Как держать форму. Массаж. Здоровье. Уход за волосами

Охарактеризовать способы получения карбоновых кислот. Отдельные представители карбоновых кислот и их значение

Способы получения . 1 . Окисление альдегидов и первичных спиртов - общий способ получения карбоновых кислот. В ка­честве окислителей применяются />K М n О 4 и K 2 С r 2 О 7 .

2 Другой общий способ - гидролиз галогензамещенных угле­водородов, содержащих, три атома галогена у одного атома уг­лерода. При этом образуются спирты, содержащие группы ОН у одного атома углерода - такие спирты неустойчивы и отщепля­ют воду с образованием карбоновой кислоты:/>

ЗNаОН
R-CCl 3 R — COOH + Н 2 О
-3NaCl

3 . Получение карбоновых кислот из цианидов (нитрилов) - это важный способ, позволяющий наращивать углеродную цепь при получении исходного цианида. Дополнительный атом угле­рода вводят в состав молекулы, используя реакцию замещения галогена в молекуле галогенуглеводорода цианидом натрия, например:/>

СН 3 -В r + NaCN → CH 3 — CN + NaBr .

Образующийся нитрил уксусной кислоты (метилцианид) при на­гревании легко гидролизуется с образованием ацетата аммония:

CH 3 CN + 2Н 2 О → CH 3 COONH 4 .

При подкислении раствора выделяется кислота:

CH 3 COONH 4 + HCl → СН 3 СООН + NH 4 Cl .

4 . Использование реактива Гриньяра по схеме:/>

Н 2 О
R — MgBr + СО 2 → R — COO — MgBr → R — COOH + Mg (OH ) Br

5 . Гидролиз сложных эфиров:/>

R — COOR 1 + КОН → R — COOK + R ‘ OH ,

R — COOK + HCl R COOH + KCl .

6 . Гидролиз ангидридов кислот:/>

(RCO ) 2 O + Н 2 О → 2 RCOOH .

7 . Для отдельных кислот существуют специфические спосо­бы получения./>

Муравьиную кислоту получают нагреванием оксида углерода (II ) с порошкообразным гидроксидом натрия под давлением и об­работкой полученного формиата натрия сильной кислотой:

Уксусную кислоту получают каталитическим окислением бу­тана кислородом воздуха:

2С 4 Н 10 + 5 O 2 → 4СН 3 СООН + 2Н 2 О.

Для получения бензойной кислоты можно использовать окис­ление монозамешенных гомологов бензола кислым раствором перманганата калия:

5С 6 Н 5 -СН 3 + 6 KMnO 4 + 9 H 2 SO 4 = 5С 6 Н 5 СООН + 3 K 2 SO 4 + 6 MnSO 4 + 14 H 2 O .

Кроме того, бензойную кислоту можно получить из бензальдегида с помощью реакции Канниццаро . В этой реакции бензальдегид обрабатывают 40-60%-ным раствором гидроксида натрия при комнатной температуре. Одновременное окисление и восстано­вление приводит к образованию бензойной кислоты и соответ­ственно фенилметанола (бензилового спирта):

Химические свойства . Карбоновые кислоты - более силь­ные кислоты, чем спирты, поскольку атом водорода в карбок­сильной группе обладает повышенной подвижностью благодаря влиянию группы СО. В водном растворе карбоновые кислоты диссоциируют:/>

RCOOH RCOO — + Н +

Тем не менее из-за ковалентного характера молекул карбоно­вых кислот указанное выше равновесие диссоциации достаточно сильно сдвинуто влево. Таким образом, карбоновые кислоты - это, как правило, слабые кислоты. Например, этановая (уксусная) кислота характеризуется константой диссоциации К а = 1,7*10 -5 . />

Заместители, присутствующие в молекуле карбоновой кисло­ты, сильно влияют на ее кислотность вследствие оказываемого ими индуктивного эффекта . Такие заместители, как хлор или фенильный радикал оттягивают на себя электронную плотность и, следовательно, вызывают отрицательный индуктивный эффект (-/). Оттягивание электронной плотности от карбоксильного ато­ма водорода приводит к повышению кислотности карбоновой кислоты. В отличие от этого такие заместители, как алкильные группы, обладают электронодонорными свойствами и создают положительный индуктивный эффект, +I. Они понижают кислот­ность. Влияние заместителей на кислотность карбоновых кислот наглядно проявляется в значениях констант диссоциации K a для ряда кислот. Кроме того, на силу кислоты оказывает влияние наличие сопряженной кратной связи.

Карбоновые кислоты Формула K a

Пропионовая CH 3 CH 2 COOH 1,3*10 -5

Масляная CH 3 CH 2 CH 2 COOH 1,5*10 -5

Уксусная CH 3 COOH 1,7*10 -5

Кротоновая CH 3 — CH = CH — COOH 2,0*10 -5

Винилуксусная CH 2 =CH-CH 2 COOH 3,8*10 -5

Акриловая CH 2 =CH-COOH 5,6*10 -5

Муравьиная HCOOH 6,1*10 -4

Бензойная C 6 H 5 COOH 1,4*10 -4

Хлоруксусная CH 2 ClCOOH 2,2*10 -3

Тетроновая CH 3 — C ≡ C — COOH 1,3*10 -3

Дихлоруксусная CHCl 2 COOH 5,6*10 -2

Щавелевая HOOC — COOH 5,9*10 -2

Трихлоруксусная CCl 3 COOH 2,2*10 -1

Взаимное влияние атомов в молекулах дикарбоновых кислот приводит к тому, что они являются более сильными, чем одноос­новные.

2. Образование солей. Карбоновые кислоты обладают всеми свойствами обычных кислот. Они реагируют с активными метал­лами, основными оксидами, основаниями и солями слабых кис­лот:

2 RCOOH + М g → (RCOO ) 2 Mg + Н 2 ,

2 RCOOH + СаО → (RCOO ) 2 Ca + Н 2 О,

RCOOH + NaOH RCOONa + Н 2 О,

RCOOH + NaHCO 3 → RCOONa + Н 2 О + СО 2 .

Карбоновые кислоты - слабые, поэтому сильные минераль­ные кислоты вытесняют их из соответствующих солей:

CH 3 COONa + HCl → СН 3 СООН + NaCl .

Соли карбоновых кислот в водных растворах гидролизованы:

СН 3 СООК + Н 2 О СН 3 СООН + КОН.

Отличие карбоновых кислот от минеральных заключается в возможности образования ряда функциональных производных.

3 . Образование функциональных производных карбоновых кис­лот. При замещении группы ОН в карбоновых кислотах различ­ными группами (/>X ) образуются функциональные производные кислот, имеющие общую формулу R -СО- X ; здесь R означает алкильную либо арильную группу. Хотя нитрилы имеют другую общую формулу (R - CN ), обычно их также рас­сматривают как производные карбоновых кислот, поскольку они могут быть получены из этих кислот.

Хлорангидриды получают действием хлорида фосфора (V ) на кислоты:

R-CO-OH + РС l 5 → R-CO-Cl + РОС l 3 + HCl .

Соединение примеры

Кислота

Этановая(уксусная) Бензойная кислота

хлорангидрит кислоты

Этаноилхлорид Бензоилхлорид

(ацетилхлорид)

ангидрид кислоты

Этановый(уксусный) бензойный ангидрит

Ангидрит

сложый эфир

Этилэтаноат(этилацетат) Метилбензоат

амид

Этанамид(ацетамид) Бензамид

Нитрил

Этаннитрил Бензонитрил

(ацетонитрил)

Ангидриды образуются из карбоновых кислот при действии водоотнимающих средств:

2 R — CO — OH + Р 2 О 5 → (R — CO -) 2 O + 2НРО 3 .

Сложные эфиры образуются при нагревании кислоты со спир­том в присутствии серной кислоты (обратимая реакция этерификации):

Механизм реакции этерификации был установлен методом "меченых атомов".

Сложные эфиры можно также получить при взаимодействии хлорангидридов кислот и алкоголятов щелочных металлов:

R-CO-Cl + Na-O-R’ → R-CO-OR’ + NaCl .

Реакции хлорангидридов карбоновых кислот с аммиаком при­водят к образованию амидов :

СН 3 -СО-С l + CН 3 → СН 3 -СО-CН 2 + HCl .

Кроме того, амиды могут быть получены при нагревании ам­монийных солей карбоновых кислот:

При нагревании амидов в присутствии водоотнимающих средств они дегидратируются с образованием нитрилов :

Р 2 0 5
CH 3 — CO — NH 2

CH 3 — C ≡ N + Н 2 О

Функциональные производные низших кислот — летучие жидкости. Все они легко гидролизуются с образованием исходной кислоты:

R-CO-X + Н 2 О →R-CO-OH + НХ .

В кислой среде эти реакции могут быть обратимы. Гидролиз в щелочной среде необратим и приводит к образованию солей кар­боновых кислот, например:

R-CO-OR ‘ + NaOH → R-CO-ONa + R’OH.

4 . Ряд свойств карбоновых кислот обусловлен наличием угле­водородного радикала. Так, при действии галогенов на кислоты в присутствии красного фосфора образуются галогензамещенные кислоты, причем на галоген замещается атом водорода при со­седнем с карбоксильной группой атоме углерода (а-атоме):/>

р кр

СН 3 -СН 2 -СООН + Вr 2

СН 3 -СНВr-СООН + НВr

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН 2 =СН-СООН + Н 2 → СН 3 -СН 2 -СООН,

СН 2 =СН-СООН + С l 2 → СН 2 С l -СНС l -СООН,

СН 2 =СН-СООН + HCl → СН 2 С l -СН 2 -СООН,

СН 2 =СН-СООН + Н 2 O → НО-СН 2 -СН 2 -СООН,

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации .

5 . Окислительно-восстановительные реакции карбоновых кислот./>

Карбоновые кислоты при действии восстановителей в при­сутствии катализаторов способны превращаться в альдегиды, спирты и даже углеводороды:

Муравьиная кислота НСООН отличается рядом особенностей, поскольку в ее составе есть альдегидная группа:

Муравьиная кислота - сильный восстановитель и легко окис­ляется до СО 2 . Она дает реакцию "серебряного зеркала" :

НСООН + 2OH 2Ag + (NH 4) 2 CO 3 + 2NH 3 + H 2 O,

или в упрощенном виде:

C Н 3 НСООН + Аg 2 О → 2Аg + СО 2 + Н 2 О.

Кроме того, муравьиная кислота окисляется хлором:

НСООН + Сl 2 → СО 2 + 2 HCl .

В атмосфере кислорода карбоновые кислоты окисляются до СО 2 и Н 2 О:

СН 3 СООН + 2О 2 → 2СО 2 + 2Н 2 О.

6 . Реакции декарбоксширования . Насыщенные незамещенные монокарбоновые кислоты из-за большой прочности связи С-С при нагревании декарбоксилируются с трудом. Для этого необхо­димо сплавление соли щелочного металла карбоновой кислоты со щелочью:/>

Появление электронодонорных заместителей в углеводород­ном радикале способствует реакции декарбоксилирования :

Двухосновные карбоновые кислоты легко отщепляют СО 2 при нагревании:

Все началось с уксуса, по крайней мере, открытие карбоновых кислот . Название объединяет органические соединения, содержащие карбоксильную группу COOH.

Важно расположение атомов именно в таком порядке, поскольку есть и другие кислородосодержащие соединения.

Уксусную из карбоновых открыли первой, но ее строение многие века оставалось тайной. Вещество знали, как продукт скисания вин.

Как соединение 2-ух атомов , 4-ех и 2-ух кислорода стала известна миру лишь в 18-ом столетии.

После, открыли целый ряд карбоновых . Ознакомимся с их классификацией, общими свойствами и областями применения.

Свойства карбоновых кислот

Отличаясь от другой органики наличием карбоксильных групп, карбоновые кислоты классифицируются по их числу.

Есть одно-, двух-, и многоосновные соединения. Одноосновные карбоновые кислоты выделяются связью между карбоксильной группой и углеводородным радикалом.

Соответственно, общая формула веществ группы: — C n H 2 n +1 COOH. Уксусная – одноосновная. Ее химическая запись: — CH 3 COOH. Еще проще строение соединения: — COCOOH.

К простейшим отнесена и с формулой C 2 H 5 COOH. У остальных соединений одноосновного ряда есть изомеры, то есть, разные варианты строения.

У муравьиной же, уксусной и пропионовой есть лишь один план строения.

Если у карбоновой кислоты формула с двумя карбоксильными группами, она может называться диосновной.

Общая запись веществ категории: — COOH-R-COOH. Как видно, карбоксильные группы располагаются по разные стороны линейной молекулы.

В многоосновных карбоксильных радикалов, как минимум три. Два стоят по краям молекулы, а остальные крепятся к центральным атомам углерода. Такова, к примеру, лимонная . Пространственная запись ее формулы: —

Подразделяют карбоновые соединения и по характеру углеводородного радикала. Химические связи между его атомами могут быть одинарными.

В этом случае перед нами предельные карбоновые кислоты. Наличие двойных связей указывает на непредельные вещества.

Формула непредельных карбоновых кислот может одновременно являться записью высших представителей класса.

Высшими называют соединения, в которых боле 6-ти атомов углерода. Соответственно, от 1-го до 5-ти атомов углерода – признак низших веществ.

Высшие карбоновые кислоты – это, к примеру, , , линоленовая, пальмитиновая и арихидоновая. В полследней 21 атом углерода, в остальных по 18.

Имея органическое происхождение, большинство карбоновых пахнут, хотя бы слегка. Однако, есть группа особенно ароматных.

В их состав входит бензольное ядро. То есть, группы являются производными бензола. Его формула: — C 6 H 6 .

У вещества сладковатый запах. Поэтому, карбоновые с бензольным ядром именуют ароматическими. Причем, обязательна прямая связь ядра и карбоксильных групп.

По физическому состоянию карбоновые бывают, как жидкими, так кристаллическими. Имеется в виду агрегатность веществ при обычных условиях.

Часть соединений растворима в воде, другая часть смешивается лишь с органикой. Нюансы химического поведения зависят от количества в молекулах карбоксильных групп.

Так, типичная реакция карбоновых кислот одноосновной категории– окрашивание лакмусовой в цвет.

Классикой, так же, считается взаимодействие с галогенами, тогда как дикарбоновые соединения могут образовывать эфиры карбоновых кислот. Они «рождаются» во взаимодействии со спиртами.

Карбоновая кислота с двумя основаниями всегда содержит метиленовую группу, то есть, двухвалентную CH 2 .

Ее наличие между карбоксильными группами повышает кислотность атомов водорода. Поэтому, возможна конденсация производных . Это еще одно объяснение появления эфиров.

Двухосновные соединения образуют, так же, соли карбоновых кислот . Они используются на производстве моющих средств, в частности, мыла.

Впрочем, о том, где пригождаются карбоновые кислоты и их соединения, поговорим отдельно.

Применение карбоновых кислот

В производстве мыла особенно важны стеариновая и пальмитиновая кислоты. То есть, используются высшие соединения.

Они делают мыльные брикеты твердыми и позволяют смешать фракции, расслаивающие без присутствия кислот.

Способность делать массы однородными пригождается и на производстве лекарств. Большинство связующих элементов в них – карбоновые кислоты.

Соответственно, применение реагентов внутрь, как и наружно, безопасно. Главное, знать предельную дозировку.

Превышение дозы, или концентрации кислот, ведет к разрушительным последствиям. Возможны химические ожоги, отравления.

Зато, едкость соединений наруку металлургам, мебельщикам, рестовраторам. Им карбоновые кислоты и смеси с ними помогают полировать и очищать неровные, заржавевшие поверхности.

Растворяя верхний слой металла, реагенты улучшают его внешний вид и эксплуатационные характеристики.

Химические карбоновые кислоты могут быть очищенными, или же, техническими. Для работы с металлами подойдут и последние.

Но, в качестве косметических и лекарственных средств применяют лишь высокоочищенные соединения. Такие нужны и в пищевой промышленности.

Около трети карбоновых кислот – официально зарегистрированные добавки, известные простым обывателям, как ешки.

На упаковках они отмечаются букврй Е и порядковым номером рядом с ней. Уксусная кислота, к примеру, пишется, как Е260.

Пищей карбоновые кислоты могут служить и для растений, входя в состав удобрений. Одновременно, можно создавать яды для вредоносных насекомых и сорняков.

Идея заимствована из природы. Ряд растений самостоятельно вырабатывают карбоновые кислоты, дабы близ них не было других трав, конкурирующих за почву и ее ресурсы. При этом, вырабатывающие яд растения, сами имеют к нему иммунитет.

Около трети карбоновых соединений используют в качестве протрав для тканей. Обработка необходима, чтобы материи равномерно окрашивались. С этой же целью реактивы применяют в кожевенной промышленности.

Добыча карбоновых кислот

Поскольку карбоновые кислоты биогенны, около 35% из них получают из природных продуктов. Но, химический синтез выгоднее.

Поэтому, при возможности переходят на него. Так, гиалуроновую кислоту, используемую для омоложения, долгое время добывали из пуповин младенцев и крупного рогатого скота.

Теперь же, соединение получают биохимическим способом, выращивая на пшеничном субстрате бактерий, беспрерывно дающих кислоту.

Получение карбоновых кислот чисто химическим путем – это окисление спиртов и альдегидов.

Под последним понятием скрываются спирты, лишенные водорода. Реакция протекает так: — СН 3 – СН 2 ОН → СН 3 – СОН → СН 3 – СООН.

Ряд карбоновых кислот получают гидролизом сложных эфиров. Получая в свой состав воду, они преобразуются в героинь .

Сформировать их можно и из моногалогенпроизводных. Кислоты из них получаются под действием цианида . Полупродукт реакции необходимо разложить водой.

От схемы производства, количества его ступеней, расходных материалов, во многом зависит стоимость конечных продуктов. Узнаем, каков ценник на карбоновые кислоты в их чистом виде.

Цена карбоновых кислот

Большинство карбоновых кислот продают большими объемами. Фасуют, обычно, по 25-35 килограммов. Жидкости разливают в канистры.

Порошки засыпают в полиэтиленовые пакеты, а стеариновую кислоту, вообще, заворачивают в . Ценник, обычно, выставляется за кило.

Так, 1000 граммов лимонной кислоты стоит в районе 80-ти рублей. Столько же берут за муравьиную и щавелевую.

Стоимость олеиновой – около 130-ти рублей за килограмм. Салициловая кислота оценивается уже в 300. Стеариновая кислота на 50-70 рублей дешевле.

Ряд карбоновых кислот оценивается в долларах, поскольку основные поставки ведутся из США и стран Евросоюза.

Оттуда поступает, к примеру, гиалуроновая кислота. За килограмм отдают уже не пару сотен рублей, а несколько сот баксов.

Отечественный продукт присутствует, но ему не доверяют, в первую очередь, клиенты красоты.

Они знают, что омоложение с помощью гиалуроновой кислоты – придумка американцев, практикуемая ими полвека.

Соответственно, велика практика производства препарата, который должен быть качественным, ведь попадает в кожу и организм.

Карбоновыми кислотами называют соединения, в которых содержится карбоксильная группа:

Карбоновые кислоты различают:

  • одноосновные карбоновые кислоты;
  • двухосновные (дикарбоновые) кислоты (2 группы СООН ).

В зависимости от строения карбоновые кислоты различают:

  • алифатические;
  • алициклические;
  • ароматические.

Примеры карбоновых кислот.

Получение карбоновых кислот.

1. Окисление первичных спиртов перманганатом калия и дихроматом калия:

2. Гибролиз галогензамещенных углеводородов, содержащих 3 атома галогена у одного атома углерода:

3. Получение карбоновых кислот из цианидов:

При нагревании нитрил гидролизуется с образованием ацетата аммония:

При подкисления которого выпадает кислота:

4. Использование реактивов Гриньяра:

5. Гидролиз сложных эфиров:

6. Гидролиз ангидридов кислот:

7. Специфические способы получения карбоновых кислот:

Муравьиная кислота получается при нагревании оксида углерода (II) с порошкообразным гидроксидом натрия под давлением:

Уксусную кислоту получают каталитическим окислением бутана кислородом воздуха:

Бензойную кислоту получают окислением монозамещенных гомологов раствором перманганата калия:

Реакция Каннициаро . Бензальдегид обрабатывают 40-60% раствором гидроксида натрия при комнатной температуре.

Химические свойства карбоновых кислот.

В водном растворе карбоновые кислоты диссоциируют:

Равновесие сдвинуто сильно влево, т.к. карбоновые кислоты являются слабыми.

Заместители влияют на кислотность вследствие индуктивного эффекта. Такие заместители оттягивают электронную плотность на себя и на них возникает отрицательный индуктивный эффект (-I). Оттягивание электронной плотности приводит к повышению кислотности кислоты. Электронодонорные заместители создают положительный индуктивный заряд.

1. Образование солей. Реагирование с основными оксидами, солями слабых кислот и активными металлами:

Карбоновые кислоты - слабые, т.к. минеральные кислоты вытесняют их из соответствующих солей:

2. Образование функциональных производных карбоновых кислот:

3. Сложные эфиры при нагревании кислоты со спиртом в присутствие серной кислоты - реакция этерификации:

4. Образование амидов, нитрилов:

3. Свойства кислот обуславливаются наличием углеводородного радикала. Если протекает реакция в присутствие красного фосфора, то образует следующий продукт:

4. Реакция присоединения.

8. Декарбоксилирование. Реакцию проводят сплавлением щелочи с солью щелочного металла карбоновой кислоты:

9. Двухосновная кислота легко отщепляет СО 2 при нагревании:

Дополнительные материалы по теме: Карбоновые кислоты.

Калькуляторы по химии

Химия онлайн на нашем сайте для решения задач и уравнений.

Химические соединения, основу которых составляет одна и более групп СООН, получили определение карбоновые кислоты.

В основу соединений входит группа СООН, имеющая два составляющих – карбонил и гидроксил. Группу атомов СООН называют карбоксильной группой (карбоксилом). Взаимодействие элементов обеспечивается сочетанием двух атомов кислорода и атома углерода.

Строение карбоновых кислот

Углеводородный радикал в одноосновных предельных кислотах соединяется с одной группой СООН. Общая формула карбоновых кислот выглядит так: R-COOH.

Строение карбоновой группы влияет на химические свойства.

Номенклатура

В названии карбоновых соединений сначала нумеруют атом углерода группы COOH. Количество карбоксильных групп обозначают приставками ди-; три-; тетра-.

Например,СН3-СН2-СООН – формула пропановой кислоты.

У карбоновых соединений существуют и привычные слуху названия: муравьиная, уксусная, лимонная…Все это названия карбоновых кислот.

Названия солей карбоновых соединений получаются из названий углеводорода с добавлением суффикса “-оат” (СООК)2- этандиот калия.

Классификация карбоновых кислот

Карбоновые кислоты классификация .

По характеру углеводорода:

  • предельные;
  • непредельные;
  • ароматические.

По количеству групп СООН бывают:

  • одноосновные (уксусная кислота);
  • двуосновные (щавелевая кислота);
  • многоосновные (лимонная кислота).

Предельные карбоновые кислоты – соединения, в которых радикал соединен с одним карбонилом.

Классификация карбоновых кислот разделяет их еще и по строению радикала, с которым связан карбонил. По этому признаку соединения бывают алифатические и алициклические.

Физические свойства

Рассмотрим карбоновые кислоты физические свойства.

Карбоновые соединения имеют различное число атомов углерода. В зависимости от этого числа физические свойства этих соединений различаются.

Соединения, имеющие в составе от одного до трех углеродных атомов, считаются низшими. Это жидкости без цвета с резким запахом. Низшие соединения с легкостью растворяются в воде.

Соединения, имеющие в составе от четырех до девяти углеродных атомов – маслянистые жидкости, имеющие неприятный запах.

Соединения, имеющие в составе более девяти углеродных атомов, считаются высшими и физические свойства этих соединений таковы: они являются твердыми веществами , их невозможно растворить в воде.

Температура кипения и плавления зависит от молекулярной массы вещества. Чем больше молекулярная масса, тем выше температура кипения. Для закипания и плавления нужна более высокая температура, чем спиртам.

Существует несколько способов получения карбоновых кислот .

При химических реакциях проявляются следующие свойства:

Применение карбоновых кислот

Карбоновые соединения распространены в природе.Поэтому их применяют во многих областях: в промышленности (легкой и тяжелой), в медицине и сельском хозяйстве , а также в пищевой промышленности и косметологии.

Ароматические в большом количестве содержатся в ягодах и фруктах.

В медицине используют молочную, винную и аскорбиновую кислоту. Молочную применяют в качестве прижигания, а винную – как легкое слабительное. Аскорбиновая укрепляет иммунитет.

В косметологии используются фруктовые и ароматические. Благодаря им клетки быстрее обновляются. Аромат цитрусовых способен оказать тонизирующее и успокаивающее действие на организм. Бензойная встречается в бальзамах и эфирных маслах, она хорошо растворяется в спирте.

Высокомолекулярные непредельные соединения встречаются в диетологии. Олеиновая в этой области наиболее распространена.

Полиненасыщенные с двойными связями (линолевая и другие) обладают биологической активностью. Их еще называют активными жирными кислотами. Они участвуют в обмене веществ, влияют на зрительную функцию и иммунитет, а также на нервную систему. Отсутствие этих веществ в пище или недостаточное их употребление затормаживает рост животных и оказывает негативное влияние на их репродуктивную функцию.

Сорбиновая получается из ягод рябины. Она является отличным консервантом .

Акриловая имеет едкий запах. Она применяется для получения стекла и синтетических волокон.

На основе реакции этирификации происходит синтез жира, который применяют при изготовлении мыла, а также моющих средств.

Муравьиная используется в медицине , в пчеловодстве, а также в качестве консервантов.

Уксусная – жидкость без цвета с резким запахом; легко смешивается с водой. Ее широко применяют в пищевой промышленности в качестве приправы. Также она используется при консервации. Еще она обладает свойствами растворителя. Поэтому широко применяется в производстве лаков и красок, при крашении. На ее основе изготавливают сырье для борьбы с насекомыми и сорняками.

Стеариновая и пальмитиновая (высшие одноосновные соединения) являются твердыми веществами и не растворяются в воде. Но их соли применяются в производстве мыла. Они делают брикеты мыла твердыми.

Поскольку соединения способны придавать однородность массам, то они широко используются в изготовлении лекарств.

Растения и животные также вырабатывают карбоновые соединения. Поэтому употреблять их внутрь безопасно. Главное, – соблюдать дозировку. Превышение дозы и концентрации ведет к ожогам и отравлениям.

Едкость соединений приносит пользу в металлургии, а также реставраторам и мебельщикам. Смеси на их основе позволяют выравнивать поверхности и очищать ржавчину.

Сложные эфиры, получаемые при реакции этерификации, нашли свое применение в парфюмерии. Они используются также в качестве компонентов лаков и красок, растворителей. А также как аромадобавки.

Образование галогеналканов при взаимодействии спиртов с галогеноводородами - обратимая реакция. Поэтому понятно, что спирты могут быть получены при гидролизе галогеналканов - реакции этих соединений с водой:

Многоатомные спирты можно получить при гидролизе галогеналканов, содержащих более одного атома галогена в молекуле. Например:

Гидратация алкенов

Гидратация алкенов - присоединение воды по π — связи молекулы алкена, например:

Гидратация пропена приводит в соответствии с правилом Марковникова к образованию вторичного спирта - пропанола-2:

Гидрирование альдегидов и кетонов

Окисление спиртов в мягких условиях приводит к образованию альдегидов или кетонов. Очевидно, что спирты могут быть получены при гидрировании (восстановлении водородом, присоединении водорода) альдегидов и кетонов:

Окисление алкенов

Гликоли, как уже отмечалось, могут быть получены при окислении алкенов водным раствором перманганата калия. Например, этиленгликоль (этандиол-1,2) образуется при окислении этилена (этена):

Специфические способы получения спиртов

1. Некоторые спирты получают характерными только для них способами. Так, метанол в промышленности получают реакцией взаимодействия водорода с оксидом углерода (II) (угарным газом) при повышенном давлении и высокой температуре на поверхности катализатора (оксида цинка):

Необходимую для этой реакции смесь угарного газа и водорода, называемую также «синтез-газ», получают при пропускании паров воды над раскаленным углем:

2. Брожение глюкозы . Этот способ получения этилового (винного) спирта известен человеку с древнейших времен:

Основными способами получения кислородсодержащих соединений (спиртов) являются: гидролиз галогеналканов, гидратация алкенов, гидрирование альдегидов и кетонов, окисление алкенов, а также получение метанола из «синтез-газа» и сбраживание сахаристых веществ.

Способы получения альдегидов и кетонов

1. Альдегиды и кетоны могут быть получены окислением или дегидрированием спиртов . При окислении или дегидрировании первичных спиртов могут быть получены альдегиды, а вторичных спиртов - кетоны:

3CH 3 –CH 2 OH + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –CHO + K 2 SO 4 + Cr 2 (SO 4) 3 + 7H 2 O

2. Реакция Кучерова. Из ацетилена в результате реакции получается уксусный альдегид, из гомологов ацетилена - кетоны:

3. При нагревании кальциевых или бариевых солей карбоновых кислот образуются кетон и карбонат металла:

Способы получения карбоновых кислот

1. Карбоновые кислоты могут быть получены окислением первичных спиртов или альдегидов :

3CH 3 –CH 2 OH + 2K 2 Cr 2 O 7 + 8H 2 SO 4 = 3CH 3 –COOH + 2K 2 SO 4 + 2Cr 2 (SO 4) 3 + 11H 2 O

5CH 3 –CHO + 2KMnO 4 + 3H 2 SO 4 =5CH 3 –COOH + 2MnSO 4 + K 2 SO 4 + 3H 2 O,

3CH 3 –CHO + K 2 Cr 2 O 7 + 4H 2 SO 4 = 3CH 3 –COOH + Cr 2 (SO 4) 3 + K 2 SO 4 + 4H 2 O,

CH 3 –CHO + 2OH CH 3 –COONH 4 + 2Ag + 3NH 3 + H 2 O.

Но при окислении метаналя аммиачным раствором оксида серебра, образуется карбонат аммония, а не муравьиная кислота:

HCHО + 4OH = (NH 4) 2 CO 3 + 4Ag + 6NH 3 + 2H 2 O.

2. Ароматические карбоновые кислоты образуются при окислении гомологов бензола :

5C 6 H 5 –CH 3 + 6KMnO 4 + 9H 2 SO 4 = 5C 6 H 5 COOH + 6MnSO 4 + 3K 2 SO 4 + 14H 2 O,

5C 6 H 5 –C 2 H 5 + 12KMnO 4 + 18H 2 SO 4 = 5C 6 H 5 COOH + 5CO 2 + 12MnSO 4 + 6K 2 SO 4 + 28H 2 O,

C 6 H 5 –CH 3 + 2KMnO 4 = C 6 H 5 COOK + 2MnO 2 + KOH + H 2 O

3. Гидролиз различных производных карбоновых кислот также приводит к получению кислот. Так, при гидролизе сложного эфира образуются спирт и карбоновая кислота. Реакции этерификации и гидролиза, катализируемой кислотой, обратимы:

4. Гидролиз сложного эфира под действием водного раствора щелочи протекает необратимо, в этом случае из сложного эфира образуется не кислота, а ее соль: