Как держать форму. Массаж. Здоровье. Уход за волосами

Жидкостное Дыхание — Самое страшное сделать вдох. Дышать жидкостью: российские ученые сделали фантастику реальностью

Ихтиандры среди нас. Российские ученые начали испытывать технологию жидкостного дыхания у подводников. Опыты сейчас пока проходят на собаках. Рекорд дыхания в жидкости — уже 30 минут. Как чудеса из романов и фильмов претворяются в жизнь, выяснял корреспондент «Вестей ФМ» Сергей Гололобов.

Наблюдение за экспериментом. Таксу погружают в ванну с жидкостью мордой вниз. Удивительно, но собака не захлебнулась, а начала дышать той самой жидкостью. Заглатывая её судорожно, рывками. Но ведь дышала. Спустя 15 минут ее вытащили. Собака была вялой, причем, скорее, от переохлаждения, но, главное, живой. А спустя некоторое время и во все пришла в свое обычное игривое настроение. Чудо. Что-то похожее демонстрировалось в знаменитом голливудском фильме «Бездна» 1989 года. Там, залив в колбу с водой некие присадки, запускали туда белую крысу. Причем снято все натурально. И крыса действительно дышала якобы под водой.

А хитрость этого эпизода из фильма «Бездна» в том, что крыса дышала не водой как таковой, а некой специальной жидкостью. Именно на этом и основывается технология жидкостного дыхания. Наиболее подходящими веществами для этой цели считаются перфторуглеродные соединения. Они хорошо растворяют в себе кислород и углекислый газ и не приносят вред организму. То есть живые существа вдыхают не воду, а те самые жидкие углероды. Для чего это нужно людям, рассказал врач-пульмонолог, руководитель научной темы по жидкостному дыханию еще с восьмидесятых годов Андрей Филиппенко.

«Это нужня для спасения подводников. При большом давлении, если у них будет в легких жидкость, если они из этой жидкости извлекут кислород, то они смогут выйти на большой глубине, и быстро, без всякой декомпрессионной проблемы подняться к поверхности».

Известно, что выход с больших глубин у водолазов и подводников занимает часы. Если же подниматься на поверхность быстро, то вас настигнет кессонная болезнь. Попадающие с дыхательной смесью в кровь пузырьки азота вскипают из-за резкого перепада давления и разрушают сосуды. Если использовать аппарат со специальной дыхательной жидкостью, таких проблем не возникнет, поясняет Андрей Филиппенко.

«Фторуглеродная жидкость является носителем, так сказать, азот-кислорода, то есть переносчиком. Но в отличие от азота, который переходит в ткань организма при большом давлении, на глубине, и из-за этого возникает кессонная болезнь, здесь этого нет. То есть нет причин для кессонной болезни. Нет пересыщения инертным газом организма. То есть нет принципиально причин для пузырьков».

Опыты по жидкостному дыханию активно велись, начиная с 60-х, в Советском Союзе и США. Но дальше экспериментов с животными дело не доходило. После развала Союза у нас научный поиск в этом направлении сошел на нет. Но очень мощные наработки остались. И сейчас их решено использовать по новой, говорит Андрей Филиппенко.

«Большой задел по технологии жидкостного дыхания, и по жидкостям. И плюс еще у нас еще есть последствия этих жидкостей. Потому что все вводимые в кровь фторуглероды, а у нас уже 25 лет используется такое вещество, выходят через легкие. То есть мы знаем и последствия влияния на организм введения в него перфторуглеродов. У американцев или французов, англичан таких данных нет».

Недавно российские ученые создали специальную капсулу для собак, которую погружали в гидрокамеру с повышенным давлением. И сейчас собаки могут без последствий для здоровья более получаса дышать на глубине до полукилометра. А вскоре планируется перейти к экспериментам на людях. Самое страшное — это, конечно, заставить себя вдохнуть жидкость, размышляет президент Конфедерации подводной деятельности России Валентин Сташевский:

«Когда воду вдыхаешь, это просто кошмар. Это значит первый путь к тому, чтобы утонуть. Так было по всем историческим предшествующим событиям. Захлебываешься, как только вода попадает в дыхательные пути и так далее».

Тем не менее, желающие стать фактически утопленниками, но при этом начать дышать как человек-амфибия, ну или Садко, у нас есть, отмечает Андрей Филиппенко.

«Добровольцы есть. Но давайте сразу уточним, добровольцами здесь могут быть только те люди, которые очень хорошо понимают, что может произойти. То есть это фактически могут быть только те врачи, которые много занимались жидкостным дыханием. Вот такие в нашей команде есть. И не один. Нужно только правильно всё оорганизовать».

Сейчас работы по жидкостному дыханию переданы в НИИ медицины труда. Основная цель исследований — создать специальный скафандр, который пригодится не только подводникам, но и летчикам, а также космонавтам. Но, повторим, речь идет о дыхании специальными жидкостями. Дышать непосредственно водой, как ихтиандр, пока человеку недоступно.

Это уже, наверное, клише в научной фантастике: в костюм или капсулу очень быстро поступает некое вязкое вещество, и главный герой внезапно для себя обнаруживает, как быстро он теряет остатки воздуха из собственных лёгких, а его внутренности заполняются необычной жидкостью оттенка от лимфы до крови. В конце концов он даже паникует, но делает несколько инстинктивных глотков или, скорее, вздохов и с удивлением обнаруживает - он может дышать этой экзотической смесью так, словно он дышит обычным воздухом.

Так ли мы далеки от реализации идеи жидкостного дыхания? Возможно ли дышать жидкой смесью, и есть ли в этом реальная необходимость?
Существует три перспективных пути использования этой технологии: это медицина, ныряние на большие глубины и космонавтика.

Давление на тело ныряльщика растёт с каждыми десятью метрами на одну атмосферу. Из-за резкого понижения давления может начаться кессонная болезнь, при проявлениях которой растворённые в крови газы начинают закипать пузырьками. Также при высоком давлении возможны кислородное и наркотическое азотное отравление. Со всем этим борются применением специальных дыхательных смесей, но и они не дают никаких гарантий, а лишь снижают вероятность неприятных последствий. Конечно, можно использовать водолазные скафандры, которые поддерживают давление на тело ныряльщика и его дыхательной смеси ровно в одну атмосферу, но они в свою очередь крупногабаритны, громоздки, затрудняют движение, а также очень дороги.

Жидкостное дыхание могло бы предоставить третье решение этой проблемы с сохранением мобильности эластичных гидрокомбинезонов и низких рисков жёстких скафандров. Дыхательная жидкость в отличие от дорогих дыхательных смесей не насыщает тело гелием или азотом, поэтому также отпадает необходимость в медленной декомпрессии для избежания кессонной болезни.

В медицине жидкостное дыхание можно использовать при лечении недоношенных детей, чтобы избежать повреждения недоразвитых бронхов лёгких давлением, объёмом и концентрацией кислорода воздуха аппаратов искусственной вентиляции лёгких. Подбирать и пробовать различные смеси для обеспечения выживания недоношенного плода начали уже в 90-х. Возможно использование жидкой смеси при полных остановках или частичных недостаточностях дыхания.

Космический полёт сопряжён с большими перегрузками, а жидкости распространяют давление равномерно. Если человека погрузить в жидкость, то при перегрузках давление будет идти на всё его тело, а не конкретные опоры (спинки кресла, ремни безопасности). Такой принцип использовался при создании костюма для перегрузок Libelle, который представляет из себя жёсткий скафандр, наполненный водой, что позволяет пилоту сохранять сознание и работоспособность даже при перегрузках выше 10 g.

Этот метод ограничен разницей плотностей тканей тела человека и используемой жидкостью для погружения, поэтому предел составляет 15-20 g. Но можно пойти дальше и заполнить лёгкие жидкостью, близкой по плотности к воде. Полностью погруженный в жидкость и дышащий жидкостью космонавт будет относительно слабо ощущать эффект экстремально высоких перегрузок, поскольку силы в жидкости распределяются равномерно во всех направлениях, но эффект всё равно будет из-за различной плотности тканей его тела. Предел всё равно останется, но он будет высок.

Первые эксперименты по жидкостному дыханию проводились в 60-х годах прошлого века на лабораторных мышах и крысах, которых заставили вдыхать солевой раствор с высоким содержанием растворённого кислорода. Эта примитивная смесь давала животным возможность выжить некоторое количество времени, но она не могла удалять углекислый газ, поэтому лёгким животных наносился непоправимый вред.

Позже начались работы с перфторуглеродами, и их первые результаты были куда лучше результатов экспериментов с соляным раствором. Перфторуглероды - это органические вещества, в которых все атомы водорода замещены на атомы фтора. Перфторуглеродные соединения обладают способностью растворять как кислород, так и углекислый газ, они очень инертны, бесцветны, прозрачны, не могут нанести повреждения ткани лёгких и не усваиваются организмом.

С того момента жидкости для дыхания были улучшены, самое совершенное на данный момент решение называется перфлуброн или «Ликвивент» (коммерческое название). Эта маслоподобная прозрачная жидкость с плотностью в два раза выше плотности воды обладает множеством полезных качеств: она может нести в два раза больше кислорода, чем обычный воздух, имеет низкую температуру кипения, поэтому после использования окончательное её удаление из лёгких производится испарением. Альвеолы под воздействием этой жидкости лучше открываются, и вещество получает доступ к их содержимому, это улучшает обмен газами.

Лёгкие могут заполняться жидкостью полностью, это потребует мембранного оксигенатора, нагревающего элемента и принудительной вентиляции. Но в клинической практике чаще всего так не делают, а используют жидкостное дыхание в комбинации с обычной газовой вентиляцией, заполняя лёгкие перфлуброном лишь частично, примерно на 40% от всего объёма.


Кадр из фильма Бездна (The Abyss), 1989 год

Что же мешает нам использовать жидкостное дыхание? Жидкость для дыхания вязка и плохо выводит углекислый газ, поэтому понадобится принудительная вентиляция лёгких. Для удаления углекислого газа от обычного человека массой 70 килограммов потребуется поток 5 литров в минуту и выше, и это очень много с учётом высокой вязкости жидкостей. При физических нагрузках величина необходимого потока будет только расти, и вряд ли человек сможет двигать 10 литров жидкости в минуту. Наши лёгкие просто не созданы для дыхания жидкостью и сами прокачивать такие объёмы не в состоянии.

Использование положительных черт жидкости для дыхания в авиации и космонавтике тоже может навсегда остаться мечтой - жидкость в лёгких для костюма защиты от перегрузок должна обладать плотностью воды, а перфлуброн в два раза её тяжелей.

Да, наши лёгкие технически способны «дышать» определённой богатой кислородом смесью, но, к сожалению, пока мы можем это делать только на протяжении нескольких минут, поскольку наши лёгкие не настолько сильны, чтобы обеспечивать циркуляцию дыхательной смеси продолжительные периоды времени. Ситуация может измениться в будущем, остаётся лишь обратить наши надежды на исследователей в этой области.

Жидкостью, насыщенной растворённым кислородом, который проникает в кровь . Наиболее подходящими веществами для этой цели рассматриваются перфторуглеродные соединения , которые хорошо растворяют кислород и углекислый газ , имеют низкое поверхностное натяжение , высокоинертны , не метаболизируются в организме.

Частичная жидкостная вентиляция лёгких в настоящее время находится в стадии клинических испытаний при различных нарушениях дыхания . Разработано несколько способов жидкостной вентиляции лёгких, в том числе вентиляции с помощью паров и аэрозолей перфторуглеродов .

Полная жидкостная вентиляция лёгких заключается в полном заполнении лёгких жидкостью. Эксперименты по полной жидкостной вентиляции лёгких проводились на животных в 70 - 80-е годы XX века в СССР и США , однако до сих пор не вышли из этой стадии. Это связано с тем, что изученные соединения, пригодные для жидкостной вентиляции лёгких, обладают рядом недостатков, которые значительно ограничивают их применимость. В частности, не было найдено методов, которые могли бы применяться продолжительно .

Предполагается, что жидкостное дыхание может быть использовано при глубоководных погружениях, космических полётах , в качестве одного из средств в комплексной терапии некоторых болезней .

В культуре

Нечто подобное было показано в фильме Джеймса Кэмерона «Бездна » (затрагивает тему использования жидкостного дыхательного аппарата для сверхглубокого подводного погружения), а также затронуто в книге Дена Брауна «Утраченный Символ ».

В финале фантастического фильма Брайана де Пальмы «Миссия на Марс » герой Гэри Синиза оказывается на борту марсианского корабля, где также показано использование технологии жидкостного дыхания.

Напишите отзыв о статье "Жидкостное дыхание"

Примечания

Ссылки

  • bja.oxfordjournals.org/content/91/1/143.full

Отрывок, характеризующий Жидкостное дыхание

Князь повернулся к управляющему и нахмуренными глазами уставился на него.
– Что? Министр? Какой министр? Кто велел? – заговорил он своим пронзительным, жестким голосом. – Для княжны, моей дочери, не расчистили, а для министра! У меня нет министров!
– Ваше сиятельство, я полагал…
– Ты полагал! – закричал князь, всё поспешнее и несвязнее выговаривая слова. – Ты полагал… Разбойники! прохвосты! Я тебя научу полагать, – и, подняв палку, он замахнулся ею на Алпатыча и ударил бы, ежели бы управляющий невольно не отклонился от удара. – Полагал! Прохвосты! – торопливо кричал он. Но, несмотря на то, что Алпатыч, сам испугавшийся своей дерзости – отклониться от удара, приблизился к князю, опустив перед ним покорно свою плешивую голову, или, может быть, именно от этого князь, продолжая кричать: «прохвосты! закидать дорогу!» не поднял другой раз палки и вбежал в комнаты.
Перед обедом княжна и m lle Bourienne, знавшие, что князь не в духе, стояли, ожидая его: m lle Bourienne с сияющим лицом, которое говорило: «Я ничего не знаю, я такая же, как и всегда», и княжна Марья – бледная, испуганная, с опущенными глазами. Тяжелее всего для княжны Марьи было то, что она знала, что в этих случаях надо поступать, как m lle Bourime, но не могла этого сделать. Ей казалось: «сделаю я так, как будто не замечаю, он подумает, что у меня нет к нему сочувствия; сделаю я так, что я сама скучна и не в духе, он скажет (как это и бывало), что я нос повесила», и т. п.
Князь взглянул на испуганное лицо дочери и фыркнул.
– Др… или дура!… – проговорил он.
«И той нет! уж и ей насплетничали», подумал он про маленькую княгиню, которой не было в столовой.
– А княгиня где? – спросил он. – Прячется?…
– Она не совсем здорова, – весело улыбаясь, сказала m llе Bourienne, – она не выйдет. Это так понятно в ее положении.
– Гм! гм! кх! кх! – проговорил князь и сел за стол.
Тарелка ему показалась не чиста; он указал на пятно и бросил ее. Тихон подхватил ее и передал буфетчику. Маленькая княгиня не была нездорова; но она до такой степени непреодолимо боялась князя, что, услыхав о том, как он не в духе, она решилась не выходить.
– Я боюсь за ребенка, – говорила она m lle Bourienne, – Бог знает, что может сделаться от испуга.
Вообще маленькая княгиня жила в Лысых Горах постоянно под чувством страха и антипатии к старому князю, которой она не сознавала, потому что страх так преобладал, что она не могла чувствовать ее. Со стороны князя была тоже антипатия, но она заглушалась презрением. Княгиня, обжившись в Лысых Горах, особенно полюбила m lle Bourienne, проводила с нею дни, просила ее ночевать с собой и с нею часто говорила о свекоре и судила его.
– Il nous arrive du monde, mon prince, [К нам едут гости, князь.] – сказала m lle Bourienne, своими розовенькими руками развертывая белую салфетку. – Son excellence le рrince Kouraguine avec son fils, a ce que j"ai entendu dire? [Его сиятельство князь Курагин с сыном, сколько я слышала?] – вопросительно сказала она.
– Гм… эта excellence мальчишка… я его определил в коллегию, – оскорбленно сказал князь. – А сын зачем, не могу понять. Княгиня Лизавета Карловна и княжна Марья, может, знают; я не знаю, к чему он везет этого сына сюда. Мне не нужно. – И он посмотрел на покрасневшую дочь.
– Нездорова, что ли? От страха министра, как нынче этот болван Алпатыч сказал.
– Нет, mon pere. [батюшка.]
Как ни неудачно попала m lle Bourienne на предмет разговора, она не остановилась и болтала об оранжереях, о красоте нового распустившегося цветка, и князь после супа смягчился.
После обеда он прошел к невестке. Маленькая княгиня сидела за маленьким столиком и болтала с Машей, горничной. Она побледнела, увидав свекора.
Маленькая княгиня очень переменилась. Она скорее была дурна, нежели хороша, теперь. Щеки опустились, губа поднялась кверху, глаза были обтянуты книзу.
– Да, тяжесть какая то, – отвечала она на вопрос князя, что она чувствует.

При подъеме в горы из-за падения атмосферного давления снижается парциальное давление кислорода в альвеолярном пространстве. Когда это давление становится ниже 50 мм рт. ст. (5 км высоты), неадаптированному человеку необходимо дышать газовой смесью, в которой повышено содержание кислорода. На высоте 9 км парциальное давление в альвеолярном воздухе падает до 30 мм рт. ст., и практически выдержать такое состояние невозможно. Поэтому используется вдыхание 100% кислорода. В этом случае при данном барометрическом давлении парциальное давление кислорода в альвеолярном воздухе составляет 140 мм рт. ст., что создает большие возможности для газообмена. На высоте 12 км при вдыхании обычного воздуха альвеолярное давление равно 16 мм рт. ст. (смерть), при вдыхании чистого кислорода - всего лишь 60 мм рт. ст., т. е. дышать еще можно, но уже опасно. В этом случае можно подавать чистый кислород под давлением и обеспечить дыхание при подъеме на высоту 18 км. Дальнейший подъем возможен только в скафандрах .

Дыхание под водой на больших глубинах

При опускании под воду растет атмосферное давление. Например, на глубине 10 м давление равно 2 атмосферам, на глубине 20 м - 3 атмосферам, и т. д. В этом случае парциальное давление газов в альвеолярном воздухе соответственно возрастает в 2 и 3 раза.

Это грозит высоким растворением кислорода. Но избыток его не менее вреден для организма, чем недостаток. Поэтому один из путей уменьшения этой опасности - использование газовой смеси, в которой процентное содержание кислорода уменьшено. Например, на глубине 40 м дают смесь, содержащую 5% кислорода, на глубине 100 м - 2%.

Второй проблемой является влияние азота. Когда парциальное давление азота возрастает, то это приводит к повышенному растворению азота в крови и вызывает наркотическое состояние. Поэтому, начиная с глубины 60 м, азотно-кислородная смесь заменяется гелиокислородной смесью. Гелий менее токсичен. Он начинает оказывать наркотический эффект лишь на глубине 200-300 м. Сейчас проводятся исследования по использованию водородно-кислородных смесей для работы на глубинах до 2 км, т. к. водород очень легкий газ.

Третья проблема водолазных работ - это декомпрессия. Если быстро подниматься с глубины, то растворенные в крови газы вскипают и вызывают газовую эмболию - закупорку сосудов. Поэтому требуется постепенная декомпрессия. Например, подъем с глубины 300 м требует 2-х недельной декомпрессии .

МОСКВА, 25 дек — РИА Новости, Татьяна Пичугина. С тех пор как в 2016 году Фонд перспективных исследований (ФПИ) одобрил проект жидкостного дыхания, общественность живо интересуется его успехами. Недавняя демонстрация возможностей этой технологии буквально взорвала интернет. На встрече зампреда правительства Дмитрия Рогозина с президентом Сербии Александром Вучичем таксу погрузили на две минуты в аквариум со специальной жидкостью, насыщенной кислородом. После процедуры собака, по словам вице-премьера, жива и здорова. Что это была за жидкость?

"Ученые синтезировали несуществующие в природе вещества — перфторуглероды, в которых межмолекулярные силы настолько малы, что их считают чем-то промежуточным между жидкостью и газом. Они растворяют в себе кислород в 18-20 раз больше, чем вода", — рассказывает доктор медицинских наук Евгений Маевский, профессор, заведующий лабораторией энергетики биологических систем Института теоретической и экспериментальной биофизики РАН, один из создателей перфторана, так называемой голубой крови. Он работает над медицинскими приложениями перфторуглеродов с 1979 года.

При парциальном давлении в одну атмосферу в 100 миллилитрах воды растворяется всего 2,3 миллилитра кислорода. При тех же условиях перфторуглероды могут содержать до 50 миллилитров кислорода. Это делает их потенциально пригодными для дыхания.

"Например, при погружении на глубину через каждые 10 метров давление увеличивается как минимум на одну атмосферу. В итоге грудная клетка и легкие сожмутся до такой степени, что дышать в газовой среде станет невозможно. А если в легких находится переносящая газ жидкость, существенно большей плотности, чем воздух и даже вода, то они смогут функционировать. В перфторуглеродах можно растворить кислород без примеси азота, которого много в воздухе и растворение которого в тканях является одной из наиболее существенных причин кессонной болезни при подъеме с глубины", — продолжает Маевский.

Кислород будет поступать в кровь из жидкости, наполняющей легкие. В ней же может растворяться переносимый кровью углекислый газ.

Принцип дыхания жидкостью прекрасно освоен рыбами. Их жабры пропускают через себя колоссальный объем воды, забирают растворенный там кислород и отдают в кровь. У человека нет жабр, а весь газообмен идет через легкие, площадь поверхности которых примерно в 45 раз превосходит площадь поверхности тела. Чтобы прогнать через них воздух, мы делаем вдох и выдох. В этом нам помогают дыхательные мышцы. Поскольку перфторуглероды плотнее, чем воздух, то дышать на поверхности с их помощью весьма проблематично.

"В этом и состоят наука и искусство подобрать такие перфторуглероды, чтобы облегчить работу дыхательных мышц и не допустить повреждения легких. Многое зависит от длительности процесса дыхания жидкостью, от того, насильственно или спонтанно оно происходит", — заключает исследователь.

Однако принципиальных препятствий к тому, чтобы человек дышал жидкостью, нет. Евгений Маевский полагает, что продемонстрированную технологию российские ученые доведут до практического применения в ближайшие несколько лет.

От реанимации до спасения подводников

Ученые стали рассматривать перфторуглероды как альтернативу дыхательным газовым смесям в середине прошлого века. В 1962 году вышла голландского исследователя Йоханнеса Килстры (Johannes Kylstra) "О мышах-рыбах" (Of mice as fish), где описан опыт с грызуном, помещенным в насыщенный кислородом солевой раствор при давлении 160 атмосфер. Животное оставалось живым в течение 18 часов. Затем Килстра стал экспериментировать с перфторуглеродами, и уже в 1966 году в детском госпитале Кливленда (США) физиолог Леланд Кларк (Leland C. Clark) попытался применить их, чтобы наладить дыхание новорожденных, больных муковисцидозом. Это генетическое заболевание, при котором ребенок рождается с недоразвитыми легкими, его альвеолы схлопываются, что препятствует дыханию. Легкие таких пациентов промывают физраствором, насыщенным кислородом. Кларк решил, что лучше делать это кислородсодержащей жидкостью. Этот исследователь впоследствии много сделал для развития жидкостного дыхания.

© 20th Century Fox Film Corporation Кадр из фильма "Бездна"

© 20th Century Fox Film Corporation

В начале 1970-х "дыхательной" жидкостью заинтересовались в СССР, в значительной мере благодаря руководителю лаборатории ленинградского НИИ переливания крови Зое Александровне Чаплыгиной. Этот институт стал одним из лидеров проекта по созданию кровезаменителей — переносчиков кислорода на основе эмульсий перфторуглеродов и растворов модифицированного гемоглобина.

Над применением этих веществ для промывания легких активно работали в Институте сердечно-сосудистой хирургии Феликс Белоярцев и Халид Хапий.

"В наших экспериментах у мелких животных несколько страдали легкие, но все они выживали", — вспоминает Евгений Маевский.

Систему дыхания с помощью жидкости разрабатывали по закрытой тематике в институтах Ленинграда и Москвы, а с 2008 года — на кафедре аэрогидродинамики Самарского государственного аэрокосмического университета. Там сделали капсулу типа "Русалка" для отработки жидкостного дыхания в случае экстренного спасения подводников с большой глубины. С 2015 года разработку испытывали в Севастополе по теме "Терек", поддерживаемой ФПИ.

Наследие атомного проекта

Перфторуглероды (перфторуглеводороды) — это органические соединения, где все атомы водорода замещены на атомы фтора. Это подчеркивает латинская приставка "пер-", означающая завершенность, целостность. Эти вещества не обнаружены в природе. Их пытались синтезировать еще в конце XIX века, но реально преуспели только после Второй мировой, когда они понадобились для атомной промышленности. Их производство в СССР наладил академик Иван Людвигович Кнунянц, основатель лаборатории фторорганических соединений в ИНЭОС РАН.

"Перфторуглероды использовали в технологии получения обогащенного урана. В СССР их крупнейшим разработчиком был Государственный институт прикладной химии в Ленинграде. В настоящее время их выпускают в Кирово-Чепецке и Перми", — говорит Маевский.

Внешне жидкие перфторуглероды выглядят как вода, но ощутимо более плотные. Они не вступают в реакцию с щелочами и кислотами, не окисляются, разлагаются при температуре более 600 градусов. Фактически их считают химически инертными соединениями. Благодаря этим свойствам перфторуглеродные материалы применяют в реанимационной и регенеративной медицине.

"Есть такая операция — бронхиальный лаваж, когда человеку под наркозом промывают одно легкое, а потом другое. В начале 80-х вместе с волгоградским хирургом А. П. Савиным мы пришли к выводу, что эту процедуру лучше делать перфторуглеродом в виде эмульсии", — приводит пример Евгений Маевский.

Эти вещества активно применяют в офтальмологии, для ускорения заживления ран, при диагностике заболеваний, в том числе онкологических. В последние годы метод ЯМР-диагностики с применением перфторуглеродов разрабатывают за рубежом. В нашей стране эти исследования успешно проводит коллектив ученых из МГУ им. М. В. Ломоносова под руководством академика Алексея Хохлова, ИНЭОС, ИТЭБ РАН и ИИФ (Серпухов).

Нельзя не упомянуть и то, что из этих веществ делают масла, смазки для систем, работающих в условиях высоких температур, включая реактивные двигатели.