Как держать форму. Массаж. Здоровье. Уход за волосами

График первообразных для некоторой функции.

\(\DeclareMathOperator{\tg}{tg}\)\(\DeclareMathOperator{\ctg}{ctg}\)\(\DeclareMathOperator{\arctg}{arctg}\)\(\DeclareMathOperator{\arcctg}{arcctg}\)

Содержание

Элементы содержания

Производная, касательная, первообразная, графики функций и производных.

Производная Пусть функция \(f(x)\) определена в некоторой окрестности точки \(x_0\).

Производной функции \(f\) в точке \(x_0\) называется предел

\(f"(x_0)=\lim_{x\rightarrow x_0}\dfrac{f(x)-f(x_0)}{x-x_0},\)

если этот предел существует.

Производная функции в точке характеризует скорость изменения этой функции в данной точке.

Таблица производных

Функция Производная
\(const\) \(0\)
\(x\) \(1\)
\(x^n\) \(n\cdot x^{n-1}\)
\(\dfrac{1}{x}\) \(-\dfrac{1}{x^2}\)
\(\sqrt{x}\) \(\dfrac{1}{2\sqrt{x}}\)
\(e^x\) \(e^x\)
\(a^x\) \(a^x\cdot \ln{a}\)
\(\ln{x}\) \(\dfrac{1}{x}\)
\(\log_a{x}\) \(\dfrac{1}{x\ln{a}}\)
\(\sin x\) \(\cos x\)
\(\cos x\) \(-\sin x\)
\(\tg x\) \(\dfrac{1}{\cos^2 x}\)
\(\ctg x\) \(-\dfrac{1}{\sin^2x}\)

Правила дифференцирования \(f\) и \(g\) - функции, зависящие от переменной \(x\); \(c\) - число.

2) \((c\cdot f)"=c\cdot f"\)

3) \((f+g)"= f"+g"\)

4) \((f\cdot g)"=f"g+g"f\)

5) \(\left(\dfrac{f}{g}\right)"=\dfrac{f"g-g"f}{g^2}\)

6) \(\left(f\left(g(x)\right)\right)"=f"\left(g(x)\right)\cdot g"(x)\) - производная сложной функции

Геометрический смысл производной Уравнение прямой - не параллельной оси \(Oy\) можно записать в виде \(y=kx+b\). Коэффициент \(k\) в этом уравнении называют угловым коэффициентом прямой . Он равен тангенсу угла наклона этой прямой.

Угол наклона прямой - угол между положительным направлением оси \(Ox\) и данной прямой, отсчитываемый в направлении положительных углов (то есть, в направлении наименьшего поворота от оси \(Ox\) к оси \(Oy\)).

Производная функции \(f(x)\) в точке \(x_0\) равна угловому коэффициенту касательной к графику функции в данной точке: \(f"(x_0)=\tg\alpha.\)

Если \(f"(x_0)=0\), то касательная к графику функции \(f(x)\) в точке \(x_0\) параллельна оси \(Ox\).

Уравнение касательной

Уравнение касательной к графику функции \(f(x)\) в точке \(x_0\):

\(y=f(x_0)+f"(x_0)(x-x_0)\)

Монотонность функции Если производная функции положительна во всех точках промежутка, то функция возрастает на этом промежутке.

Если производная функции отрицательна во всех точках промежутка, то функция убывает на этом промежутке.

Точки минимума, максимума и перегиба положительного на отрицательное в этой точке, то \(x_0\) - точка максимума функции \(f\).

Если функция \(f\) непрерывна в точке \(x_0\), а значение производной этой функции \(f"\) меняется с отрицательного на положительное в этой точке, то \(x_0\) - точка минимума функции \(f\).

Точки, в которых производная \(f"\) равна нулю или не существует называются критическими точками функции \(f\).

Внутренние точки области определения функции \(f(x)\), в которых \(f"(x)=0\) могут быть точками минимума, максимума или перегиба.

Физический смысл производной Если материальная точка движется прямолинейно и её координата изменяется в зависимости от времени по закону \(x=x(t)\), то скорость этой точки равна производной координаты по времени:

Ускорение материальной точки в равно производной скорости этой точки по времени:

\(a(t)=v"(t).\)

Прямая y=3x+2 является касательной к графику функции y=-12x^2+bx-10. Найдите b , учитывая, что абсцисса точки касания меньше нуля.

Показать решение

Решение

Пусть x_0 — абсцисса точки на графике функции y=-12x^2+bx-10, через которую проходит касательная к этому графику.

Значение производной в точке x_0 равно угловому коэффициенту касательной, то есть y"(x_0)=-24x_0+b=3. С другой стороны, точка касания принадлежит одновременно и графику функции и касательной, то есть -12x_0^2+bx_0-10=3x_0+2. Получаем систему уравнений \begin{cases} -24x_0+b=3,\\-12x_0^2+bx_0-10=3x_0+2. \end{cases}

Решая эту систему, получим x_0^2=1, значит либо x_0=-1, либо x_0=1. Согласно условию абсцисса точки касания меньше нуля, поэтому x_0=-1, тогда b=3+24x_0=-21.

Ответ

Условие

На рисунке изображён график функции y=f(x) (являющийся ломаной линией, составленной из трёх прямолинейных отрезков). Пользуясь рисунком, вычислите F(9)-F(5), где F(x) — одна из первообразных функции f(x).

Показать решение

Решение

По формуле Ньютона-Лейбница разность F(9)-F(5), где F(x) — одна из первообразных функции f(x), равна площади криволинейной трапеции, ограниченной графиком функции y=f(x), прямыми y=0, x=9 и x=5. По графику определяем, что указанная криволинейная трапеция является трапецией с основаниями, равными 4 и 3 и высотой 3 .

Её площадь равна \frac{4+3}{2}\cdot 3=10,5.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график y=f"(x) — производной функции f(x), определённой на интервале (-4; 10). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них.

Показать решение

Решение

Как известно, функция f(x) убывает на тех промежутках, в каждой точке которых производная f"(x) меньше нуля. Учитывая, что надо находить длину наибольшего из них естественно по рисунку выделяются три таких промежутка: (-4; -2); (0; 3); (5; 9).

Длина наибольшего из них — (5; 9) равна 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график y=f"(x) — производной функции f(x), определённой на интервале (-8; 7). Найдите количество точек максимума функции f(x), принадлежащих промежутку [-6; -2].

Показать решение

Решение

Из графика видно, что производная f"(x) функции f(x) меняет знак с плюса на минус (именно в таких точках будет максимум) ровно в одной точке (между -5 и -4 ) из промежутка [-6; -2]. Поэтому на промежутке [-6; -2] ровно одна точка максимума.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график функции y=f(x), определённой на интервале (-2; 8). Определите количество точек, в которых производная функции f(x) равна 0 .

Показать решение

Решение

Равенство нулю производной в точке означает, что касательная к графику функции, проведённая в этой точке, параллельна оси Ox. Поэтому находим такие точки, в которых касательная к графику функции параллельна оси Ox. На данном графике такими точками являются точки экстремума (точки максимума или минимума). Как видим, точек экстремума 5 .

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

Прямая y=-3x+4 параллельна касательной к графику функции y=-x^2+5x-7. Найдите абсциссу точки касания.

Показать решение

Решение

Угловой коэффициент прямой к графику функции y=-x^2+5x-7 в произвольной точке x_0 равен y"(x_0). Но y"=-2x+5, значит, y"(x_0)=-2x_0+5. Угловой коэффициент прямой y=-3x+4, указанной в условии, равен -3. Параллельные прямые имеют одинаковые угловые коэффициенты. Поэтому находим такое значение x_0, что =-2x_0 +5=-3.

Получаем: x_0 = 4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Условие

На рисунке изображён график функции y=f(x) и отмечены точки -6, -1, 1, 4 на оси абсцисс. В какой из этих точек значение производной наименьшее? В ответе укажите эту точку.

Здравствуйте, друзья! В данной статье рассмотрим с вами задания на первообразную. Эти задания входят в ЕГЭ по математике. Несмотря на то, что сами разделы — дифференцирование и интегрирование довольно ёмки в курсе алгебры и требуют ответственного подхода к пониманию, но сами задачи, которые входят в открытый банк заданий по математике и будут на ЕГЭ чрезвычайно просты и решаются в одно-два действия.

Важно понять именно суть первообразной и в частности геометрический смысл интеграла. Рассмотрим кратко теоретические основы.

Геометрический смысл интеграла

Кратко об интеграле можно сказать так: интеграл – это площадь.

Определение: Пусть на координатной плоскости дан график положительной функции f, заданной на отрезке . Подграфиком (или криволинейной трапецией) называется фигура, ограниченная графиком функции f, прямыми х = а и х= b и осью абсцисс.

Определение: Пусть дана положительная функция f, определённая на конечном отрезке . Интегралом от функции f на отрезке называется площадь её подграфика.

Как уже сказано F′(x) = f (x). Какой можем сделать вывод?

Он простой. Нам нужно определить сколько имеется точек на данном графике, в которых F′(x) = 0. Мы знаем, что в тех точках, где касательная к графику функции параллельна оси ох. Покажем эти точки на интервале [–2;4]:

Это точки экстремума данной функции F (x). Их десять.

Ответ: 10

323078. На рисунке изображён график некоторой функции y = f (x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F (8) – F (2), где F (x) - одна из первообразных функции f (x).


Ещё раз запишем теорему Ньютона–Лейбница: Пусть f данная функция, F её произвольная первообразная. Тогда

А это, как уже сказано, есть площадь подграфика функции.

Таким образом, задача сводится к нахождению площади трапеции (интервал от 2 до 8):


Её не сложно вычислить по клеткам. Получаем 7. Знак положительный, так как фигура расположена выше оси ох (или в положительной полуплоскости оси оу).

Ещё в данном случае можно было сказать так: разность значений первообразных в точках есть площадь фигуры.

Ответ: 7

323079. На рисунке изображён график некоторой функции y = f (x). Функция F (x) = x 3 +30x 2 +302x–1,875 - одна из первообразных функции y= f (x). Найдите площадь закрашенной фигуры.


Как уже сказано о геометрическом смысле интеграла это есть площадь фигуры ограниченной графиком функции f (x), прямыми х = а и х = b и осью ox.

Теорема (Ньютона–Лейбница):

Таким образом, задача сводится к вычислению определённого интеграла данной функции на интервале от –11 до –9, или другими словами нам необходимо найти разность значений первообразных вычисленных в указанных точках:


Ответ: 6

323080. На рисунке изображён график некоторой функции y = f (x).

Функция F (x) = –x 3 –27x 2 –240x– 8 - одна из первообразных функции f (x). Найдите площадь закрашенной фигуры.


Теорема (Ньютона–Лейбница):

Задача сводится к вычислению определённого интеграла данной функции на интервале от –10 до –8:


Ответ: 4 можете посмотреть .

Производные и правила дифференцирования ещё есть в . Знать их нужно обязательно, не только для решения таких заданий.

Также можете посмотреть справочную информацию на сайте и .

Посмотрите небольшой ролик, это отрывок из фильма «Невидимая сторона». Можно сказать, что это фильм об учёбе, о милосердии, о важности якобы «случайных» встреч в нашей жизни... Но этих слов будет недостаточно, рекомендую посмотреть сам фильм, очень рекомендую.

Успехов вам!

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

51. На рисунке изображён график y=f "(x) - производной функции f(x), определённой на интервале (− 4; 6). Найдите абсциссу точки, в которой касательная к графику функции y=f(x ) параллельна прямой y=3x или совпадает с ней.

Ответ: 5

52. На рисунке изображён график y=F(x) f(x) f(x) положительна?

Ответ: 7

53. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x ) и отмечены восемь точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8. В скольких из этих точек функция f(x) отрицательна?

Ответ: 3

54. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x) и отмечены десять точек на оси абсцисс: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 . В скольких из этих точек функция f(x) положительна?

Ответ: 6

55. На рисунке изображён график y=F(x f(x), определённой на интервале (− 7; 5). Пользуясь рисунком, определите количество решений уравнения f(x)=0 на отрезке [− 5; 2].

Ответ: 3

56. На рисунке изображён график y=F(x) одной из первообразных некоторой функции f(x), определённой на интервале (− 8; 7). Пользуясь рисунком, определите количество решений уравнения f(x)= 0 на отрезке [− 5; 5].

Ответ: 4

57. На рисунке изображён график y=F (x ) одной из первообразных некоторой функции f (x ), определённой на интервале (1;13). Пользуясь рисунком, определите количество решений уравнения f (x )=0 на отрезке .

Ответ: 4

58. На рисунке изображён график некоторой функции y=f(x) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(−1)−F(−8), где F(x) f(x).


Ответ: 20

59. На рисунке изображён график некоторой функции y=f(x ) (два луча с общей начальной точкой). Пользуясь рисунком, вычислите F(−1)−F(−9), где F(x) - одна из первообразных функции f(x).


Ответ: 24

60. На рисунке изображён график некоторой функции y=f(x ). Функция

-одна из первообразных функции f(x). Найдите площадь закрашенной фигуры .

Ответ: 6

61. На рисунке изображён график некоторой функции y=f(x). Функция

Одна из первообразных функции f(x). Найдите площадь закрашенной фигуры.

Ответ: 14,5

параллельна касательной к графику функции

Ответ:0,5

Найдите абсциссу точки касания.

Ответ: -1

является касательной к графику функции

Найдите c .

Ответ: 20

является касательной к графику функции

Найдите a .

Ответ:0,125

является касательной к графику функции

Найдите b , учитывая, что абсцисса точки касания больше 0.

Ответ: -33

67. Материальная точка движется прямолинейно по закону

где x t - время в секундах, измеренное с момента начала движения. В какой момент времени (в секундах) её скорость была равна 96 м/с?

Ответ: 18

68. Материальная точка движется прямолинейно по закону

где x - расстояние от точки отсчёта в метрах, t - время в секундах, измеренное с момента начала движения. В какой момент времени (в секундах) её скорость была равна 48 м/с?

Ответ: 9

69. Материальная точка движется прямолинейно по закону

где x t t =6 с.

Ответ: 20

70. Материальная точка движется прямолинейно по закону

где x - расстояние от точки отсчета в метрах, t - время в секундах, измеренное с начала движения. Найдите ее скорость (в м/с) в момент времени t =3 с.

Ответ: 59