можно раскрыть скобки там, где это можно:

Чтобы освободить уравнение от дробей, умножим обе части на 3

Решим получившееся уравнение, пользуясь известными тождественными преобразованиями:

Мы нашли значение переменной x . Эта переменная отвечала за возраст отца. Значит возраст отца составляет 36 лет.

Зная возраст отца, можно вычислить возрасты остальных членов семьи. Для этого нужно подставить значение переменной x в те выражения, которые отвечают за возраст конкретного члена семьи.

В задаче было сказано, что мама на 3 года младше отца. Ее возраст мы обозначили через выражение x−3. Значение переменной x теперь известно, и чтобы вычислить возраст мамы, нужно в выражении x − 3 вместо x подставить найденное значение 36

x − 3 = 36 − 3 = 33 года маме.

Аналогично определяется возраст остальных членов семьи:

Проверка :

Задача 4 . Килограмм яблок стоит x рублей. Запишите выражение, вычисляющее сколько килограмм яблок можно купить на 300 рублей.

Решение

Если килограмм яблок стоит x рублей, то на 300 рублей можно купить килограмм яблок.

Пример . Килограмм яблок стоит 50 рублей. Тогда на 300 рублей можно купить , то есть 6 килограмм яблок.

Задача 5 . На x рублей было куплено 5 кг яблок. Запишите выражение, вычисляющее сколько рублей стоит один килограмм яблок.

Решение

Если за 5 кг яблок было уплачено x рублей, то один килограмм будет стоит рублей

Пример . За 300 рублей было куплено 5 кг яблок. Тогда один килограмм яблок будет стоит , то есть 60 рублей.

Задача 6 . Том, Джон и Лео на перемене пошли в столовую и купили по бутерброду и по кружке кофе. Бутерброд стоит x рублей, а кружка кофе — 15 рублей. Определите стоимость бутерброда, если известно, что за всё было уплачено 120 рублей?

Решение

Конечно, данная задача проста как три копейки и ее можно решить не прибегая к уравнению. Для этого из 120 рублей нужно вычесть стоимость трех кружек кофе (15 × 3) , и полученный результат разделить на 3

Но наша цель — составить уравнение к задаче и решить это уравнение. Итак, стоимость бутерброда x рублей. Куплено их всего три. Значит увеличив стоимость в три раза, мы получим выражение описывающее сколько рублей было уплачено за три бутерброда

3x — стоимость трех бутербродов

А стоимость трех кружек кофе можно записать как 15 × 3 . 15 это стоимость одной кружки кофе, а 3 множитель (Том, Джон и Лео), увеличивающий эту стоимость в три раза.

По условию задачи за все уплачено 120 рублей. У нас уже появляется примерная схема, что нужно делать:

Выражения, описывающие стоимость трех бутербродов и трех кружек кофе, у нас уже готовы. Это выражения 3x и 15 × 3 . Пользуясь схемой составим уравнение и решим его:

Итак, стоимость одного бутерброда составляет 25 рублей.

Задача решается верно только в том случае, если уравнение к ней составлено правильно. В отличие от обычных уравнений, по которым мы учимся находить корни, уравнения для решения задач имеют своё конкретное применение. Каждый компонент такого уравнения может быть описан в словесной форме. Составляя уравнение, обязательно нужно понимать для чего мы включаем в его состав тот или иной компонент и зачем он нужен.

Также необходимо помнить, что уравнение это равенство, после решения которого левая часть должна будет равняться правой части. Составленное уравнение не должно противоречить этой идее.

Представим, что уравнение это весы с двумя чашами и экраном, показывающим состояние весов.

В данный момент экран показывает знак равенства. Понятно почему левая чаша равна правой чаше — на чашах ничего нет. Состояние весов и отсутствие на чашах чего-либо запишем с помощью следующего равенства:

0 = 0

Положим на левую чашу весов арбуз:

Левая чаша перевесила правую чашу и экран забил тревогу, показав знак не равно (≠). Этот знак говорит о том, что левая чаша не равна правой чаше.

Теперь попробуем решить задачу. Пусть требуется узнать сколько весит арбуз, который лежит на левой чаше. Но как это узнать? Ведь наши весы предназначены только для проверки равна ли левая чаша правой.

На помощь приходят уравнения. Вспомним, что уравнение по определению есть равенство , содержащее в себе переменную значение которой требуется найти. Весы в данном случае играют роль этого самого уравнения, а масса арбуза это переменная, значение которой нужно найти. Наша цель правильно составить это уравнение. Понимай, выровнять весы так, чтобы можно было вычислить массу арбуза.

Чтобы выровнять весы, на правую чашу можно положить какой-нибудь тяжелый предмет. Например, положим туда гирю массой 7 кг.

Теперь наоборот правая чаша перевесила левую. Экран по прежнему показывает, что чаши не равны.

Попробуем на левую чашу положить гирю массой 4 кг

Теперь весы выровнялись. На рисунке видно, что левая чаша на уровне правой чаши. А экран показывает знак равенства. Этот знак говорит о том, что левая чаша равна правой чаше.

Таким образом мы получили уравнение — равенство, содержащее неизвестное. Левая чаша — это левая часть уравнения, состоящая из компонентов 4 и переменной x (массы арбуза), а правая чаша — это правая часть уравнения, состоящая из компонента 7.

Ну и нетрудно догадаться, что корень уравнения 4 + x = 7 равен 3. Значит масса арбуза равна 3 кг.

Аналогично дела обстоят и с другими задачами. Чтобы найти какое-нибудь неизвестное значение, к левой или к правой части уравнения добавляют различные элементы: слагаемые, множители, выражения. В школьных задачах эти элементы бывают уже даны. Остается только правильно структурировать их и построить уравнение. Мы же в данном примере занимались подбором, пробуя гири разной массы, чтобы вычислить массу арбуза.

Естественно, те данные которые даны в задаче сначала нужно привести к виду, при котором их можно включить в уравнение. Поэтому, как говорят «хочешь не хочешь, а думать придётся» .

Рассмотрим следующую задачу. Возраст отца равен возрасту сына и дочери вместе. Сын вдвое старше дочери и на двадцать лет моложе отца. Сколько лет каждому?

Возраст дочери можно обозначить через x . Если сын вдвое старше дочери, то его возраст будет обозначаться как 2x . В условии задачи сказано, что вместе возраст дочери и сына равен возрасту отца. Значит возраст отца будет обозначаться суммой x + 2x

В выражении можно привести подобные слагаемые. Тогда возраст отца будет обозначаться как 3x

Теперь составим уравнение. Нам нужно получить равенство в котором можно найти неизвестное x . Воспользуемся весами. На левую чашу положим возраст отца (3x ) , а на правую чашу возраст сына (2x )

Понятно почему левая чаша перевесила правую и почему экран показывает знак (≠) . Ведь логично, что возраст отца больше возраста сына.

Но нам нужно уравнять весы, чтобы можно было вычислить неизвестное x . Для этого к правой чаше нужно прибавить какое-нибудь число. Какое именно число указано в задаче. В условии было сказано, что сын моложе отца на 20 лет. Значит 20 лет это то самое число, которое нужно положить на весы.

Весы выровняться, если мы эти 20 лет добавим на правую чашу весов. Иными словами, вырастим сына до возраста отца

Теперь весы выровнялись. Получилось уравнение , которое решается легко:

x мы обозначили возраст дочери. Теперь мы нашли значение этой переменной. Дочери 20 лет.

Ну и наконец вычислим возраст отца. В задаче было сказано, что он равен сумме возрастов сына и дочери, то есть (20 + 40) лет.

Вернемся к середине задачи и обратим внимание на один момент. Когда мы положили на весы возраст отца и возраст сына, левая чаша перевесила правую

Но мы решили эту проблему, добавив на правую чашу еще 20 лет. В результате весы выровнялись и мы получили равенство

Но можно было не добавлять к правой чаше эти 20 лет, а вычесть их из левой. Мы получили бы равенство и в таком случае

В этот раз получается уравнение . Корень уравнения по прежнему равен 20

То есть, уравнения и являются равносильными. А мы помним, что у равносильных уравнений корни совпадают. Если внимательно посмотреть на эти два уравнения, то можно увидеть что второе уравнение получено путем переноса числа 20 из правой части в левую с противоположным знаком. А это действие, как было указано в предыдущем уроке, не меняет корней уравнения.

Также нужно обратить внимание на то, что в начале решения задачи возрасты каждого члена семьи можно было обозначить через другие выражения.

Скажем возраст сына обозначить через x и поскольку он двое старше дочери, то возраст дочери обозначить через (понимай сделать её младше сына в два раза). А возраст отца поскольку он является суммой возрастов сына и дочери обозначить через выражение . Ну и напоследок для построения логически правильного уравнения, к возрасту сына нужно прибавить число 20, ведь отец старше на двадцать лет. В итоге получается совсем другое уравнение . Решим это уравнение

Как видно ответы к задаче не поменялись. Сыну по прежнему 40 лет. Дочери по прежнему лет, а отцу 40 + 20 лет.

Другими словами, задача может решаться различными методами. Поэтому не следует отчаиваться, что не получается решить ту или иную задачу. Но нужно иметь ввиду, что существует наиболее простые пути решения задачи. К центру города можно доехать различными маршрутами, но всегда существует наиболее удобный, быстрый и безопасный маршрут.

Примеры решения задач

Задача 1. В двух пачках всего 30 тетрадей. Если бы из первой пачки переложили во вторую 2 тетради, то в первой пачке стало бы вдвое больше тетрадей, чем во второй. Сколько тетрадей было в каждой пачке?

Решение

Обозначим через x количество тетрадей, которое было в первой пачке. Если всего тетрадей было 30, а переменная x это количество тетрадей из первой пачке, то количество тетрадей во второй пачке будет обозначаться через выражение 30 − x . То есть, от общего количества тетрадей вычитаем количество тетрадей из первой пачки и тем самым получаем количество тетрадей из второй пачки.

и добавим эти две тетради во вторую пачку

Попробуем составить уравнение из имеющихся выражений. Положим на весы обе пачки тетрадей

Левая чаша тяжелее правой. Это потому, что в условии задачи сказано, что после того как из первой пачки взяли две тетради и положили их во вторую, количество тетрадей в первой пачке стало вдвое больше, чем во второй.

Чтобы выровнять весы и получить уравнение, увеличим правую часть вдвое. Для этого умножим её на 2

Получается уравнение . Решим данное уравнение:

Первую пачку мы обозначали через переменную x . Теперь мы нашли её значение. Переменная x равна 22. Значит в первой пачке было 22 тетради.

А вторую пачку мы обозначали через выражение 30 − x и поскольку значение переменой x теперь известно, то можно вычислить количество тетрадей во второй пачке. Оно равно 30 − 22 , то есть 8 шт .

Задача 2 . Два человека чистили картофель. Один очищал в минуту две картофелины, а второй — три картофелины. Вместе они очистили 400 шт. Сколько времени работал каждый, если второй проработал на 25 минут больше первого?

Решение

Обозначим через x время работы первого человека. Поскольку второй человек проработал на 25 минут больше первого, то его время будет обозначаться через выражение

Первый рабочий в минуту очищал 2 картофелины, и поскольку он работал x минут, то всего он очистил 2x картофелин.

Второй человек в минуту очищал три картофелины, и поскольку он работал минут, то всего он очистил картофелин.

Вместе они очистили 400 картофелин

Из имеющихся компонентов составим и решим уравнение. В левой части уравнения будут картофелины, очищенные каждым человеком, а в правой части их сумма:

В начале решения данной задачи через переменную x мы обозначили время работы первого человека. Теперь мы нашли значение этой переменной. Первый человек работал 65 минут.

А второй человек работал минут, и поскольку значение переменной x теперь известно, то можно вычислить время работы второго человека — оно равно 65 + 25 , то есть 90 мин .

Задача из Учебника по алгебре Андрея Петровича Киселева . Из сортов чая составлена смесь в 32 кг. Килограмм первого сорта стоит 8 руб., а второго сорта 6 руб. 50 коп. Сколько килограммов взято того и другого сорта, если килограмм смеси стоит (без прибыли и убытка) 7 руб. 10 коп.?

Решение

Обозначим через x массу чая первого сорта. Тогда масса чая второго сорта будет обозначаться через выражение 32 − x

Килограмм чая первого сорта стоит 8 руб. Если эти восемь рублей умножить на количество килограмм чая первого сорта, то можно будет узнать во сколько рублей обошлись x кг чая первого сорта.

А килограмм чая второго сорта стоит 6 руб. 50 коп. Если эти 6 руб. 50 коп. умножить на 32 − x , то можно узнать во сколько рублей обошлись 32 − x кг чая второго сорта.

В условии сказано, что килограмм смеси стоит 7 руб. 10 коп. Всего же было приготовлено 32 кг смеси. Умножим 7 руб. 10 коп. на 32 мы сможем узнать сколько стоит 32 кг смеси.

Выражения из которых мы будем составлять уравнение теперь принимают следующий вид:

Попробуем составить уравнение из имеющихся выражений. Положим на левую чашу весов стоимость смесей чая первого и второго сорта, а на правую чашу положим стоимость 32 кг смеси, то есть общую стоимость смеси, в составе которой оба сорта чая:

В начале решения данной задачи через переменную x мы обозначили массу чая первого сорта. Теперь мы нашли значение этой переменной. Переменная x равна 12,8. Значит для приготовления смеси было взято 12,8 кг чая первого сорта.

А через выражение 32 − x мы обозначили массу чая второго сорта и поскольку значение переменой x теперь известно, то можно вычислить массу чая второго сорта. Оно равно 32 − 12,8 то есть 19,2 . Значит для приготовления смеси было взято 19,2 кг чая второго сорта.

Задача 3 . Велосипедист проехал некоторое расстояние со скоростью 8 км/ч. Возвратиться он должен был другой дорогой, которая была на 3 км длиннее первой, и, хотя возвращаясь, ехал со скоростью 9 км/ч, он употребил времени на минут более. Как длинны были дороги?

Решение

Некоторые задачи могут затрагивать темы, которые человек возможно не изучал. Данная задача относится к такому кругу задач. В ней затрагиваются понятия расстояния, скорости и времени. Соответственно, чтобы решить подобную задачу, нужно иметь представление о тех вещах, о которых говорится в задаче. В нашем случае, надо знать что представляет собой расстояние, скорость и время.

В задаче нужно найти расстояния двух дорог. Мы должны составить уравнение, которое позволит вычислить эти расстояния.

Вспомним, как взаимосвязаны расстояние, скорость и время. Каждая из этих величин может быть описана с помощью буквенного уравнения:

Правую часть одного из этих уравнений мы будем использовать для составления своего уравнения. Чтобы узнать какую именно, нужно вернуться к тексту задачи и поискать за что можно зацепиться

Зацепиться можно за момент, где велосипедист на обратном пути употребил времени на минут более. Эта подсказка указывает нам, что можно воспользоваться уравнением , а именно его правой частью. Это позволит нам составить уравнение, которое содержит переменную S .

Итак, обозначим длину первой дороги через S . Этот путь велосипедист проехал со скоростью 8 км/ч . Время за которое он преодолел этот путь будет обозначаться выражением , поскольку время это отношение пройденного расстояния к скорости

Обратная дорога для велосипедиста была длиннее на 3 км . Поэтому её расстояние будет обозначаться через выражение S + 3 . Эту дорогу велосипедист проехал со скоростью 9 км/ч . А значит время за которое он преодолел этот путь будет обозначаться выражением .

Теперь составим уравнение из имеющихся выражений

Правая чаша тяжелее левой. Это потому, что в задаче сказано, что на обратную дорогу велосипедист затратил времени на больше.

Чтобы уравнять весы прибавим к левой части эти самые минут. Но сначала переведем минуты в часы, поскольку в задаче скорость измеряется в километрах в час, а не в метрах в минуту.

Чтобы минут перевести в часы, нужно разделить их на 60

Минут составляют часа. Прибавляем эти часа к левой части уравнения:

Получается уравнение . Решим данное уравнение. Чтобы избавиться от дробей, обе части части можно умножить на 72. Далее пользуясь известными тождественными преобразованиями, найдем значение переменной S

Через переменную S мы обозначали расстояние первой дороги. Теперь мы нашли значение этой переменной. Переменная S равна 15. Значит расстояние первой дороги составляет 15 км.

А расстояние второй дороги мы обозначили через выражение S + 3 , и поскольку значение переменной S теперь известно, то можно вычислить расстояние второй дороги. Это расстояние равно сумме 15 + 3 , то есть 18 км .

Задача 4 . По шоссе идут две машины с одной и той же скоростью. Если первая увеличит скорость на 10 км/ч, а вторая уменьшит скорость на 10 км/ч, то первая за 2 ч пройдет столько же, сколько вторая за 3 ч. С какой скоростью идут автомашины?

Решение

Обозначим через v скорость каждой машины. Далее в задаче приводятся подсказки: скорость первой машины увеличить на 10 км/ч, а скорость второй — уменьшить на 10 км/ч. Воспользуемся этой подсказкой

Далее говорится, что при таких скоростях (увеличенных и уменьшенных на 10 км/ч) первая машина пройдет за 2 часа столько же расстояния сколько вторая за 3 часа. Фразу «столько же» можно понимать как «расстояние, пройденное первой машиной, будет равно расстоянию, пройденному второй машиной» .

Расстояние как мы помним, определяется по формуле . Нас интересует правая часть этого буквенного уравнения — она позволит нам составить уравнение, содержащее переменную v .

Итак, при скорости v + 10 км/ч первая машина пройдет 2(v+10) км , а вторая пройдет 3(v − 10) км . При таком условии машины пройдут одинаковые расстояния, поэтому для получения уравнения достаточно соединить эта два выражения знаком равенства. Тогда получим уравнение . Решим его:

В условии задачи было сказано, что машины идут с одинаковой скоростью. Мы обозначили эту скорость через переменную v . Теперь мы нашли значение этой переменной. Переменная v равна 50. Значит скорость обеих машин составляла 50 км/ч.

Задача 5 . За 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Найдите собственную скорость теплохода, если скорость течения реки 2 км/ч.

Решение

Обозначим через v собственную скорость теплохода. Скорость течения реки равна 2 км/ч. По течению реки скорость теплохода будет составлять v + 2 км/ч , а против течения — (v − 2) км/ч .

В условии задачи сказано, что за 9 ч по течению реки теплоход проходит тот же путь, что за 11 ч против течения. Фразу «тот же путь» можно понимать как «расстояние, пройденное теплоходом по течению реки за 9 часов, равно расстоянию, пройденному теплоходом против течения реки за 11 часов» . То есть, расстояния будут одинаковыми.

Расстояние определяется по формуле . Воспользуемся правой частью этого буквенного уравнения для составления своего уравнения.

Итак, за 9 часов по течению реки теплоход пройдет 9(v + 2) км , а за 11 часов против течения — 11(v − 2) км . Поскольку оба выражения описывают одно и то же расстояние, приравняем первое выражение ко второму. В результате получим уравнение . Решим его:

Значит собственная скорость теплохода составляет 20 км/ч.

При решении задач полезной привычкой является заранее определить на каком ищется для неё решение.

Допустим, что в задаче требовалось найти время, за которое пешеход преодолеет указанный путь. Мы обозначили время через переменную t , далее составили уравнение, содержащее эту переменную и нашли её значение.

Из практики мы знаем, что время движения объекта может принимать как целые значения, так и дробные, например 2 ч, 1,5 ч, 0,5 ч. Тогда можно сказать, что решение данной задачи ищется на множестве рациональных чисел Q , поскольку каждое из значений 2 ч, 1,5 ч, 0,5 ч может быть представлено в виде дроби.

Поэтому после того, как неизвестную величину обозначили через переменную, полезно указать к какому множеству эта величина принадлежит. В нашем примере время t принадлежит множеству рациональных чисел Q

t Q

Ещё можно ввести ограничение для переменной t , указав что она может принимать только положительные значения. Действительно, если объект затратил на путь определенное время, то это время не может быть отрицательным. Поэтому рядом с выражением t Q укажем, что её значение должно быть больше нуля:

t R , t > 0

Если решив уравнение, мы получим отрицательное значение для переменной t , то можно будет сделать вывод, что задача решена неправильно, поскольку это решение не будет удовлетворять условию t Q , t > 0 .

Ещё пример. Если бы мы решали задачу в которой требовалось найти количество человек для выполнения той или иной работы, то это количество мы обозначили бы через переменную x . В такой задаче решение искалось бы на множестве натуральных чисел

x N

Действительно, количество человек является целым числом, например 2 человека, 3 человека, 5 человек. Но никак не 1,5 (один целый человек и половина человека) или 2,3 (два целых человека и еще три десятых человека).

Здесь можно было бы указать, что количество человек должно быть больше нуля, но числа входящие во множество натуральных чисел N сами по себе являются положительными и большими нуля. В этом множестве нет отрицательных чисел и числа 0. Поэтому выражение x > 0 можно не писать.

Задача 6 . Для ремонта школы прибыла бригада в которой было в 2,5 раза больше маляров, чем плотников. Вскоре прораб включил в бригаду еще четырех маляров, а двух плотников перевел на другой объект. В результате маляров в бригаде оказалось в 4 раза больше чем плотников. Сколько маляров и сколько плотников было в бригаде первоначально

Решение

Обозначим через x плотников, прибывших на ремонт первоначально.

Количество плотников является целым числом, большим нуля. Поэтому укажем, что x принадлежит множество натуральных чисел

x N

Маляров было в 2,5 раза больше, чем плотников. Поэтому количество маляров будет обозначаться как 2,5x .

А количество маляров увеличим на 4

Теперь количество плотников и маляров будут обозначаться через следующие выражения:

Попробуем составить уравнение из имеющихся выражений:

Правая чаша больше, поскольку после включения в бригаду ещё четырёх маляров, и перемещения двух плотников на другой объект, количество маляров в бригаде оказалось в 4 раза больше чем плотников. Чтобы уравнять весы, нужно левую чашу увеличить в 4 раза:

Получили уравнение . Решим его:

Через переменную x было обозначено первоначальное количество плотников. Теперь мы нашли значение этой переменной. Переменная x равна 8. Значит 8 плотников было в бригаде первоначально.

А количество маляров было обозначено через выражение 2,5 x и поскольку значение переменной x теперь известно, то можно вычислить количество маляров — оно равно 2,5 × 8 , то есть 20 .

Возвращаемся к началу задачи и удостоверяемся, что соблюдается условие x N. Переменная x равна 8, а элементы множества натуральных чисел N это все числа, начинающиеся с 1, 2, 3 и так далее до бесконечности. В это же множество входит число 8, которое мы нашли.

8 N

Тоже самое можно сказать о количестве маляров. Число 20 принадлежит множеству натуральных чисел:

20 N

Для понимания сути задачи и правильного составления уравнения, вовсе необязательно использовать модель весов с чашами. Можно использовать и другие модели: отрезки, таблицы, схемы. Можно придумать свою модель, которая хорошо описывала бы суть задачи.

Задача 9 . Из бидона отлили 30% молока. В результате в нем осталось 14 л. Сколько литров молока было в бидоне первоначально?

Решение

Искомое значение это первоначальное число литров в бидоне. Изобразим число литров в виде линии и подпишем эту линию как X

Сказано, что из бидона отлили 30% молока. Выделим на рисунке приблизительно 30%

Процент по определению есть одна сотая часть чего-то. Если 30% молока отлили, то остальные 70% остались в бидоне. На эти 70% приходятся 14 литров, указанные в задаче. Выделим на рисунке оставшиеся 70%

Теперь можно составить уравнение. Вспомним, как находить процент от числа. Для этого общее количество чего-то делят на 100 и полученный результат умножают на искомое количество процентов. Замечаем, что 14 литров, составляющих 70% можно получить таким же образом: первоначальное число литров X разделить на 100 и полученный результат умножить на 70. Всё это приравнять к числу 14

Или получить более простое уравнение: 70% записать как 0,70, затем умножить на X и приравнять это выражение к 14

Значит первоначально в бидоне было 20 литров молока.

Задача 9 . Взяли два сплава золота и серебра. В одном количество этих металлов находится в отношении 1: 9, а в другом 2: 3. Сколько нужно взять каждого сплава, чтобы получить 15 кг нового сплава, в котором золото и серебро относилось бы как 1: 4?

Решение

Попробуем сначала узнать сколько золота и серебра будет содержаться в 15 кг нового сплава. В задаче сказано, что содержание этих металлов должно быть в отношении 1: 4, то есть на одну часть сплава должно приходиться золото, а на четыре части — серебро. Тогда всего частей в сплаве будет 1 + 4 = 5, а масса одной части будет 15: 5 = 3 кг.

Определим сколько золота будет содержаться в 15 кг сплава. Для этого 3 кг умножим на количество частей золота:

3 кг × 1 = 3 кг

Определим сколько серебра будет содержаться в 15 кг сплава:

3 кг × 4 = 12 кг

Значит сплав массой 15 кг будет содержать 3 кг золота и 12 кг серебра. Теперь вернёмся к исходным сплавам. Использовать нужно каждый из них. Обозначим через x массу первого сплава, а массу второго сплава можно обозначить через 15 − x

Выразим в процентах все отношения, которые даны в задаче и заполним ими следующую таблицу:

В первом сплаве золото и серебро находятся в отношении 1: 9. Тогда всего частей будет 1 + 9 = 10 . Из них золота будет , а серебра .

Перенесём эти данные в таблицу. 10% занесём в первую строку в графу «процент золота в сплаве» , 90% также занесём в первую строку графу «процент серебра в сплаве» , а в последнюю графу «масса сплава» занесём переменную x , поскольку так мы обозначили массу первого сплава:

Аналогично поступаем со вторым сплавом. Золото и серебро в нём находятся в отношении 2: 3. Тогда всего частей будет 2 + 3 = 5. Из них золота будет , а серебра .

Перенесём эти данные в таблицу. 40% занесем во вторую строку в графу «процент золота в сплаве» , 60% также занесём во вторую строку графу «процент серебра в сплаве» , а в последнюю графу «масса сплава» занесём выражение 15 − x , поскольку так мы обозначили массу второго сплава:

Заполним последнюю строку. Полученный сплав массой 15 кг будет содержать 3 кг золота, что составляет сплава, а серебра будет сплава. В последнюю графу записываем массу полученного сплава 15

Теперь по данной таблице можно составить уравнения. Вспоминаем . Если мы отдельно сложим золото обоих сплавов и приравняем эту сумму к массе золота полученного сплава, то сможем узнать чему равно значение x .

В первом сплаве золота было 0,10x , а во втором сплаве золота было 0,40(15 − x ) . Тогда в полученном сплаве масса золота будет суммой масс золота первого и второго сплавов и эта масса составляет 20% от нового сплава. А 20% от нового сплава это 3 кг золота, вычисленные нами ранее. В результате получаем уравнение 0,10x + 0.40(15 − x ) = 3 . Решим это уравнение:

Изначально через x мы обозначили массу первого сплава. Теперь мы нашли значение этой переменной. Переменная x равна 10. А массу второго сплава мы обозначили через 15 − x , и поскольку значение переменной x теперь известно, то можно вычислить массу второго сплава, она равна 15 − 10 = 5 кг .

Значит для получения нового сплава массой 15 кг в котором золото и серебро относились бы как 1: 4, нужно взять 10 кг первого и 5 кг второго сплава.

Уравнение можно было составить, воспользовавшись и вторым столбцом получившейся таблицы. Тогда мы получили бы уравнение 0,90x + 0.60(15 − x ) = 12. Корень этого уравнения тоже равен 10

Задача 10 . Имеется руда из двух пластов с содержанием меди в 6% и 11%. Сколько надо взять бедной руды, чтобы получить при смешивании с богатой 20 тонн с содержанием меди 8%?

Решение

Обозначим через x массу бедной руды. Поскольку нужно получить 20 тонн руды, то богатой руды будет взято 20 − x . Поскольку содержание меди в бедной руде составляет 6%, то в x тоннах руды будет содержаться 0,06x тонн меди. В богатой руде содержание меди составляет 11%, а в 20 − x тоннах богатой руды будет содержаться 0,11(20 − x ) тонн меди.

В получившихся 20 тоннах руды содержание меди должно составлять 8%. Значит в 20 тоннах руды меди будет содержаться 20 × 0,08 = 1,6 тонн.

Сложим выражения 0,06x и 0,11(20 − x ) и приравняем эту сумму к 1,6. Получим уравнение 0,06x + 0,11(20 − x ) = 1,6

Решим данное уравнение:

Значит для получения 20 тонн руды с содержанием меди 8%, нужно взять 12 тонн бедной руды. Богатой же будет взято 20 − 12 = 8 тонн.

Задача 11 . Увеличив среднюю скорость с 250 до 300 м/мин спортсменка стала пробегать дистанцию на 1 мин быстрее. Какова длина дистанции?

Решение

Длину дистанции (или расстояние дистанции) можно описать следующим буквенным уравнением:

Воспользуемся правой частью этого уравнения для составления своего уравнения. Изначально спортсменка пробегала дистанцию со скоростью 250 метров в минуту. При такой скорости длина дистанции будет описываться выражением 250t

Затем спортсменка увеличила свою скорость до 300 метров в минуту. При такой скорости длина дистанции будет описываться выражением 300t

Заметим, что длина дистанции это величина постоянная. От того, что спортсменка увеличит скорость или уменьшит её, длина дистанции останется неизменной.

Это позволяет нам приравнять выражение 250t к выражению 300t , поскольку оба выражения описывают длину одной и той же дистанции

250t = 300t

Но в задаче сказано, что при скорости 300 метров в минуту спортсменка стала пробегать дистанцию на 1 минуту быстрее. Другими словами, при скорости 300 метров в минуту, время движения уменьшится на единицу. Поэтому в уравнении 250t = 300t в правой части время нужно уменьшить на единицу:

При скорости 250 метров в минуту спортсменка пробегает дистанцию за 6 минут. Зная скорость и время, можно определить длину дистанции:

S = 250 × 6 = 1500 м

А при скорости 300 метров в минуту спортсменка пробегает дистанцию за t − 1 , то есть за 5 минут. Как было сказано ранее длина дистанции не меняется:

S = 300 × 5 = 1500 м

Задача 12 . Всадник догоняет пешехода, находящегося впереди него на 15 км. Через сколько часов всадник догонит пешехода, если каждый час первый проезжает по 10 км, а второй проходит только по 4 км?

Решение

Данная задача является . Её можно решить, определив скорость сближения и разделив изначальное расстояние между всадником и пешеходом на эту скорость.

Скорость сближения определяется вычитанием меньшей скорости из большей:

10 км/ч − 4 км/ч = 6 км/ч (скорость сближения)

С каждым часом расстояние в 15 километров будут сокращаться на 6 км. Чтобы узнать, когда оно сократится полностью (когда всадник догонит пешехода), нужно 15 разделить на 6

15: 6 = 2,5 ч

2,5 ч это два целых часа и половина часа. А половина часа это 30 минут. Значит всадник догонит пешехода через 2 часа 30 минут.

Решим эту задачу с помощью уравнения.

После этого вслед за ним в путь вышел всадник со скоростью 10 км/ч. А скорость пешехода составляет только 4 км/ч. Это значит, что всадник через некоторое время догонит пешехода. Это время нам нужно найти.

Когда всадник догонит пешехода это будет означать, что они вместе прошли одинаковое расстояние. Расстояние, пройденное всадником и пешеходом описывается следующим уравнением:

Воспользуемся правой частью этого уравнения для составления своего уравнения.

Расстояние, пройденное всадником, будет описываться выражением 10t . Поскольку пешеход вышел в путь раньше всадника и успел преодолеть 15 км, то расстояние пройденное им будет описываться выражением 4t + 15 .

На момент, когда всадник догонит пешехода, оба они пройдут одинаковое расстояние. Это позволяет нам приравнять расстояния, пройденные всадником и пешеходом:

Получилось простейшее уравнение. Решим его:

Задачи для самостоятельного решения

Задача 1. Из одного города в другой пассажирский поезд приезжает на 45 мин быстрее товарного. Вычисли расстояние между городами, если скорость пассажирского поезда 48 км/ч, а товарного 36 км/ч.

Решение

Скорости поездов в данной задаче измеряются в километрах в час. Поэтому 45 мин, указанные в задаче, переведем в часы. 45 мин это 0,75 ч

Обозначим время, за которое товарный поезд приезжает в город, через переменную t . Поскольку пассажирский поезд приезжает в этот город на 0,75 ч быстрее, то время его движения будет обозначаться через выражение t − 0,75

Пассажирский поезд преодолел 48(t − 0.75) км, а товарный 36t км. Поскольку речь идет об одном и том же расстоянии, приравняем первое выражение ко второму. В результате получим уравнение 48(t − 0.75) = 36t . Решим его:

Теперь вычислим расстояние между городами. Для этого скорость товарного поезда (36 км/ч) умножим на время его движения t. Значение переменной t теперь известно — оно равно трём часам

36 × 3 = 108 км

Для вычисления расстояния можно воспользоваться и скоростью пассажирского поезда. Но в этом случае значение переменной

Значение переменной t равно 1,2. Значит автомобили встретились через 1,2 часа.

Ответ: автомобили встретились через 1,2 часа.

Задача 3. В трех цехах завода всего 685 рабочих. Во втором цехе рабочих в три раза больше, чем в первом, а в третьем — на 15 рабочих меньше, чем во втором цехе. Сколько рабочих в каждом цехе?

Решение

Пусть x рабочих было в первом цехе. Во втором цехе было в три раза больше, чем в первом, поэтому количество рабочих во втором цехе можно обозначить через выражение 3x . В третьем цехе было на 15 рабочих меньше, чем во втором. Поэтому количество рабочих в третьем цехе можно обозначить через выражение 3x − 15 .

В задаче сказано, что всего рабочих было 685. Поэтому можно сложить выражения x , 3x , 3x − 15 и приравнять эту сумму к числу 685. В результате получим уравнение x + 3x + (3x − 15) = 685

Через переменную x было обозначено количество рабочих в первом цехе. Теперь мы нашли значение этой переменной, оно равно 100. Значит в первом цехе было 100 рабочих.

Во втором цехе было 3x рабочих, то есть 3 × 100 = 300 . А в третьем цехе было 3x − 15 , то есть 3 × 100 − 15 = 285

Ответ: в первом цехе было 100 рабочих, во втором — 300, в третьем — 285.

Задача 4. Две ремонтные мастерские в течение недели должны отремонтировать по плану 18 моторов. Первая мастерская выполнила план на 120%, а вторая — на 125%, поэтому в течение недели отремонтировали 22 мотора. Какой план по ремонту моторов на неделю имела каждая мастерская?

Решение

Пусть x моторов должна была отремонтировать первая мастерская. Тогда вторая мастерская должна была отремонтировать 18 − x моторов .

Поскольку первая мастерская выполнила свой план на 120%, это означает что она отремонтировала 1,2x моторов. А вторая мастерская выполнила свой план на 125%, значит она отремонтировала 1,25(18 − x ) моторов.

В задаче сказано, что было отремонтировано 22 мотора. Поэтому можно сложить выражения 1,2x и 1,25(18 − x ) , затем приравнять эту сумму к числу 22. В результате получим уравнение 1,2x + 1,25(18 − x ) = 22

Через переменную x было обозначено количество моторов, которые должна была отремонтировать первая мастерская. Теперь мы нашли значение этой переменной, она равна 10. Значит первая мастерская должны была отремонтировать 10 моторов.

А через выражение 18 − x было обозначено количество моторов, которые должна была отремонтировать вторая мастерская. Значит вторая мастерская должна была отремонтировать 18 − 10 = 8 моторов.

Ответ: первая мастерская должна была отремонтировать 10 моторов, а вторая — 8 моторов.

Задача 5. Цена товара повысилась на 30% и составляет теперь 91 руб. Сколько стоил товар до повышения цены?

Решение

Пусть x рублей стоил товар до повышения цены. Если цена увеличилась на 30% это означает, что она увеличилась на 0,30x рублей. После повышения цены товар начал стоить 91 руб. Сложим x с 0,30x и приравняем эту сумму к 91. В результате получим уравнение При уменьшении числа на 10% получилось 45. Найти первоначальное значение числа. x −

Ответ: чтобы получить 12%-й раствор соли, нужно к 1 кг 10%-го раствора добавить 0,25 кг 20%-го раствора.

Задача 12. Даны два раствора соли в воде, концентрации которых равны 20% и 30%. Сколько килограммов каждого раствора нужно смешать в одном сосуде, чтобы получить 25 кг 25,2%-го раствора?

Решение

Пусть x кг первого раствора нужно взять. Поскольку требуется приготовить 25 кг раствора, то массу второго раствора можно обозначить через выражение 25 − x.

В первом растворе будет содержаться 0,20x кг соли, а втором — 0,30(25 − x) кг соли. В полученном растворе содержание соли будет 25 × 0,252 = 6,3 кг. Сложим выражения 0,20x и 0,30(25 − x), затем приравняем эту сумму к 6,3. В результате получим уравнение

Значит первого раствора нужно взять 12 кг, а второго 25 − 12 = 13 кг.

Ответ: первого раствора нужно взять 12 кг, а второго 13 кг.

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках