Как держать форму. Массаж. Здоровье. Уход за волосами

Подземные магистральные газопроводы. Аварии на магистральных трубопроводах и способы их ликвидации

Сколько стоит написать твою работу?

Выберите тип работы Дипломная работа (бакалавр/специалист) Часть дипломной работы Магистерский диплом Курсовая с практикой Курсовая теория Реферат Эссе Контрольная работа Задачи Аттестационная работа (ВАР/ВКР) Бизнес-план Вопросы к экзамену Диплом МВА Дипломная работа (колледж/техникум) Другое Кейсы Лабораторная работа, РГР Он-лайн помощь Отчет о практике Поиск информации Презентация в PowerPoint Реферат для аспирантуры Сопроводительные материалы к диплому Статья Тест Чертежи далее »

Спасибо, вам отправлено письмо. Проверьте почту .

Хотите промокод на скидку 15% ?

Получить смс
с промокодом

Успешно!

?Сообщите промокод во время разговора с менеджером.
Промокод можно применить один раз при первом заказе.
Тип работы промокода - "дипломная работа ".

Аварии на трубопроводах

Федеральное агентство по образованию

Саратовский государственный

социально-экономический университет

кафедра безопасности жизнедеятельности




«Аварии на трубопроводах».


Студентки первого курса УЭФ

Григорьевой Тамары Павловны

Руководитель: доцент кафедры

Баязитов Вадим Губайдуллович


Саратов,2007.


Введение.

1. Общие сведения о состоянии системы трубопроводов в РФ на 2008 год;

2.Аварии на нефтепроводах;

3.Аварии на газопроводе;

4.Аварии на водопроводе;

5.Последствия аварий на трубопроводах;

6.Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах;

Заключение.

Список используемой литературы.

Введение:


По протяженности подземных трубопроводов для транспортировки нефти, газа, воды и сточных вод Россия занимает второе место в мире после США. Однако нет другой страны, где эти трубопроводные магистрали были бы так изношены. По оценкам специалистов МЧС России, аварийность на трубопроводах с каждым годом возрастает и в ХХI век эти системы жизнеобеспечения вошли изношенными на 50-70%. Утечки из трубопроводов приносят стране огромный экономический и экологический ущерб. Особенно большое количество аварий происходит в городах в результате утечек воды из изношенных коммуникаций – канализационных, тепловых и водопроводных сетей. Из разрушенных трубопроводов вода просачивается в грунт, повышается уровень грунтовых вод, возникают провалы и просадки грунта, что ведет к затоплению фундаментов, и в конечном счете грозит обрушением зданий. Зарубежный опыт показывает, что эту проблему можно решить, если вместо стальных трубопроводов применять трубы из пластмассы, а прокладку новых и ремонт изношенных осуществлять не открытым, а бестраншейным способом. Преимущества ремонта трубопроводов бестраншейным методом очевидны: затраты на ремонт снижаются в 6-8 раз, а производительность работ возрастает в десятки раз.

Наблюдается процесс постепенного перехода от традиционных строительных материалов к новым. В частности, при прокладке и реконструкции трубопроводов все чаще применяются полимерные трубы. По сравнению со стальными или чугунными они имеют ряд неоспоримых преимуществ: легкость транспортировки и монтажа, высокая коррозионная стойкость, большой срок эксплуатации, невысокая стоимость, гладкость внутренней поверхности. В таких трубах не ухудшается качество перекачиваемой воды, так как за счет гидрофобности поверхности в них не образуется различные отложения, как это происходит в стальных и чугунных трубопроводах. Пластмассовые трубы не требуют никакой гидроизоляции, в том числе и катодной защиты, они обеспечивают постоянную транспортировку воды, нефти и газа без больших затрат на техническое их обслуживание.

Опыт реконструкции и строительства подземных коммуникаций в Челябинске свидетельствует о том, что применение передовых бестраншейных технологий позволяет значительно удешевить и упростить такие работы. Особенно это актуально для центральных районов города, где работы по перекладке трубопроводов традиционным траншейным способом связаны со значительными трудностями: для проведения этих работ часто необходимо закрытие проездов, изменение маршрутов движения городского транспорта. Требуются многочисленные согласования с различными организациями. С внедрением новейших технологий появилась возможность осуществлять прокладку трубопроводов и инженерных коммуникаций без вскрытия поверхности и участия большого количества людей и тяжелой строительной техники. Таким образом, не нарушается движение городского транспорта, исключаются работы по устройству обходов, переходных мостиков, что особенно важно для города с плотной застройкой и высоким уровнем движения транспорта. Благодаря отсутствию неудобств и нецелесообразных затрат (по сравнению со строительством в траншеях трудозатраты снижаются примерно в 4 раза), применение данных технологий весьма эффективно. Во многих случаях применение современных технологий позволяет отказаться от строительства новых коммуникаций и путем реконструкции полностью восстановить и улучшить их технические характеристики.

Применение новейших технологий в подземном строительстве призвано решить главную задачу – повысить качество сооружаемых подземных объектов и обеспечить безопасность их эксплуатации. Правительство города уделяет самое пристальное внимание этому вопросу. К работам допускаются только специализированные организации, имеющие соответствующую лицензию. На всех стадиях строительства осуществляется многосторонний мониторинг, что обеспечивает получение данных о ходе выполнения проекта и изменениях в окружающей среде, производится постоянный контроль за изменением уровня грунтовых вод, осадками фундаментов близлежащих зданий, деформацией грунтового массива.

Общие сведения о состоянии системы трубопроводов в РФ на 2008


В предаварийном состоянии находятся промысловые трубопроводные системы большинства нефтедобывающих предприятий России. Всего на территории Российской Федерации находится в эксплуатации 350 тыс. км внутрипромысловых трубопроводов, на которых ежегодно отмечается свыше 50 тыс. инцидентов, приводящих к опасным последствиям. Основными причинами высокой аварийности при эксплуатации трубопроводов является сокращение ремонтных мощностей, низкие темпы работ по замене отработавших срок трубопроводов на трубопроводы с антикоррозионными покрытиями, а также прогрессирующее старение действующих сетей. Только на месторождениях Западной Сибири эксплуатируется свыше 100 тыс. км промысловых трубопроводов, из которых 30% имеют 30-летний срок службы, однако в год заменяется не более 2% трубопроводов. В результате ежегодно происходит до 35–40 тыс. инцидентов, сопровождающихся выбросами нефти, в том числе в водоемы, причем их число ежегодно увеличивается, а значительная часть инцидентов преднамеренно скрывается от учета и расследования.

Аварийность на объектах магистрального трубопроводного транспорта уменьшилась на 9%. Действующая на территории Российской Федерации система магистральных нефтепроводов, газопроводов, нефтепродуктопроводов и конденсатопроводов не отвечает современным требованиям безопасности.

В процессе реформирования экономики и в результате изменений на рынках нефти происходит постоянное снижение объемов финансирования нового строительства, капитального ремонта, реконструкции, модернизации, технического обслуживания и текущего ремонта физически изношенных и морально устаревших объектов магистральных трубопроводов. Крайне недостаточно финансируются разработки нового оборудования, приборов и технологий дефектоскопии трубопроводов и оборудования, а также разработка новых нормативных документов и пересмотр устаревших.

Отсутствует законодательная база государственного регулирования безопасности функционирования магистральных трубопроводов, в связи с чем назрела необходимость принятия федерального закона о магистральных трубопроводах. Разработка этого закона, начавшаяся в 1997 г., до сих пор не завершена.

В Российской Федерации общая протяженность подземных нефте-, водо- и газопроводов составляет около 17 миллионов километров, при этом из-за постоянных интенсивных волновых (колебаний давления, гидроударов) и вибрационных процессов, участки этих коммуникаций приходится постоянно ремонтировать и полностью заменять. Весьма актуальны вопросы защиты от коррозии для нефтяной, нефтегазодобывающей, перерабатывающей и транспортирующей отраслей, вследствие металлоемкости резервуаров хранения нефтепродуктов и прочих сооружений, наличие здесь агрессивных сред и жестких условий эксплуатации металлоконструкций. Убытки, вызываемые гидроударами и коррозией, составляли для Минтопэнерго бывшего СССР несколько сотен миллиардов долларов и около 50 тыс. т. черных металлов в год. При общей динамики аварийности, по оценкам экспертов, причинами разрыва трубопроводов являются:

60% случаев – гидроудары, перепады давления и вибрации

25% - коррозионные процессы

15% - природные явления и форс-мажорные обстоятельства.

В течение всего срока эксплуатации трубопроводы испытывают динамические нагрузки (пульсации давления и связанные с ними вибрации, гидроудары и т.д.). Они возникают при работе нагнетательных установок, срабатывании запорной трубопроводной арматуры, случайно возникают при ошибочных действиях обслуживающего персонала, аварийных отключениях электропитания, ложных срабатываниях технологических защит и т.п.

Техническое же состояние эксплуатируемых по 20-30 лет трубопроводных систем оставляет желать лучшего. Замена изношенного оборудования и трубопроводой арматуры в последние 10 лет ведется крайне низкими темпами. Именно поэтому наблюдается устойчивая тенденция увеличения аварийности на трубопроводном транспорте на 7-9% в год, о чем свидетельствуют ежегодные Государственные доклады «О состоянии окружающей природной среды и промышленной опасности Российской Федерации».

Участились аварии на трубопроводах, сопровождающиеся большими потерями природных ресурсов и широкомасштабным загрязнением окружающей среды. По официальным данным только потери нефти из-за аварий на магистральных нефтепроводах превышают 1 млн тонн в год и это без учета потерь при прорывах внутрипромысловых трубопроводов.

Вот лишь несколько примеров аварий на нефтепроводах за 2006г.:

В результате крупной аварии на магистральном нефтепроводе "Дружба" на территории Суражского района Брянской области на границе с Белоруссией нефтью загрязнены рельеф местности, водные объекты и земли государственного лесного фонда. Заместитель главы Росприроднадзора отметил, что на участке нефтепровода "Дружба", где произошла авария, с весны 2006 года было обнаружено 487 опасных дефектов. Причиной аварии на нефтепроводе послужила коррозия труб.

Крупная авария произошла на 326 км магистрального нефтепровода Узень - Атырау - Самара на юго-западе Казахстана. Как сообщает ИТАР-ТАСС, на месте происшествия начаты аварийно-восстановительные работы. Между тем пока ничего неизвестно о масштабах и причине аварии, площади загрязнения нефтью и объеме рекультивационных работ. За последнюю неделю это уже второе крупное происшествие на нефтепроводах Казахстана. 29 января в результате разрыва металла из-за гидроудара на 156 км магистрального трубопровода Каламкас - Каражанбас - Актау на землю вылилось около 200 тонн нефти.

Поэтому полное устранение или существенное уменьшение интенсивности волновых и вибрационных процессов в трубопроводных системах позволяет не только в несколько раз уменьшить количество аварий с разрывами трубопроводов и выходом из строя трубопроводной арматуры и оборудования, повысить надежность их работы, но также значительно увеличить срок их эксплуатации.

В настоящее время для борьбы с пульсациями и колебаниями давления и расхода в трубопроводных системах используют воздушные колпаки, аккумуляторы давления, гасители различных типов, ресиверы, дроссельные шайбы, клапаны сброса и т.п. Они морально устарели, не соответствуют современному развитию науки и техники, малоэффективны, особенно в случае гидроударов и динамики переходных процессов, не отвечают требованиям экологической безопасности, о чем свидетельствует статистика аварийности. На данный момент в России существуют новые технологии, противоаварийной защиты трубопроводов, которые позволяют гасить все внутрисистемные возмущения: гидроудары, колебания давления и вибрации. Принципиально новым высокоэффективным энергонезависимым техническим средством гашения колебаний давления, вибрации и гидроударов - являются стабилизаторы давления (СД).

При этом неизбежно происходят потери нефти, среднестатистический уровень которых оценивается в 0,15-0,2 т/сут. на один порыв. Кроме того, в окружающую среду попадают высокоагрессивные смеси, нанося ей значительный ущерб.

Согласно Государственному докладу «О состоянии промышленной безопасности опасных производственных объектов, рационального использования и охраны недр РФ в 2006 г.» основными причинами аварий на магистральных трубопроводах в течение 2001 –2006 гг. стали:

внешние воздействия – 34,3 %, (их общего количества),

брак при строительстве – 23,2 %,

наружная коррозия – 22,5 %,

брак при изготовлении труб и оборудования на заводах – 14,1 %,

ошибочные действия персонала – 3 %.

Основная причина аварий на внутрипромысловых трубопроводах – разрывы труб, вызванные внутренней коррозией. Износ внутрипромысловых трубопроводов достигает 80%, поэтому частота их разрывов на два порядка выше, чем на магистральных, и составляет 1,5 – 2,0 разрыва на 1 км. Так, на территории Нижневартовского района Ханты-Мансийского АО с начала эксплуатации месторождений построено 21 093 км внутрипромысловых и магистральных нефтегазопроводов, большая часть из которых уже пришла в аварийное состояние, но продолжает эксплуатироваться.

Доминирующей причиной аварий на действующих газопроводах России является коррозия под напряжением. За период с 1991 г. по 2001 г. из общего числа аварий по причине стресс-коррозии было 22,5%. В 2000 г. на ее долю приходится уже 37,4% от всех аварий. К тому же расширяется география проявления коррозии под напряжением.

Основные фонды трубопроводного транспорта, как и вся техносфера стареют, магистрали деградируют с всевозрастающей скоростью. Неизбежно приближаются кризисные явления. Например, износ основных фондов газотранспортной системы ОАО «Газпром» составляет около 65%. Таким образом, продление срока безопасной службы трубопроводных систем является важнейшей задачей транспортников нефти и газа.

В настоящее время внутритрубное обследование проведено в отношении магистральных нефтепроводов, а также 65 тыс. км газопроводов из 153 тыс. км общей протяженности. При этом ремонтируется около 1,5% опасных дефектов от общего количества обнаруженных дефектов. По данным АК «Транснефть» плотность распределения дефектов коррозии составляет 14,6 деф./км. Скорость коррозии на значительной части – 0,2 – 0,5 мм/год, но имеет место и значительно большая скорость - от 0,8 до 1,16 мм/год.

Наиболее уязвимыми на сегодня являются магистральные газопроводы Северного коридора. Северный коридор представляет собой многониточную систему газопроводов, проложенных из районов северных месторождений (Уренгойское, Заполярное, Медвежье и др.) до границ Белоруссии с одной стороны и до границы с Финляндией – с другой. В том же коридоре проходит трасса строящегося магистрального газопровода Ямал – Европа. Общая протяженность действующих газопроводов Северного коридора в однониточном исчислении около 10 тыс. км. Суммарная производительность газопроводов в головной части составляет 150 млрд. м? газа в год. В районах прохождения газопровода Ухта – Торжок (1 – 4-я нитки) производительность газопровода составляет 80 млрд. м2 в год.

В последние годы выделяется высокая доля аварий именно этого участка магистральных трубопроводов по причине стресс-коррозии (71,0%). В 2003 г. 66,7% аварий также имели стресс-коррозионные характер. Возраст газопроводов, потерпевших стресс-коррозионные аварии, непрерывно растет. По коридорам Северного коридора за 2001 – 2003 гг. этот средний возраст составил 24,2 года, максимальный – 28 лет. Примерно 10 лет назад средний возраст газопроводов, потерпевших стресс-коррозионные аварии, составлял 13 – 15 лет.


2. Аварии на нефтепроводах


Аварии на трубопроводе происходят не только по техническим причинам: существует и ряд других, основным из которых является так называемый человеческий фактор. Огромное число катастроф происходит в результате халатности, как работников, так и начальства. Именно это и подчёркивается в ряде дальнейших примеров.

5 июня в Витебской области завершен ремонт более чем 40-километрового участка российского магистрального нефтепродуктопровода "Унеча - Вентспилс". Одновременно был официально объявлен виновник крупнейшей аварии на этой транспортной линии.

Как сообщили БелаПАН в дирекции российского унитарного предприятия "Запад-Транснефтепродукт" (Мозырь), нефтепродукты по трубопроводу "Унеча - Вентспилс" перекачиваются уже сорок лет. При проведении в 2005 году диагностики трубопровода специалисты обнаружили множество дефектов. Их виновником собственник нефтепровода считает предприятие-изготовителя - Челябинский металлургический завод (Россия), на базе которого сейчас действуют четыре предприятия. После двух аварий на нефтепроводе в Бешенковичском районе Витебской области (в марте и мае 2007 года) специалисты "Запад-Транснефтепродукта" провели повторное исследование магистрали и собственными силами приступили к замене потенциально опасных участков. Транспортировка дизельного топлива из России в Латвию через Беларусь была приостановлена на 60 часов. За это время пять белорусских ремонтных бригад "Запад-Транснефтепродукта" из Мозыря и Речицы (Гомельская область), Сенно и Дисны (Витебская область), Кричева (Могилевская область) заменили 14 фрагментов нефтепровода.

Виновником его порывов на территории Бешенковичского района прокуратура определила Челябинский металлургический завод, который изготовил дефектные трубы в 1963 году.

Напомним, 23 марта 2007 года в Бешенковичском районе Витебской области произошел порыв нефтепродуктопровода "Унеча - Вентспилс". В результате аварии дизельное топливо по мелиоративному каналу и реке Улла попало в Западную Двину и добралось до Латвии. "Запад-Транснефтепродукт" компенсировал Министерству по чрезвычайным ситуациям Беларуси убытки по устранению последствий аварии 23 марта. Министерство природных ресурсов и охраны окружающей среды Беларуси подсчитало ущерб, нанесенный экологии от первого разрыва нефтепровода. Предполагается, что до 15 июня сумма ущерба будет согласована с владельцем трубопровода и представлена общественности.

Второй прорыв трубы на нефтепродуктопроводе Унеча-Вентспилс произошел 5 мая. "Прорыв является локальным. Из нефтепровода вытекло небольшое количество нефтепродуктов", - сказал тогда БелаПАН министр по чрезвычайным ситуациям Беларуси Энвер Бариев.

Он заверил, что авария не принесет тяжелых последствий для окружающей среды. "В реки нефтепродукты не попадут", - сказал министр.

Симптоматично, что второй прорыв произошел возле деревни Бабоедово Бешенковичского района, вблизи того места, где в марте произошел первый крупный прорыв трубы.

Как говорится, где тонко, там и рвется.

27 февраля 2007 г. в Оренбургской области, в 22 км от г. Бугуруслан из внутрипромыслового трубопровода НГДУ "Бугурусланнефть" (подразделение входящего в "ТНК-ВР" ОАО "Оренбургнефть") произошла утечка нефти.

К счастью, или к несчастью, но разлив, объем которого по предварительным оценкам МЧС составил около 5 т, попал на лед реки Большая Кинель. К несчастью - труба прохудилась как раз в районе реки. К счастью - вроде бы нефть вылилась не прямо в воду, а на лед толщиной 40 см.

В Махачкале из-за порыва на нефтепроводе произошла утечка нефти. Утечка произошла в Ленинском районе города на участке нефтепровода диаметром 120 миллиметров.

В результате порыва нефтепровода вылилось около 250-300 литров нефти, пятно составляет около десяти квадратных метров. Для ликвидации аварии перекрыли поступление нефти на данном участке.

"Пятно обваловано (загрязнение локализовано)", - сообщили в МЧС. По его словам информации о пострадавших не поступала.

На месте работала оперативная группа МЧС Республики Дагестан. На данный момент ликвидацией аварии занимаются специалисты ОАО Дагнефтегаз.

Нефтепровод Омск -- Ангарск -- наиболее крупный (2 нитки диаметром 700 и 1000 мм) тянется от западной границы области и практически до восточной. Перекачивается сырая нефть. Нефтепровод принадлежит ОАО “Транссибнефть” АК “Транснефть” Министерства топлива и энергетики РФ. По Иркутской области нефтепровод эксплуатирует Иркутское районное нефтепроводное управление (ИРНПУ). В 2001 г. ИРНПУ разработан “План по предупреждению и ликвидации аварийных разливов нефти Иркутского районного нефтепроводного управления ОАО “Транссибнефть” -- находится на согласовании. Количество аварий на нефтепроводе за период с 1993 г по 2001 г.:

1. Март 1993 г. На 840 км магистрального нефтепровода Красноярск -- Иркутск (поврежден трубопровод бульдозером) вылилось на рельеф 8 тыс. тонн нефти. Своевременно принятые меры по локализации места пролива позволили свести к минимуму последствия этой аварии. Пролитая нефть в основном была откачена в хранилища. Загрязненный грунт был собран и вывезен на утилизацию.

2. Март 1993 г. На 643 км магистрального нефтепровода Красноярск -- Иркутск (разрыв нефтепровода из-за дефекта сварного шва, момент аварии не был своевременно зафиксирован) на поверхность излилось более 32,4 тыс. тонн нефти. Принятые срочные меры по ликвидации последствий этой аварии позволили быстро нейтрализовать негативные явления. Однако около 1 тыс. тонн нефти проникло в недра и локализовалось в 150-300 м от действующего Тыретского хозяйственного водозабора подземных вод. Около 40% 2-го и 3-го поясов зоны санитарной охраны водозабора оказались загрязненными нефтью. Еще около 1 тыс. тонн нефти проникло в грунты на участке заболоченной поймы р. Унги и постепенно мигрировала ниже по течению в хозяйственно-ценный водоносный горизонт. Для сохранения Тыретского хозяйственного водозабора подземных вод от загрязнения нефтью был сооружен и задействован специальный защитный водозабор, который уже в течение 9 лет “отсекает” загрязненную нефтью воду от хозяйственного водозабора. Эколого-гидрогеологическая ситуация остается сложной в части загрязнения нефтью извлекаемой воды хозяйственным водозабором. На протяжении всех лет, после аварии осуществлялся государственный природоохранный контроль за ведением эколого-гидрогеологических работ в районе аварии. Каждый год проводятся совместные совещания лиц и служб, заинтересованных в очищении от загрязненных нефтью земель и подземных горизонтов (землепользователей, природоохранных органов, санэпиднадзора, гидрометеослужбы, гидрогеологов, нефтепроводного управления) -- подводятся итоги мониторинга за прошедший год и определяется дальнейшая программа работ. Обслуживание систем мониторинга и контроля геологической среды в районе Тыретского водозабора до 1999 г. проводило по договору ГФГУП “Иркутскгеология”. С 1999 г -- ИРНПУ

3. Март 1995 г. На 464 км магистрального нефтепровода Красноярск -- Иркутск (трещина серповидная на трубопроводе Ду 1000 мм, длина 0,565 м, ширина 0,006 м) на поверхность излилось 1683 м3 нефти. Нефть по руслу ручья (300 м) достигла реки Курзанки и растеклась по льду реки на расстояние 1150 м. При ликвидационных работах 1424 м3 нефти было собрано и откачено в резервный трубопровод Ду 700 мм. Река Курзанка до наступления весеннего паводка была полностью очищена от загрязнения. Безвозвратные потери нефти составили 259 м3, из которых 218.3 м3 было сожжено. Загрязненный нефтью грунт из русла ручья был снят и заскладирован в карьере, где организована его обработка биоприном.

4. Январь 1998 г. На 373 км магистрального нефтепровода Красноярск -- Иркутск (трещина длиною 380 мм на трубопроводе Ду 1000 мм) выход нефти на поверхность около 25 м3, собрано около 20 м3. Вывоз загрязненного снега произведен в нефтеловушки Нижнеудинской НПС.

5. Ноябрь 1999 г. На 565 км магистрального нефтепровода Красноярск -- Иркутск (разгерметизация трубопровода Ду 700, в результате повреждения задвижки во время ремонтных работ, с последующим возгоранием разлившейся нефти). Площадь загрязнения 120 м2, сгорело 48 тонн нефти.

6. Декабрь 2001 г. на 393,4 км магистрального нефтепровода Красноярск -- Иркутск (при опорожнении резервной нитки Ду 700мм, с перекачкой нефти ПНУ в трубопровод Ду 1000 мм), произошла разгерметизация всасывающей нитки насоса. На поверхность вылилось около 134 м3 нефти. Нефть локализовалась в пониженной части рельефа -- естественный овраг, расположенный от места аварии на расстоянии 80 м. После устранения повреждения нефть из оврага -- 115 м3 -- откачана в действующий нефтепровод. Остатки нефти собраны спецмашиной. Объем безвозвратных потерь нефти составил 4 м3. Поверхность земли, загрязненная нефтью, обработана сорбентом “Эконафт” с последующей вывозкой загрязненного грунта на Нижнеудинскую НПС. По Предписанию КПР по Иркутской области организован мониторинг земель и поверхностных вод р. Уды


2. Аварии на газопроводах.


В результате аварии на магистральном газопроводе «Аксай-Гудермес-Грозный» три района Чечни и часть города Грозного остались без газа. Сейчас на месте аварии ведутся ремонтно-восстановительные работы, сообщает информационный портал «Кавказский узел».

«Авария произошла вечером 26 января, между 19 и 20 часами, – сообщили в МЧС Чечни. – Утечка газа на магистральном газопроводе была зафиксирована примерно в полутора километрах от города Гудермес, в районе поселка Белоречье. Здесь по дну реки Белка идет линия газопровода «Аксай-Гудермес-Грозный».

По мнению специалистов, причины разрыва газовой трубы, диаметр которой составляет 50 сантиметров, носят «техногенный характер».

С раннего утра на месте аварии ведутся масштабные ремонтно-восстановительные работы. В ликвидации аварии принимают участие аварийные службы, работники республиканского МЧС и военные.

В результате аварии на магистральном газопроводе без газа остаются три района Чечни: Курчалойский, Шалинский и Грозненский. Нет газа и в северной части чеченской столицы.

На Ставрополье из-за аварии на газопроводе без газа остались три села.

В Таращанском районе Киевской области на границе с Богуславским районом на газопроводе Уренгой-Помары-Ужгород, принадлежащем "Укртрансгазу", произошел взрыв.

Транспортировка природного газа из России в Европу по магистральному газопроводу была приостановлена. В МЧС Украины "Интерфаксу" сообщили, что газ в Европу подается по обводной ветке. Это подтвердили в компании "Нафтогаз Украины" и "Газпроме", а позднее и в ЕС.

Авария, по уточненным данным, произошла около 15:15 по киевскому времени (16:15 мск) около компрессорной станции "Ставище" вблизи села Лука. Взрывной волной 30-метровый кусок трубы диаметром 1420 мм отбросило на 150 м. Газ подавался под давлением 74 атмосферы. Пожар на месте взрыва ликвидирован. На площади 1,5 гектар выгорели зеленые насаждения, включая 100 деревьев, сообщили в МЧС Украины.

Остались без газоснабжения 22 населенных пунктах в Таращанском районе Киевской области, включая и сам райцентр, 4 населенных пункта в Богуславском районе и 6 в Черкасской области.

Жертв и пострадавших нет. На месте происшествия работает руководство главного управления МЧС в Киевской области, а также сотрудники Черкассытрансгаза, милиции, районной прокуратуры. Ведется следствие, уголовное дело пока не заводилось.

Министр транспорта и связи Украины Николай Рудьковский не исключил, что авария могла стать следствием диверсии. "Ситуация, которую мы имели на железной дороге под Киевом с 168-м поездом, и эта сегодняшняя авария - не исключено, могут быть звеном запланированных акций по дестабилизации ситуации в стране", - заявил министр в эфире украинского "5-го канала" в понедельник вечером.

В компании "Укртрансгаз", которая обслуживает этот газопровод, утверждали, что разрыва трубы нет. О возможных сроках ликвидации последствий взрыва и возобновлении транспортировки газа по трубопроводу в компании не сообщают.

"Газпровод, на котором произошла авария, сейчас перекрыт и пустили газ по другим веткам", - сказали в "Укртрансгазе", добавив при этом, что опасности для окружающих в настоящее время нет. В пресс-службе подчеркнули, что пострадавший участок проходит в болотистой местности, а "болотистая среда негативно влияет на газопровод".

Взрыв не повлияет на транзит российского природного газа по территории Украины в страны Европы, сообщили в пресс-центре НАК "Нафтогаз Украины". "Обязательства Украины по транзиту природного газа европейским потребителям полностью выполняются путем увеличения подачи газа по другим газопроводам, а также за счет отбора газа из подземных хранилищ", -заявил руководитель управления по связям с общественностью "Нафтогаза Украины" Алексей Федоров.

В "Газпроме" заверили, что компания полностью обеспечивает выполнение своих обязательств по поставкам газа европейским потребителям в направлении Украины. Никаких ограничений поставок газа европейским потребителям не произошло, сообщили ПРАЙМ-ТАСС в пресс-службе компании.

Газопровод Уренгой-Помары-Ужгород построен в 1983 году. Длина газопровода - 4451 км. Проектная мощность - 32 млрд кубов в год. Протяженность магистрального газопровода Уренгой-Помары-Ужгород по территории Украины составляет 1160 км, его мощность - 27,9 млрд кубометров газа в год. На трассе газопровода находятся девять компрессорных станций.

24 октября 2007 года в Ставропольском крае восстановлено газоснабжение после аварии в селе Бурлацком Благодарненского района.

Как сообщили ИА «Росбалт-Юг» в пресс-службе Южного регионального центра МЧС РФ, «накануне в 11.20 при вспашке полей произошло повреждение на 75-ом км распределительного щита газопровода местного значения «Каменная Балка - Мирное - Журавское» диаметром 514 мм».

В пресс-службе сообщили, что взрыва и возгорания не произошло, пострадавших нет. Ремонтно-оперативная бригада «Ставрополькрайгаз» 15.00 восстановила газоснабжение населенного пункта, в котором проживают 3,5 тыс. человек, более 1 тыс. из которых - дети.


3. Аварии на водопроводе.


По факту аварии на магистральном водопроводе в Петровском районе Ставропольского края возбуждено уголовное дело по ч. 1 ст. 293 УК РФ (халатность). Как сообщили корреспонденту ИА REGNUM в пресс-службе краевой прокуратуры, расследованием дела занимается прокуратура Петровского района. Проверка, проведенной прокуратурой, установила, что магистральный водопровод длительное время находился в аварийном состоянии, Ремонт и реконструкция магистральных сетей водопровода подответственны Светлоградскому филиалу "Ставрополькрайводоканала". Однако должностные лица не приняли мер к устранению дефектов и нарушений в работе водопровода и не предотвратили замерзания его отдельных участков.

Порыв на магистральном водопроводе и замерзание его участков стали возможными ввиду ненадлежащего исполнения должностными лицами Светлоградского филиала государственного унитарного предприятия Ставропольского края "Ставрополькрайводоканал" своих служебных обязанностей из-за недобросовестного отношения к службе.

23 января 2006 года в 21 час 25 минут в районе села Мартыновка Петровского района Ставропольского края произошел порыв магистрального водопровода, находящегося на балансе Светлоградского филиала государственного унитарного предприятия "Ставрополькрайводоканал". Вследствие аварии в ряде микрорайонов города Светлограда и близлежащих сел с общим количеством жителей свыше 41 тысячи человек была прекращена подача воды, В полном объеме подача воды возобновлена в 16 часов 31 января 2006 года. Сумма ущерба государственного унитарного предприятия "Ставрополькрайводоканал" составила 1 026 тысяч рублей.

Центр Асино в течение 5 дней остается без воды. Причина отключения воды - порыв водопровода на ул. Гончарова. Восстановлением поврежденного участка водопровода занимаются бригады ОАО "Асиновские коммунальные системы". Как сообщили "Авторадио-Томск" в диспетчерской "Асиновских коммунальных систем", на отопление жилых домов и образовательных учреждений эта авария никак не повлияла и в ближайшее время водоснабжение будет восстановлено.

Из-за аварии на водопроводе парализовано движение в районе Земляного Вала в Москве

В столице в районе Земляного Вала из-за аварии на водопроводе затоплена автотрасса, передает РИА «Новости» со ссылкой на столичное управление ГИБДД. Движение автомобилей в связи с затоплением трех полос дороги парализовано.

Авария на водопроводе холодного водоснабжения воды диаметром 100 миллиметров произошла около 17.00. В настоящее время поврежденный участок перекрыт, на месте происшествия работают восстановительные бригады.

Двадцать гаражей затопило сегодня в результате аварии на водопроводе возле четырнадцатой школы в Октябрьском районе Иркутска. Вода била фонтаном из колодца, протекала через школьный стадион и гаражный кооператив, после чего уходила в канализацию. В этом районе проходит много водопроводных веток, и специалистам было сложно определить место аварии. Фонтан бил с двух часов дня и только в пять его удалось ликвидировать. Без воды остались школа и несколько жилых домов.

Одна из ключевых проблем обеспечения промышленной и пожарной безопасности - установление минимальных безопасных расстояний между источниками аварий и соседними сооружениями и объектами. Требования к обоснованию минимальных безопасных расстояний, в том числе на основе моделирования и расчета последствий аварий, содержатся в ряде нормативных правовых документов.

Особенно актуальна задача определения минимальных безопасных расстояний в связи с развитием системы магистральных трубопроводов (МТ). Анализ аварийности показывает, что аварии с гибелью людей на российских МТ достаточно редки, однако в условиях их прокладки вблизи населенных пунктов, объектов производственной и транспортной инфраструктуры не исключена возможность поражения людей при аварии. Особый резонанс вызывают крупные промышленные аварии с групповой гибелью людей. Ниже представлены масштабы и особенности некоторых крупных аварий на МТ:

Под минимальным безопасным расстоянием понимается минимальное допустимое расстояние от оси линейной части магистрального трубопровода до соседних зданий, строений, сооружений, населенных пунктов, транспортных путей, устанавливаемое в целях обеспечения безопасности людей.

  • 1 июля 1959 г. Мексика, штат Веракрус, Коацакоалькос. Взрыв и пожар на нефтепроводе. Погибли 12 человек, более 100 ранены.
  • 19 июля 1960 г. США, штат Висконсин, Меррил. При проведении земляных работ произошла разгерметизация газопровода. Утечка газа с последующим взрывом стали причиной гибли 10 человек.
  • 4 марта 1965 г. США, штат Луизиана, Натчиточес. Взрыв на 32-дюймовом газопроводе компании «Теннесси». Погибли 17 человек, 9 получили ранения. Причина - разгерметизация газопровода из-за коррозионного растрескивания под напряжением.
  • 29 мая 1968 г. США, штат Джорджия, Хэпвиль. Бульдозер задел дюймовый газопровод у детского сада, в результате произошли взрыв и пожар. Семь детей и двое взрослых погибли, трое детей получили серьезные ранения.
  • 4 июня 1989 г. СССР, Уфа. Авария на магистральном продуктопроводе (ВЫ 700, Рра6 = 3,5 -г 3,8 МПа) под Уфой на перегоне между станциями Казаяк и Улу-Теляк на 1710-м км Куйбышевской железной дороги с выбросом и воспламенением паров широкой фракции легких углеводородов (ШФЛУ). Расстояние дрейфа облака 900-1350 м. В зоне взрыва оказались два пассажирских поезда. Погибли 573 человека, более 600 получили травмы различной степени тяжести. В районе взрыва образовалась зона сплошного завала леса площадью 2,5 км2. В радиусе до 15 км от места взрыва в домах населенных пунктов выбиты стекла, частично разрушены рамы и шиферные фронтоны.
  • 17 октября 1998 г. Нигерия, штат Дельта, Джесси. Произошел взрыв на трубопроводе Нигерийской национальной нефтяной корпорации, перекачивающем бензин. Причина аварии - умышленное повреждение трубопровода. Жители ближайших деревень пришли к разрушенному трубопроводу для сбора разлившегося топлива. Произошли взрыв и пожар, в результате которых погибли около 1200 человек. Пожар удалось потушить только 23 октября.
  • 10 июля 2000 г. Нигерия, штат Дельта, Джесси. Разгерметизация трубопровода с последующим взрывом. Погибли около 250 человек.
  • 16 июля 2000 г. Нигерия, штат Дельта, Варри. При разрушении трубопровода и последующем взрыве погибли 100 жителей деревни.
  • 19 августа 2000 г. США, штат Нью-Мексико, Карлсбад. Воспламенение газа при разрыве 30-дюймового газопровода привело к гибели 12 человек, находившихся в кемпинге в 180 м от места аварии. На месте разрыва газопровода образовался котлован 16 м в ширину и 24 м в длину. 15-метровый участок трубы был вырван и выброшен из котлована в виде трех осколков (наибольший - на расстояние 87м). Причина аварии - внутренняя коррозия.
  • 30 ноября 2000 г. Нигерия, штат Лагос. Утечка нефтепродукта из трубопровода с последующим воспламенением. Погибли около 60 жителей рыбацкой деревни.
  • 19 июня 2003 г. Нигерия, штат Абия. При попытке хищения нефтепродукта из трубопровода произошел взрыв. Погибли 125 жителей близлежащей деревни.
  • 30 июля 2004 г. Бельгия, Брюссель. Утечка и взрыв газа на магистральном газопроводе (МГ) (ОЫ 900) газоперерабатывающего завода Ви1а§аг в 40 км от Брюсселя. Цепь взрывов уничтожила две фабрики, оставив между заводами большой кратер. Тела погибших и обломки оборудования были разбросаны в радиусе 500 м от места катастрофы. На расстоянии до 150 м выгорели все припаркованные автомобили, растительность выгорела на расстоянии до 250 м. Действие взрывной волны ощущалось на расстоянии до 10 км от места аварии. Погибли 24 человека (на расстоянии до 200 м), более 120 получили серьезные ожоги и ранения. Большинство погибших - полицейские и пожарные, прибывшие на место утечки по тревоге.
  • 17 сентября 2004 г. Нигерия, штат Лагос. При попытке хищения нефтепродукта из трубопровода произошел взрыв. Погибли десятки людей.
  • 12 мая 2006 г. Нигерия, штат Лагос. Произошел взрыв на нефтепроводе при попытке хищения нефти. Погибли около 150 человек.
  • 26 декабря 2006 г. Нигерия, штат" Лагос. Вандальные действия привели к взрыву нефтепровода. Погибли более 500 человек.
  • 16 мая 2008 г. Нигерия, штат Лагос. Бульдозером поврежден подземный нефтепровод. В результате взрыва и последующего пожара погибли около 100 человек.
  • 19 декабря 2010 г. Мексика, Сан Мартин Тексмелукан де Лабастида. Взрыв на насосной станции Ре1го1еок Мех1сапо8 привел к разгерметизации нефтепровода с последующим истечением горящей нефти. Погибли 27 человек, 52 были
  • ранены. Взрыв вызван неудачной попыткой врезки в нефтепровод в целях хищения нефти.
  • 12 сентября 2011 г. Кения, Найроби. В промышленном районе Лунга Лунга разгерметизировался трубопровод Кенийской трубопроводной компании, перекачивающий бензин, дизельное и реактивное топливо. Часть топлива попала в реку. Люди в соседних густонаселенных трущобах Синая начали собирать вытекающее топливо, оно взорвалось, образовав гигантский огненный шар. Пожар распространился на близлежащие трущобы. Источник воспламенения - искры с горящей свалки. Около 100 человек погибли, 116 были госпитализированы с различной степенью ожогов. Тела погибших и фрагменты построек были найдены в 300 м от места взрыва.

Среди перечисленных аварий обращают на себя внимание многочисленные случаи взрывов при аварийной разгерметизации на магистральных нефте-и продуктопроводах (МН) в Мексике, Нигерии и Кении, что, очевидно, связано с теплым климатом, способствующим при утечках образованию топлив-но-воздушных смесей (ТВС) из-за повышенной температуры окружающей среды. Большое количество пострадавших обусловлено напряженными социальными условиями близпроживающего населения.

Методические подходы к установлению минимальных безопасных расстояний условно можно разделить на три направления, основанные на использовании: фактических данных о зафиксированных при авариях зонах поражения («апостериорный» подход); расчетов максимальных размеров зон поражения; количественной оценки риска (КОР) аварий.

Достоверность данных в первом случае базируется на представительности статистических данных об известных крупных авариях на МТ, во втором - на расчете и моделировании последствий аварий с наиболее протяженными зонами поражения, в третьем - на учете вероятности возникновения аварии с определенными последствиями и использовании критериев приемлемого (допустимого) риска. В любом из этих подходов могут использоваться «коэффициенты запаса», компенсирующие неполноту существующих знаний и представлений.

Рассмотрим для каких видов МТ (газо-, нефтепроводы, трубопроводы СУГ) и в каких случаях преимущественно используются обозначенные выше подходы к установлению минимальных безопасных расстояний.

Наиболее распространенным и устоявшимся способом является определение безопасных расстояний исходя из опыта происшедших аварий на аналогичных объектах. Этот подход частично (совместно с моделированием последствий) реализован в пп. 3.16, 12.3 СНиП 2.05.06-85* «Магистральные трубопроводы». Анализ происшедших достаточно многочисленных аварий на МГ показывает, что размеры зон поражения людей (разлет осколков, тепловое излучение от горения струй) лежат в диапазоне от 100 до 350 м от оси трубы и определяются в первом приближении диаметром и давлением в трубопроводе. В данном случае достаточно представительная статистика аварий не требует, как правило, применения дополнительных «коэффициентов запаса» по безопасности, и минимальные безопасные расстояния принимаются эквивалентными максимальным наблюдавшимся зонам поражения

Опыт аварии под Уфой в 1989 г. обозначил повышенную опасность выбросов сжиженных углеводородных газов (СУГ), связанную с мгновенным вскипанием перегретых жидкостей и образованием протяженных облаков тяжелых газов, способных распространяться у поверхности земли с сохранением способности к воспламенению на расстоянии в несколько километров. Следствие этой катастрофы - десятикратное увеличение нормативных значений безопасных расстояний1 от МТ СУГ до объектов с присутствием людей.

Второй способ установления минимальных безопасных расстояний для МТ - расчет зон поражения при максимальной гипотетической аварии (МГА) с рассмотрением конкретного участка трубопровода (профиль трассы, задвижки и т.д.), свойств транспортируемых углеводородов, технологических параметров перекачки, условий окружающей среды и действий по локализации и ликвидации аварии. «Коэффициент запаса» по безопасности в этом случае неявно заложен в допущениях и предположениях о возникновении и развитии аварии и определяется степенью пессимистичности при выборе рассчитываемого сценария МГА.

Данный детерминистский подход основан на расчете сценария с полным разрушением МТ и максимальной дальностью распространения поражающих факторов при аварийных выбросах опасных веществ. В табл. 1 приведены примеры рассчитанных по программному комплексу ТОКСИ+ зон смертельного поражения человека при авариях на отдельных участках МТ по данным деклараций промышленной безопасности и отчетам по КОР.

Среди основных поражающих факторов, характерных для аварий на МГ, наиболее значимым по размерам зон поражения является термическая радиация от горящих струй газа (см. табл. 1).

При расчете максимальной зоны поражения на МН и МТ СУГ принимается максимальный размер утечки для рассматриваемого участка трассы, консервативно оценивается площадь разлива нефти (нефтепродукта) и рассчитывается расстояние, на которое может дрейфовать облако их паров, сохраняя способность к воспламенению.

Таблица 1

Последствия аварии

Поражающий фактор

Зона действия поражающего фактора, м

МГОЫ600, Р=5,7МПа

Расширение газа

Барическое (Воздействие^

Механическое воздействие

Горение струи

Термическое воздействие

Пожар в котловане

МНОЫ1000, Р=6,ЗМПа

Пожар пролива

Термическое воздействие

Воспламенение облака ТВС

МТ ШФЛУ ОМ 700, Р = 5,5 МПа

Пожар пролива

Термическое воздействие

Воспламенение облака ТВС

Горение струи

Рассе­яние опасных веществ в атмосфере рассчитывается по Методическим указаниям по оценке последст­вий аварийных выбросов опасных веществ (РД-03-26-2007) при наихудших условиях рассеяния в при­земном слое атмосферы. В качестве консервативной оценки минимального безопасного расстояния при расчете дрейфа пожаровзрывоопасного облака принимается расстояние, на котором облако рас­сеивается до концентрации, равной половине ни­жнего концентрационного предела воспламенения (НКПВ), что учитывает неоднородность распреде­ления концентрации в облаке. При необходимости рассматриваются и возможность сгорания (взрыва) дрейфующего облака, и соответствующие данному процессу зоны поражения с учетом допущений.

Основанный на анализе последствий аварии подход также применим для определения безопа­сных расстояний для «типового» участка МГ, так как расстояния, установленные по расчетам терми­ческого поражения от горящих струй газа, незна­чительно отличаются от расстояний, зарегистриро­ванных при авариях, а результаты расчета по модели имеют меньший набор исходных данных и при­нятых допущений по сравнению с моделями расчета последствий аварий на МН и МТ СУГ.

Третий способ обоснования минимальных без­опасных расстояний основан на использовании КОР, позволяющей оценить возможность возник­новения аварии, в том числе МГА.

На рассматриваемом участке трассы МТ рассчи­тываются варианты выброса для всего диапазона размеров дефектных отверстий (от свища до гильотинного разрыва трубопровода) и все возможные исходы аварий на основе дерева событий.

При моделировании распределения в пространстве зон действия поражающих факторов учитываются вероятность возникновения аварии и условная вероятность развития аварии по тому или иному сценарию. Критерии поражения человека определяются по пробит-функции.

В качестве безопасного принимается расстояние, на котором рассчитанное значение потенциального риска гибели человека не превышает уровня, заданного в качестве допустимого.

Согласно п. 4.2.6 Методических указаний по проведению анализа риска опасных производственных объектов (РД 03-418-01) критерии приемлемости риска аварии определяются на основе нормативных правовых документов (например, для МТ горючих веществ целесообразно учитывать критерии) или обосновываются в проектной документации, исходя из опыта эксплуатации аналогичных объектов.

Практика использования КОР по модели, основанной на, при декларировании и разработке специальных технических условий показала, что размер зон поражения и тяжесть последствий при авариях на МТ, определяющие минимальные безопасные расстояния, связаны с технологическими параметрами трубопровода (диаметр, давление), характеристиками перекачиваемого продукта, в том числе пожаро-, взрывоопасными или токсическими свойствами, агрегатным состоянием в трубопроводе (газ, жидкость, в том числе сжиженный газ); особенностями окружающей местности (рельеф); метеоусловиями (температура воздуха, скорость и направление ветра, стратификация (устойчивость) атмосферы); уязвимостью объектов воздействия (наличие селитебных зон, производственных объектов, транспортной инфраструктуры); эффективностью системы обнаружения и ликвидации утечки, действий персонала.

Отметим, что значимость указанных факторов зависит от вида МТ (МГ, МН или МТ СУГ).

Например, основными факторами, определяющими сценарии развития аварий на МГ и зоны поражения людей являются: несущая способность грунта, давление в месте разрыва, расположение места разрыва относительно компрессорных станций и линейных запорных кранов, а метеорологические факторы (скорость и направление ветра, класс стабильности атмосферы, влажность воздуха) влияют незначительно.

Напротив, для МТ СУГ, наибольшая аварийная опасность которых определяется возможностью дрейфа и воспламенения облаков ТВ С, размеры зон поражения существенно зависят от метеорологических факторов в момент аварии.

Также отметим слабое влияние расстояний между узлами запорной арматуры на рассчитанные максимальные зоны поражения при авариях

Расчеты минимальных безопасных расстояний с использованием методологии количественного анализа риска аварий показывают, что для современных продуктопроводов СУГ размеры аварийно-опасных зон для пребывания людей не превышают 1,4 км, тогда как детерминистские расчеты дают оценку размеров зон смертельного поражения до 2,4 км. Соотношения размеров зон, рассчитанных по разным подходам, зависят от вероятности возникновения аварии, рассматриваемой в качестве МГА.

Таким образом, из анализа нормативной базы, аварий и результатов расчета последствий аварийных выбросов опасных веществ и оценки риска аварий на МТ можно сделать следующие выводы:

1. Установлено влияние на размеры зон поражения и безопасных расстояний технологических параметров трубопровода, характеристик перекачиваемого продукта, особенностей окружающей местности, метеоусловий и иных факторов. Значимость указанных факторов зависит от вида МТ (МГ, МН или МТ СУГ), поэтому для решения практических задач необходимы анализ опасности конкретных участков МТ и обоснованный выбор критериев безопасности.

2. Применение методологии количественной оценки риска позволяет обосновывать минимальные безопасные расстояния, размер которых может быть существенно меньше нормативных или определенных зон поражения при МГА.

3. Представленные результаты предлагается использовать при разработке нормативных документов по безопасности объектов трубопроводного транспорта, в том числе законопроекта - Технического регламента о безопасности магистральных трубопроводов для транспортировки жидких и газообразных углеводородов и Правил безопасности для магистральных трубопроводов

Таблица 3

Параметры трубопро­вода

Район проклад­ки трубопровода

Расстояние по СНиП 2.05.06-85* (до населенных пунктов), м

Зона действия поражающих факторов при МГА, м

Расстояние, м, на кото­ром достигается потен­циальный риск гибели человека, год- 1

ОМ 250, Р а6 = 1 ,8 МПа

Самарская обл.

ОМ 500, /> ра6 = 3,3 МПа

Ямало-Ненец­кий автономный округ

Не определено (для продуктопроводов ОЫ 400 - 3000-5000 м)

ОМ 700, Р раб = 5,5МПа

Ханты-Мансий­ский автоном­ный округ

Федеральное агентство по образованию

Саратовский государственный

социально-экономический университет

кафедра безопасности жизнедеятельности

Реферат

«Аварии на трубопроводах».

Студентки первого курса УЭФ

Григорьевой Тамары Павловны

Руководитель: доцент кафедры

Баязитов Вадим Губайдуллович

Саратов,2007.


Введение.

1. Общие сведения о состоянии системы трубопроводов в РФ на 2008 год;

2.Аварии на нефтепроводах;

3.Аварии на газопроводе;

4.Аварии на водопроводе;

5.Последствия аварий на трубопроводах;

6.Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах;

Заключение.

Список используемой литературы.

Введение:

По протяженности подземных трубопроводов для транспортировки нефти, газа, воды и сточных вод Россия занимает второе место в мире после США. Однако нет другой страны, где эти трубопроводные магистрали были бы так изношены. По оценкам специалистов МЧС России, аварийность на трубопроводах с каждым годом возрастает и в ХХI век эти системы жизнеобеспечения вошли изношенными на 50-70%. Утечки из трубопроводов приносят стране огромный экономический и экологический ущерб. Особенно большое количество аварий происходит в городах в результате утечек воды из изношенных коммуникаций – канализационных, тепловых и водопроводных сетей. Из разрушенных трубопроводов вода просачивается в грунт, повышается уровень грунтовых вод, возникают провалы и просадки грунта, что ведет к затоплению фундаментов, и в конечном счете грозит обрушением зданий. Зарубежный опыт показывает, что эту проблему можно решить, если вместо стальных трубопроводов применять трубы из пластмассы, а прокладку новых и ремонт изношенных осуществлять не открытым, а бестраншейным способом. Преимущества ремонта трубопроводов бестраншейным методом очевидны: затраты на ремонт снижаются в 6-8 раз, а производительность работ возрастает в десятки раз.

Наблюдается процесс постепенного перехода от традиционных строительных материалов к новым. В частности, при прокладке и реконструкции трубопроводов все чаще применяются полимерные трубы. По сравнению со стальными или чугунными они имеют ряд неоспоримых преимуществ: легкость транспортировки и монтажа, высокая коррозионная стойкость, большой срок эксплуатации, невысокая стоимость, гладкость внутренней поверхности. В таких трубах не ухудшается качество перекачиваемой воды, так как за счет гидрофобности поверхности в них не образуется различные отложения, как это происходит в стальных и чугунных трубопроводах. Пластмассовые трубы не требуют никакой гидроизоляции, в том числе и катодной защиты, они обеспечивают постоянную транспортировку воды, нефти и газа без больших затрат на техническое их обслуживание.

Опыт реконструкции и строительства подземных коммуникаций в Челябинске свидетельствует о том, что применение передовых бестраншейных технологий позволяет значительно удешевить и упростить такие работы. Особенно это актуально для центральных районов города, где работы по перекладке трубопроводов традиционным траншейным способом связаны со значительными трудностями: для проведения этих работ часто необходимо закрытие проездов, изменение маршрутов движения городского транспорта. Требуются многочисленные согласования с различными организациями. С внедрением новейших технологий появилась возможность осуществлять прокладку трубопроводов и инженерных коммуникаций без вскрытия поверхности и участия большого количества людей и тяжелой строительной техники. Таким образом, не нарушается движение городского транспорта, исключаются работы по устройству обходов, переходных мостиков, что особенно важно для города с плотной застройкой и высоким уровнем движения транспорта. Благодаря отсутствию неудобств и нецелесообразных затрат (по сравнению со строительством в траншеях трудозатраты снижаются примерно в 4 раза), применение данных технологий весьма эффективно. Во многих случаях применение современных технологий позволяет отказаться от строительства новых коммуникаций и путем реконструкции полностью восстановить и улучшить их технические характеристики.

Применение новейших технологий в подземном строительстве призвано решить главную задачу – повысить качество сооружаемых подземных объектов и обеспечить безопасность их эксплуатации. Правительство города уделяет самое пристальное внимание этому вопросу. К работам допускаются только специализированные организации, имеющие соответствующую лицензию. На всех стадиях строительства осуществляется многосторонний мониторинг, что обеспечивает получение данных о ходе выполнения проекта и изменениях в окружающей среде, производится постоянный контроль за изменением уровня грунтовых вод, осадками фундаментов близлежащих зданий, деформацией грунтового массива.


1. Общие сведения о состоянии системы трубопроводов в РФ на 2008

В предаварийном состоянии находятся промысловые трубопроводные системы большинства нефтедобывающих предприятий России. Всего на территории Российской Федерации находится в эксплуатации 350 тыс. км внутрипромысловых трубопроводов, на которых ежегодно отмечается свыше 50 тыс. инцидентов, приводящих к опасным последствиям. Основными причинами высокой аварийности при эксплуатации трубопроводов является сокращение ремонтных мощностей, низкие темпы работ по замене отработавших срок трубопроводов на трубопроводы с антикоррозионными покрытиями, а также прогрессирующее старение действующих сетей. Только на месторождениях Западной Сибири эксплуатируется свыше 100 тыс. км промысловых трубопроводов, из которых 30% имеют 30-летний срок службы, однако в год заменяется не более 2% трубопроводов. В результате ежегодно происходит до 35–40 тыс. инцидентов, сопровождающихся выбросами нефти, в том числе в водоемы, причем их число ежегодно увеличивается, а значительная часть инцидентов преднамеренно скрывается от учета и расследования.

Аварийность на объектах магистрального трубопроводного транспорта уменьшилась на 9%. Действующая на территории Российской Федерации система магистральных нефтепроводов, газопроводов, нефтепродуктопроводов и конденсатопроводов не отвечает современным требованиям безопасности.

В процессе реформирования экономики и в результате изменений на рынках нефти происходит постоянное снижение объемов финансирования нового строительства, капитального ремонта, реконструкции, модернизации, технического обслуживания и текущего ремонта физически изношенных и морально устаревших объектов магистральных трубопроводов. Крайне недостаточно финансируются разработки нового оборудования, приборов и технологий дефектоскопии трубопроводов и оборудования, а также разработка новых нормативных документов и пересмотр устаревших.

Отсутствует законодательная база государственного регулирования безопасности функционирования магистральных трубопроводов, в связи с чем назрела необходимость принятия федерального закона о магистральных трубопроводах. Разработка этого закона, начавшаяся в 1997 г., до сих пор не завершена.

В Российской Федерации общая протяженность подземных нефте-, водо- и газопроводов составляет около 17 миллионов километров, при этом из-за постоянных интенсивных волновых (колебаний давления, гидроударов) и вибрационных процессов, участки этих коммуникаций приходится постоянно ремонтировать и полностью заменять. Весьма актуальны вопросы защиты от коррозии для нефтяной, нефтегазодобывающей, перерабатывающей и транспортирующей отраслей, вследствие металлоемкости резервуаров хранения нефтепродуктов и прочих сооружений, наличие здесь агрессивных сред и жестких условий эксплуатации металлоконструкций. Убытки, вызываемые гидроударами и коррозией, составляли для Минтопэнерго бывшего СССР несколько сотен миллиардов долларов и около 50 тыс. т. черных металлов в год. При общей динамики аварийности, по оценкам экспертов, причинами разрыва трубопроводов являются:

60% случаев – гидроудары, перепады давления и вибрации

25% - коррозионные процессы

15% - природные явления и форс-мажорные обстоятельства.

В течение всего срока эксплуатации трубопроводы испытывают динамические нагрузки (пульсации давления и связанные с ними вибрации, гидроудары и т.д.). Они возникают при работе нагнетательных установок, срабатывании запорной трубопроводной арматуры, случайно возникают при ошибочных действиях обслуживающего персонала, аварийных отключениях электропитания, ложных срабатываниях технологических защит и т.п.

Техническое же состояние эксплуатируемых по 20-30 лет трубопроводных систем оставляет желать лучшего. Замена изношенного оборудования и трубопроводой арматуры в последние 10 лет ведется крайне низкими темпами. Именно поэтому наблюдается устойчивая тенденция увеличения аварийности на трубопроводном транспорте на 7-9% в год, о чем свидетельствуют ежегодные Государственные доклады «О состоянии окружающей природной среды и промышленной опасности Российской Федерации».

Участились аварии на трубопроводах, сопровождающиеся большими потерями природных ресурсов и широкомасштабным загрязнением окружающей среды. По официальным данным только потери нефти из-за аварий на магистральных нефтепроводах превышают 1 млн тонн в год и это без учета потерь при прорывах внутрипромысловых трубопроводов.

Вот лишь несколько примеров аварий на нефтепроводах за 2006г.:

В результате крупной аварии на магистральном нефтепроводе "Дружба" на территории Суражского района Брянской области на границе с Белоруссией нефтью загрязнены рельеф местности, водные объекты и земли государственного лесного фонда. Заместитель главы Росприроднадзора отметил, что на участке нефтепровода "Дружба", где произошла авария, с весны 2006 года было обнаружено 487 опасных дефектов. Причиной аварии на нефтепроводе послужила коррозия труб.

По территории Обоянского района проходит магистральный газопровод «Щебелинка-Курск-Брянск».
Наиболее опасным участком является пересечение газопровода с рекой Псел в районе города Обоянь.

Вследствие аварии на газопроводе возможно возникновение следующих поражающих факторов:

  1. воздушная ударная волна;
  2. разлет осколков;
  3. термическое воздействие пожара.

Анализ аварий на магистральных газопроводах показывает, что наибольшую опасность представляют пожары, возникающие после разрыва трубопроводов, которые бывают двух типов: пожар в котловане (колонного типа) и пожар струевого типа в районах торцевых участков разрыва. Первоначальный возможный взрыв газа и разлет осколков (зона поражения несколько десятков метров), учитывая подземную прокладку газопровода и различные удаления объектов по пути трассы, возможные зоны поражения необходимо рассматривать конкретно для каждого объекта.
Возможные радиусы термического поражения приведены в Таблице 18.

Выводы:

При аварии на магистральном газопроводе возможно возгорание зданий и поражение людей при пожаре струевого типа на удалении от места аварии до 1200 м.

Учитывая существенное расширение границ селитебной зоны населенных пунктов после завершения строительства газопроводов часть зданий, сооружений и жилых домов попадают в зону поражающих факторов при аварии на данных магистральных газопроводах.

При возникновении пожара (взрыва газовоздушной смеси) на одном из участков магистрального газопровода радиус вероятной зоны поражения может достигать 0,5 км. Ожидается гибель персонала, получателей сжиженного газа свыше 30 человек и 1-3 единиц техники. Вероятное количество населения, попадающего в зону чрезвычайной ситуации до 1000 чел. (по признаку нарушения условий жизнеобеспечения). В результате аварии потеря газа может составить до 100 тыс. м3, экономический ущерб - до 7 тыс. МРОТ.

V. Аварии на магистральных нефтепроводах

По территории района проходит нефтепровод Мичуринск - Кременчуг "Дружба". Диаметр нефтепровода составляет 720 мм. Протяженность нефтепровода - 270 км. Рабочее давление 41 кг/см2. Производительность 30 тыс.т./сут. Количество нефти, находящейся в нефтепроводе составляет 106845 т, что значительно превышает величину порогового количества, определенного для ЛВЖ (50000 т). Магистральный нефтепровод по гражданской обороне не категорируется.
Виды возможных чрезвычайных ситуаций:

1. Разлив нефтепродуктов в результате разгерметизации линейного участка с последующим возгоранием и возможным взрывом паров нефтепродуктов. Так как нефтепродуктопровод проходит на значительном расстоянии от населенных пунктов и промышленных объектов, поэтому в случае взрыва или пожара они не пострадают. Тяжелые последствия прогнозируются на пересечениях с железными дорогами. В этом случае возможен выход из строя железных дорог, ЛЭП, значительный экономический ущерб.

2. Разлив нефтепродуктов в результате разгерметизации подводного перехода. В этом случае возможно попадание нефтепродуктов в реки (до 1,5 тыс. м3) и ее распространение вниз по течению, что приведет к гибели флоры и фауны, загрязнению прибрежной полосы нефтепродуктами.

Площадь вероятной зоны чрезвычайной ситуации - до 2000 м2 на суше и 48000 м 2 на реке. Вероятное количество населения, попадающее в зону чрезвычайной ситуации до 800 чел. Вероятные социально-экономические последствия при возникновении чрезвычайной ситуации:

  1. экономический ущерб - до 30 тыс. МРОТ;
  2. пострадавшие - до 150 чел.;
  3. нарушение условий жизнедеятельности - до 800 чел.

При распространении разлива нефтепродуктов возможно загрязнение рек и водоемов, вынесение нефтепродуктов на береговую линию и частично нарушение жизнедеятельности населения, проживающего в населенных пунктах, расположенных ниже по течению рек.

Наиболее вероятные причины разливов нефтепродуктов:

Аварии в результате внешней/внутренней коррозии стенок трубопровода;
аварии при воздействии высоких температур при пожаре;
аварии в результате хрупкого разрушения при низких температурах;
аварии на трубопроводах и оборудовании при стихийных бедствиях и террористических актах;
аварии в результате механических повреждений;
аварии в результате брака строительно-монтажных работ;
аварии в результате нарушения технологии перекачки нефтепродуктов.

Основными процессами при разлитии нефтепродуктов могут быть:

Растекание;
испарение;
дисперсия;
растворение;
эмульгирование.

Возможны следующие сценарии возможного поведения нефтепродуктов в районах аварий и разливов на воде в зависимости от сезона года:

1. Безледовый период.

Попадая в реку, ручей или источник, нефтепродукты начинают распространяться, увлекаясь поверхностным течением. При этом образуется вытянутое пятно. В общем случае нефтепродукты будут стремиться скапливаться в участках спокойной воды или в водоворотах на изгибах рек, в извилистых реках, ручьях или в других местах, где скорость течения замедляется. Островки нефтепродуктов могут образоваться в местах, где скапливаются деревья и мусор.
Перемещение и удаление нефтяных пятен от источника аварии будет в первую очередь определяться скоростью течения реки и направлением ветра. Под действием течения нефтепродукты переносится вниз по реке, а ветер сместит пятно к одному из берегов.

2. Ледовый период.

Перемещение пятна нефтепродуктов не зависит от направления ветра. Плавающие нефтепродукты, попав под лед, будут двигаться по подводной части ледяного поля, которая обычно имеет неровную поверхность. Подвижность нефтепродуктов уменьшается. Скорость перемещения пятна нефтепродуктов подо льдом составляет 10-50% от скорости потока в приледном слое воды толщиной 0,1 м, в зависимости от шероховатости нижней поверхности льда. При скоростях движения воды менее 0,1 м/с пятно нефтепродуктов под ледяным покровом может оставаться в неподвижном состоянии.

Распространение нефтепродуктов под ледяным покровом может находиться в виде отдельных капель, сливаться в небольшие пятна или сплошные ковры. При этом толщина этих образований не превышает 5-10 мм.

При нарастании льда неподвижные нефтепродукты вмерзают в лед и в дальнейшем находятся в толще льда в виде вмороженных капель или отдельных линз.

Характер распространения пятна нефтепродуктов зависит от формы русловой части реки, скорости течения и времени, прошедшего с момента начала аварии.

Локализация аварийного нефтезагрязнения воды и прибрежных территорий

Основным способом локализации распространения нефтепродуктов является установка боновых заграждений на локализационных площадках. На места установки боновых заграждений выезжают бригады аварийно-спасательных подразделений в соответствии с разработанным типовым или ситуационным планом. Технические средства - боновые заграждения, нефтесборщики для очистки загрязненных вод. На малых реках допускается создание земляных дамб с водопропускными трубами.

В ледовый период время локализации пятна нефтепродуктов зависит от времени на устройство во льду прорези и майны. Наименьшая допустимая толщина ледяного покрова для выполнения работ может определяться согласно РД153-39.4-114-01 (п. 5.7.39).

За границей боновых заграждений производят контроль наличия нефтепродуктов. В случае обнаружения нефтепродуктов устанавливают дополнительный рубеж боновых заграждений.

В период половодья состояние водного объекта характерно как для ледового, так и для безледового периода. В данном случае мероприятия и объемы работ планируются в зависимости от погодных условий, преобладания признаков ледового (безледового) периода и состояния подъездных путей к рубежам локализации.

Расстановка рубежей локализации производилась с учетом географических особенностей района, а также временем подхода нефтепродуктов к конкретному рубежу локализации. Выбор рубежа локализации определяется руководителем КЧС в зависимости от условий разлива, ситуации и метеорологических условий. При сложных метеорологических условиях рубежи локализации уточняются на основании конкретных гидрометеорологических условий.

Проведение АСНДР будет затруднено высокой температурой в очаге пожара, потребует применения специализированных формирований. Локализация и ликвидация последствий ЧС потребует привлечения значительных финансовых, материальных и людских ресурсов.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Подземные магистральные газопроводы

1. Технологическая схема магистрального газопровода

Магистральные газопроводы - это стальные трубопроводы, по которым транспортируется природный или искусственный газ от мест добычи или производства к местам его потребления. Диаметр газопровода, в основном, варьируется от 700 мм до 1400 мм. Глубина прокладки газопровода от 0,8 до 1 м.

В зависимости от рабочего давления газопроводы подразделяют на два класса:

1 класс - свыше 2,5 до 10 МПа включительно;

2 класс - свыше 1,2 до 2,5 МПа включительно.

В состав магистрального газопровода входят (Рисунок 1.1): собственно газопровод и его ответвления, головные сооружения, компрессорная станция, пункты контрольно-измерительной аппаратуры, ремонтно-эксплуатационная служба, газораспределительная станция, подземные хранилища газа, линии связи и электропередачи, установки электрозащиты газопровода от коррозии, вспомогательные сооружения (водоснабжения и канализации, усадьбы линейных обходчиков, административные и хозяйственно-бытовые объекты).

Рисунок 1.1 - Состав магистрального газопровода, где ГСС - газосборные сети, ГКС - головная компрессорная станция, КС - промежуточная компрессорная станция, ГХ - подземное хранилище газа

Головные сооружения служат для очистки газа от вредных примесей (удаления влаги, отделения серы и других ценных компонентов) и подготовки его к транспортировке.

Компрессорные станции (КС) - это комплекс сооружений, предназначенный для сжатия транспортируемого газа до такого давления, которое обеспечило бы бесперебойную подачу его от месторождения до потребителей.

В состав КС входят: компрессорный цех с установками для сжатия газа (его пластовое давление на промысле невелико), пылеулавливатели, установки для очистки газа и другие объекты.

При подходе магистрального газопровода к местам потребления газа (городам, поселкам, предприятиям) давление в нем должно быть снижено до уровня, необходимого потребителям (0,3-1,2 МПа). Для этого предназначены газораспределительные станции (ГРС), в которых размещается аппаратура по снижению давления, дополнительной очистке и осушке газа.

Для регулирования неравномерности потребления газа устраивают подземные газохранилища. Сооружают их в водонасыщенных пористых пластах, отработанных нефтяных и газовых месторождениях.

При эксплуатации магистральных газопроводов контролю подлежат следующие основные показатели:

а) давление газа в начале и в конце участка, на выходе с промысла и на отводах на газораспределительные станции;

б) количество транспортируемого газа, температура его на входе и выходе компрессорной станции, средняя по участку, на входе в газораспределительную станцию;

в) наличие конденсата, влаги, сероводорода, тяжелых углеводородов и загрязнений в газе, давление на входе и выходе компрессорной станции, количество работающих агрегатов и режим их работы;

г) исправность оборудования на компрессорных и газораспределительных станциях, герметичность газопровода;

д) режим закачки газа в подземные хранилища, режим отбора газа постоянными и буферными потребителями и другие показатели, характеризующие состояние газопровода, его сооружений и оборудования.

Для компримирования больших потоков газа, транспортируемых по магистральным газопроводам, суммарная мощность перекачивающих компрессорных установок достигает 50-60 тыс. кВт на одной станции. При сжатии газа на компрессорной станции ему сообщается значительное количество теплоты. Применение для газопроводов труб большого диаметра вызывает уменьшение удельной теплообменной поверхности труб на единицу количества транспортируемого газа. Поэтому по пути следования к следующей станции газ не может охладиться до необходимой температуры за счет теплоотдачи в окружающую среду, т.е. его температура после каждой станции будет повышаться. Максимальная температура транспортируемого газа ограничивается обеспечением устойчивости газопровода, прочностными характеристиками изоляции, климатическими и геологическими условиями на трассе газопровода. Поэтому возникает необходимость охлаждения газа после сжатия.

В зависимости от перечисленных факторов температура транспортируемого газа должна составлять 40-70°С.

Рисунок 1.2 - Общий вид транспортировки газа

2. Виды аварий на магистральном газопроводе

Доминирующими причинами аварий на магистральных газопроводах являются следующие:

Коррозионное разрушение газопроводов, 48%;

Брак строительно-монтажных работ (СМР), 21%;

Обобщенная группа механических повреждений, 20%;

Заводские повреждения труб 11%.

Где, обобщенная группа механически повреждений следующая:

Случайное повреждение при эксплуатации, 9%;

Террористические акты, 8%;

Природные воздействия, 3%.

Большинство аварий на магистральных трубопроводах ограничивается утечкой газа, равной объему трубы до отключающей арматуры. Или горение факела. Но также возможны большие катастрофы, как например, Железнодорожная катастрофа под Уфой - крупнейшая в истории России и СССР железнодорожная катастрофа, произошедшая 4 июня (3 июня по московскому времени) 1989 года в Иглинском районе Башкирской АССР в 11 км от города Аша (Челябинская область) на перегоне Аша - Улу-Теляк. В момент прохождения двух пассажирских поездов №211 «Новосибирск-Адлер» и №212 «Адлер-Новосибирск» произошёл мощный взрыв облака лёгких углеводородов, образовавшегося в результате аварии на проходящем рядом трубопроводе «Сибирь-Урал-Поволжье». Погибли 575 человек (по другим данным 645), 181 из них - дети, ранены более 600.

На трубе продуктопровода «Западная Сибирь-Урал-Поволжье», по которому транспортировали широкую фракцию лёгких углеводородов (сжиженную газобензиновую смесь), образовалась узкая щель длиной 1,7 м. Из-за протечки трубопровода и особых погодных условий газ скопился в низине, по которой в 900 метрах от трубопровода проходила Транссибирская магистраль, перегон Улу-Теляк - Аша Куйбышевской железной дороги, 1710-й километр магистрали, в 11 километрах от станции Аша, на территории Иглинского района Башкирской АССР.

Примерно за три часа до катастрофы приборы показали падение давления в трубопроводе. Однако вместо того, чтобы искать утечку, дежурный персонал лишь увеличил подачу газа для восстановления давления. В результате этих действий через почти двухметровую трещину в трубе под давлением вытекло значительное количество пропана, бутана и других легковоспламенимых углеводородов, которые скопились в низине в виде «газового озера». Возгорание газовой смеси могло произойти от случайной искры или сигареты, выброшенной из окна проходящего поезда.

Машинисты проходящих поездов предупреждали поездного диспетчера участка, что на перегоне сильная загазованность, но этому не придали значения.

4 июня 1989 года в 01:15 по местному времени (3 июня в 23:15 по московскому времени) в момент встречи двух пассажирских поездов прогремел мощный объёмный взрыв газа и вспыхнул гигантский пожар.

В поездах №211 «Новосибирск-Адлер» (20 вагонов, локомотив ВЛ10-901) и №212 «Адлер-Новосибирск» (18 вагонов, локомотив ЧС2-689) находилось 1284 пассажира (в том числе 383 ребёнка) и 86 членов поездных и локомотивных бригад. Ударной волной с путей было сброшено 11 вагонов, из них 7 полностью сгорели. Оставшиеся 27 вагонов обгорели снаружи и выгорели внутри. По официальным данным 575 человек погибло (по другим данным 645), 623 стали инвалидами, получив тяжёлые ожоги и телесные повреждения. Детей среди погибших - 181.

Официальная версия утверждает, что утечка газа из продуктопровода стала возможной из-за повреждений, нанесённых ему ковшом экскаватора при его строительстве в октябре 1985 года, за четыре года до катастрофы. Утечка началась за 40 минут до взрыва.

По другой версии причиной аварии явилось коррозионное воздействие на внешнюю часть трубы электрических токов утечки, так называемых «блуждающих токов» железной дороги. За 2-3 недели до взрыва образовался микросвищ, затем, в результате охлаждения трубы в месте расширения газа появилась разраставшаяся в длину трещина. Жидкий конденсат пропитывал почву на глубине траншеи, не выходя наружу, и постепенно спускался вниз по откосу к железной дороге.

При встрече двух поездов, вероятно в результате торможения, возникла искра, которая послужила причиной детонации газа. Но скорее всего причиной детонации газа явилась случайная искра из-под пантографа одного из локомотивов.

Рисунок 2.1 - катастрофа под Уфой

3. Поражающие факторы

Поражающие факторы при аварии на магистральном газопроводе:

а) барического воздействия волн сжатия, образующихся за счет расширения в атмосфере природного газа, выброшенного под давлением из разрушенного участка трубопровода («первичная» ударная волна), измеряется как импульс Кпа?с (обильные разрушения начинаются при 100 Кпа?с);

б) барического воздействия воздушных волн сжатия, образующихся при воспламенении газового облака и расширении продуктов его сгорания («вторичная» ударная волна), измеряется как импульс Кпа?с (обильные разрушения начинаются при 100 Кпа?с);

в) термического воздействия огненного шара при воспламенении переобогащенного топливом газового облака, измеряется как температура?С (болевой порог для человека (разрушение кожи) от 50С, разрушение трубопровода 350С);

г) термического воздействия воспламенившихся струй газа, измеряется как температура?С (болевой порог для человека (разрушение кожи) от 50 ?С, разрушение трубопровода 350 ?С).

д) воздействие осколков (или фрагментов) трубы, измеряется как кг.

Объекты поражения: Человек, Газопровода, Рядом находящиеся эксплуатационные объекты, Атмосфера.

Анализ поражающих факторов при аварии в местах пересечения магистральных газопроводов показывает, что при воздействии ударной волны на верхний газопровод в результате расширения газа, выбрасываемого из нижнего газопровода, давление во фронте ударной волны составляет от 6,4 МПа, а значение импульса составляет 88,3 кПа·с. При аварийных разрывах, как показывает анализ статистических данных, возможно образование осколков магистральных газопроводов массой более трех тысяч килограмм. Некоторые фрагменты могут достигать 10 тонн. При этом выброс осколков из траншеи в 75% случаях размером примерно 25 метров на 4,5 происходит на расстояние от 16 до 400 метров. Следует отметить, что при вязком разрушении расстояние выброса может достигать 180 метров, а при хрупком - до 700 метров.

По расчетным методикам получается так, что сквозные пробития верхнего газопровода могут возникнуть когда масса осколков будет превышать 1300 килограмм при прямом ударе и 2800 - при косом. При скорости осколка, равной скорости метания грунта при угле раскрытия нижнего магистрального газопровода равном 30 градусам, верхний газопровод разрушается под воздействием осколочных фрагментов более 240 килограмм. Если угол раскрытия равен 60 градусам, газопровод разрушается от осколка массой 1300 кг.

При тепловом воздействии на смежный аварийному верхний газопровод, получается интересная картина: длина факела может достигнуть нескольких сотен метров, распространение пожара в котловане - до 80 метров, температура в зоне горения достигает 1500 ?С, тепловой поток вырастает до 200 кВт/м?. При воздействии на газопровод теплового потока горящего газа температура разрушения газопровода составляет 330 ?С, а время прошедшее от начала теплового воздействия, до разрушения составляет от трех до пяти минут.

4. Безопасность магистральных газопроводов

Чтобы иметь возможность отключать отдельные участки газопровода для ремонтных работ, а также для сохранения газа во время аварийных разрывов газопровода, на магистральных газопроводах не реже чем через 20-25 км устанавливают запорную отключающую арматуру. Кроме того, запорная арматура устанавливается во всех ответвлениях к потребителям газа, на шлейфах компрессорных станций, на берегах рек и др. Чтобы иметь возможность сбрасывать газ при необходимости опорожнения газопровода, запорную арматуру устанавливают также и на свечах.

Запорная арматура группируется в линейные отключающие устройства. В неё входит:

ь Запорная арматура с байпасом (например, кран);

ь Продувочные свечи (расположены от крана 5 - 15 м);

ь Свечи предназначены для сбрасывания газа в атмосферу.

В качестве запорной арматуры применяются краны, задвижки и вентили.

Кранами называется такая запорная арматура, которая закрывает или открывает проход жидкости или газа путем поворота пробки.

По конструкции краны делятся на простые поворотные краны с выдвижной пробкой и краны с принудительной смазкой, по способу присоединения к трубопроводу - на фланцевые, муфтовые и с концами под приварку, по роду управления - с ручным управлением, с пневмоприводом и с пневмогидравлическим приводом. Последние имеют дублирующий ручной привод.

На магистральных газопроводах применяются краны с принудительной смазкой на давление до 64 кГ/см? типа 11с320бк и 11с321бк, а также краны со сферическим затвором.

Задвижки

Запорная арматура, в которой проход открывается путем подъема плоского диска перпендикулярно движению среды, называется задвижкой.

На магистральных газопроводах применяют только стальные задвижки на давление до 64 кГ/см? с условным проходом от 50 до 600 мм. Для задвижек, устанавливаемых на подземных участках газопровода, строятся специальные колодцы, дающие возможность обслуживать арматуру (набивать и подтягивать сальники, смазывать, красить и т. д.). Присоединительные концы задвижек делаются как под приварку, так и для фланцевого соединения.

На магистральных газопроводах вентили применяются главным образом как запорная арматура на контрольно-измерительных приборах, конденсатосборниках, узлах запорных устройств, редуцирующих установках и др.

Линейные отключающие узлы с задвижками монтируют в специальных бетонных или кирпичных колодцах с раскрывающимися на две половины крышками, промежуточным полом (из съемных щитов) и металлической лестницей для спуска в колодец. Подземная часть колодца тщательно изолируется от попадания влаги. В сменках колодца, через который проходит газопровод, устанавливаются патроны; зазоры между ними и трубой уплотняются с помощью сальникового устройства. Трубы и арматура в колодцах должны быть тщательно вычищены и покрыты водостойкими красками.

На рисунке показаны схемы различных конструкций линейных отключающих узлов, оборудованных кранами. Как видно из рисунка, линейные отключающие узлы, предназначенные для перекрытия основной магистрали газопровода, имеют свечи по обе стороны отключающего крана для сбрасывания газа на любом из двух участков газопровода. На отключающем кране отвода от магистрального газопровода устанавливается только одна свеча за краном по направлению газа. На двухниточных переходах продувочные свечи устанавливаются на основной и резервной нитках между отключающими узлами и на основной нитке до узлов.

Коррозия металлов трубопровода

Коррозия металлов - химический или электрохимический процесс разрушения их под воздействием окружающей среды. Процессы разрушения протекают относительно медленно и самопроизвольно.

На эксплуатационное состояние подземных трубопроводов оказывает воздействие электрохимическая коррозия. Электрохимическая коррозия - коррозия металлов в электролитах, сопровождающаяся образованием электрического тока. Процесс разрушения подземных трубопроводов происходит под воздействием окружающей среды (почвенного электролита). При взаимодействии металла трубы с окружающей средой поверхность трубопровода разделяется на положительные (анодные) и отрицательные (катодные) участки. Между этими участками от анода к катоду протекает электрический ток (ток коррозии), который разрушает трубопровод в местах анодных зон.

Основными факторами, определяющими коррозионную активность грунтов, являются электропроводимость, кислотность, влажность, солевой и щелочной состав, температура и воздухопроницаемость.

Разрушение подземных трубопроводов может происходить также и под воздействием блуждающих токов (электрокоррозия). Коррозия металла в этом случае связана с проникновением на трубу токов утечки с рельсов электрифицированного транспорта или других промышленных установок постоянного тока.

Способы защиты магистральных газопроводов от электрохимической коррозии пассивный и активный.

Пассивная защита включает покрытие поверхности газопровода противокоррозионной изоляцией.

К активным способам защиты газопроводов от коррозии относится электрическая, которая включает катодную, протекторную и дренажную защиты. Электрозащита дополняет пассивную защиту, чем обеспечивается предохранение газопроводов от почвенной коррозии.

Сущность катодной защиты заключается в катодной поляризации посторонним источником постоянного тока металлической поверхности трубы газопровода, соприкасающегося с землей. Поляризация осуществляется током, входящим из грунта в трубу. Труба при этом является катодом по отношению к грунту.

Сценарий событий

Возможные сценарии событий на магистральных трубопроводах:

Сценарий №1, Весенняя подвижка грунтов > Дополнительные напряжения в трубопроводе > Разрыв газопровода > Утечка газа > рассеивание утечки.

Сценарий №2, Образование трещины по продольному сварному шву > утечка газа > проникновение газа по грунту в кирпичный колодец линейного сооружения > образование газовоздушной смеси > Образование искры > Взрыв газовоздушной смеси.

Сценарий №3, Нарушение изоляции трубопровода > коррозия трубопровода > утончение стенки трубы > разрушение газопровода > утечка газа > рассеивание утечки.

Сценарий №4, Нарушение целостности газопровода внешним воздействием > утечка газа > факельное горение.

Сценарий №5, Температурные нагрузки на газопровод > усталостное разрушение труб > разрыв газопровода > утечка газа > факельное горение

Дерево событий

Ниже представлено дерево отказов, головным событием которого является аварийная разгерметизация газопровода.

Минимальные пропускные сочетания - это набор исходных событий-предпосылок, обязательного (одновременного) возникновения, которых достаточно для появления головного события (аварий).

Минимальные базовые сочетания - уравнения для головного события.

Уравнение головного события для данного дерева отказа будет:

TOP = 1.2 + 3 + 4.5 + 6 + 7

магистральный газопровод авария коррозия

Тогда расчет вероятности реализации событий для головного события, следующий:

Qtop = 1.2 + 3 + 4.5 + 6 + 7 = 0.0065525 или в процентах 0.65525%

Или вероятность событий:

Произойдет событие БРАК СМР = 0.05525%

Произойдет событие Заводской дефект труб = 0.6%.

Размещено на Allbest.ru

Подобные документы

    Использование в России трубопроводного транспорта как одного из эффективных и экономичных средств газообразных веществ. Причины коррозии на трубопроводе, аварий на нефтепроводах, газопроводе, водопроводе. Спасение пострадавших при пожарах и взрывах.

    реферат , добавлен 24.12.2015

    Состояние системы подземных трубопроводов в РФ на 2008 год. Применение новых технологий. Аварии на нефтепроводах; газопроводе; водопроводе. Последствия аварий на трубопроводах. Самоспасение и спасение пострадавших при пожарах и взрывах на трубопроводах.

    реферат , добавлен 30.04.2008

    Технические характеристики аварий. Факторы радиационной опасности. Возможные пути облучения при нахождении личного состава в районе аварийной АЭС. Оценка радиационной обстановки при аварии. Лечебно-профилактические работы в очагах, их основные этапы.

    презентация , добавлен 23.08.2015

    Признаки аварии на магистральном трубопроводном транспорте. Вид ответственности должностных и юридических лиц за невыполнение требований правил по предупреждению и ликвидации чрезвычайных ситуаций. Аварии на хранилищах сжатого газа и их устранение.

    контрольная работа , добавлен 14.02.2012

    Основное понятие об авариях, примерный их перечень. Человеческий фактор как одна из причин аварий. Анализ аварий на шахте "Западная-Капитальная" (Ростовская обл., г. Новошахтинск), шахтах "Ак Булак комур", "Комсомольская", "Юбилейная", "Ульяновская".

    реферат , добавлен 06.04.2010

    Виды аварий на радиационно-опасных объектах. Особенности аварий атомной энергетики. Основные фазы протекания аварий, принципы организации и проведения защитных мероприятий. Расчет уровня шума в жилой застройке. Расчет общего производственного освещения.

    реферат , добавлен 12.04.2014

    Причины техногенных аварий. Аварии на гидротехнических сооружениях, на транспорте. Краткая характеристика крупных аварий и катастроф. Спасательные и неотложные аварийно-восстановительные работы при ликвидации крупных аварий и катастроф.

    реферат , добавлен 05.10.2006

    Виды безопасностей. Классификация чрезвычайных ситуаций. Основные поражающие факторы при радиационной аварии. Принципы защиты от ионизирующего излучения. Вредные, опасные факторы производственной среды. Воздействие на организм тока, ультразвука.

    шпаргалка , добавлен 03.02.2011

    Действие сильнодействующих ядовитых веществ на население, защита от них. Характеристика вредных и сильнодействующих ядовитых веществ. Аварии с выбросом СДЯВ. Последствия аварий на химически опасных объектах. Профилактика возможных аварии на ХОО.

    лекция , добавлен 16.03.2007

    Классификация чрезвычайных ситуаций. Краткая характеристика аварий и катастроф, характерных для Республики Беларусь. Аварии на химически опасных, пожаро- и взрывоопасных объектах. Обзор стихийных бедствий. Возможные чрезвычайные ситуации для г. Минска.