Как держать форму. Массаж. Здоровье. Уход за волосами

Силлогизмы. Логические парадоксы

Если в результате прочтения этой подборки вы не запутаетесь полностью, значит вы мыслите недостаточно ясно.
Учёные и мыслители с давних времён любят развлекать себя и коллег постановкой неразрешимых задач и формулированием разного рода парадоксов. Некоторые из подобных мысленных экспериментов сохраняют актуальность на протяжении тысяч лет, что свидетельствует о несовершенстве многих популярных научных моделей и «дырах» в общепринятых теориях, давно считающихся фундаментальными. Предлагаем вам поразмыслить над наиболее интересными и удивительными парадоксами, которые, как сейчас выражаются, «взорвали мозг» не одному поколению логиков, философов и математиков.
Апория «Ахиллес и черепаха»
Парадокс Ахиллеса и черепахи - одна из апорий (логически верных, но противоречивых высказываний), сформулированных древнегреческим философом Зеноном Элейским в V-м веке до нашей эры. Суть её в следующем: легендарный герой Ахиллес решил посоревноваться в беге с черепахой. Как известно, черепахи не отличаются прыткостью, поэтому Ахиллес дал сопернику фору в 500 м. Когда черепаха преодолевает эту дистанцию, герой пускается в погоню со скоростью в 10 раз большей, то есть пока черепаха ползёт 50 м, Ахиллес успевает пробежать данные ей 500 м форы. Затем бегун преодолевает следующие 50 м, но черепаха в это время отползает ещё на 5 м, кажется, что Ахиллес вот-вот её догонит, однако соперница всё ещё впереди и пока он бежит 5 м, ей удаётся продвинуться ещё на полметра и так далее. Дистанция между ними бесконечно сокращается, но по идее, герою так и не удаётся догнать медлительную черепаху, она ненамного, но всегда опережает его.


Конечно, с точки зрения физики парадокс не имеет смысла - если Ахиллес движется намного быстрее, он в любом случае вырвется вперёд, однако Зенон, в первую очередь, хотел продемонстрировать своими рассуждениями, что идеализированные математические понятия «точка пространства» и «момент времени» не слишком подходят для корректного применения к реальному движению. Апория выявляет расхождение между математически обоснованной идеей, что ненулевые интервалы пространства и времени можно делить бесконечно (поэтому черепаха должна всегда оставаться впереди) и реальностью, в которой герой, конечно, выигрывает гонку.
Парадокс временной петли
Парадоксы, описывающие путешествия во времени, давно служат источником вдохновения для писателей-фантастов и создателей научно-фантастических фильмов и сериалов. Существует несколько вариантов парадоксов временной петли, один из самых простых и наглядных примеров подобной проблемы привёл в своей книге «The New Time Travelers» («Новые путешественники во времени») Дэвид Туми, профессор из Университета Массачусетса.
Представьте себе, что путешественник во времени купил в книжном магазине экземпляр шекспировского «Гамлета». Затем он отправился в Англию времён Королевы-девы Елизаветы I и отыскав Уильяма Шекспира, вручил ему книгу. Тот переписал её и издал, как собственное сочинение. Проходят сотни лет, «Гамлета» переводят на десятки языков, бесконечно переиздают, и одна из копий оказывается в том самом книжном магазине, где путешественник во времени покупает её и отдаёт Шекспиру, а тот снимает копию и так далее… Кого в таком случае нужно считать автором бессмертной трагедии?
Парадокс девочки и мальчика
В теории вероятностей этот парадокс также называют «Дети мистера Смита» или «Проблемы миссис Смит». Впервые он был сформулирован американским математиком Мартином Гарднером в одном из номеров журнала «Scientific American». Учёные спорят над парадоксом уже несколько десятилетий и существует несколько способов его разрешения. Поразмыслив над проблемой, вы можете предложить и свой собственный вариант.
В семье есть двое детей и точно известно, что один из них - мальчик. Какова вероятность того, что второй ребёнок тоже имеет мужской пол? На первый взгляд, ответ вполне очевиден - 50 на 50, либо он действительно мальчик, либо девочка, шансы должны быть равными. Проблема в том, что для двухдетных семей существует четыре возможных комбинации полов детей - две девочки, два мальчика, старший мальчик и младшая девочка и наоборот - девочка старшего возраста и мальчик младшего. Первую можно исключить, так как один из детей совершенно точно мальчик, но в таком случае остаются три возможных варианта, а не два и вероятность того, что второе чадо тоже мальчик - один шанс из трёх.
Парадокс Журдена с карточкой
Проблему, предложенную британским логиком и математиком Филиппом Журденом в начале XX-го века, можно считать одной из разновидностей знаменитого парадокса лжеца.
Представьте себе - вы держите в руках открытку, на которой написано: «Утверждение на обратной стороне открытки истинно». Перевернув открытку, вы обнаруживаете фразу «Утверждение на другой стороне ложно». Как вы понимаете, противоречие налицо: если первое утверждение правдиво, то второе тоже соответствует действительности, но в таком случае первое должно оказаться ложным. Если же первая сторона открытки лжива, то фразу на второй также нельзя считать истинной, а это значит, первое утверждение опять-таки становится правдой… Ещё более интересный вариант парадокса лжеца - в следующем пункте.
Софизм «Крокодил»
На берегу реки стоят мать с ребёнком, вдруг к ним подплывает крокодил и затаскивает ребёнка в воду. Безутешная мать просит вернуть её чадо, на что крокодил отвечает, что согласен отдать его целым и невредимым, если женщина правильно ответит на его вопрос: «Вернёт ли он её ребёнка?». Понятно, что у женщины два варианта ответа - да или нет. Если она утверждает, что крокодил отдаст ей ребёнка, то всё зависит от животного - посчитав ответ правдой, похититель отпустит ребёнка, если же он скажет, что мать ошиблась, то ребёнка ей не видать, согласно всем правилам договора.
Отрицательный ответ женщины всё значительно усложняет - если он оказывается верным, похититель должен выполнить условия сделки и отпустить дитя, но таким образом ответ матери не будет соответствовать действительности. Чтобы обеспечить лживость такого ответа, крокодилу нужно вернуть ребёнка матери, но это противоречит договору, ведь её ошибка должна оставить чадо у крокодила.
Стоит отметить, что сделка, предложенная крокодилом, содержит логическое противоречие, поэтому его обещание невыполнимо. Автором этого классического софизма считается оратор, мыслитель и политический деятель Коракс Сиракузский, живший в V-м веке до нашей эры.
Апория «Дихотомия»


Ещё один парадокс от Зенона Элейского, демонстрирующий некорректность идеализированной математической модели движения. Проблему можно поставить так - скажем, вы задались целью пройти какую-нибудь улицу вашего города от начала и до конца. Для этого вам необходимо преодолеть первую её половину, затем половину оставшейся половины, далее половину следующего отрезка и так далее. Иначе говоря - вы проходите половину всего расстояния, затем четверть, одну восьмую, одну шестнадцатую - количество уменьшающихся отрезков пути стремится к бесконечности, так как любую оставшуюся часть можно разделить надвое, значит пройти весь путь целиком невозможно. Формулируя несколько надуманный на первый взгляд парадокс, Зенон хотел показать, что математические законы противоречат реальности, ведь на самом деле вы можете без труда пройти всё расстояние без остатка.
Апория «Летящая стрела»
Знаменитый парадокс Зенона Элейского затрагивает глубочайшие противоречия в представлениях учёных о природе движения и времени. Апория сформулирована так: стрела, выпущенная из лука, остаётся неподвижной, так как в любой момент времени она покоится, не совершая перемещения. Если в каждый момент времени стрела покоится, значит она всегда находится в состоянии покоя и не движется вообще, так как нет момента времени, в который стрела перемещается в пространстве.


Выдающиеся умы человечества веками пытаются разрешить парадокс летящей стрелы, однако с логической точки зрения он составлен абсолютно верно. Для его опровержения требуется объяснить, каким образом конечный временной отрезок может состоять из бесконечного числа моментов времени - доказать это не удалось даже Аристотелю, убедительно критиковавшему апорию Зенона. Аристотель справедливо указывал, что отрезок времени нельзя считать суммой неких неделимых изолированных моментов, однако многие учёные считают, что его подход не отличается глубиной и не опровергает наличие парадокса. Стоит отметить, что постановкой проблемы летящей стрелы Зенон стремился не опровергнуть возможность движения, как таковую, а выявить противоречия в идеалистических математических концепциях.
Парадокс Галилея
В своём труде «Беседы и математические доказательства, касающиеся двух новых отраслей науки» Галилео Галилей предложил парадокс, демонстрирующий любопытные свойства бесконечных множеств. Учёный сформулировал два противоречащих друг другу суждения. Первое: есть числа, представляющие собой квадраты других целых чисел, например 1, 9, 16, 25, 36 и так далее. Существуют и другие числа, у которых нет этого свойства - 2, 3, 5, 6, 7, 8, 10 и тому подобные. Таким образом, общее количество точных квадратов и обычных чисел должно быть больше, чем количество только точных квадратов. Второе суждение: для каждого натурального числа найдётся его точный квадрат, а для каждого квадрата существует целый квадратный корень, то есть, количество квадратов равно количеству натуральных чисел.
На основании этого противоречия Галилей сделал вывод, что рассуждения о количестве элементов применены только к конечным множествам, хотя позже математики ввели понятие мощности множества - с его помощью была доказана верность второго суждения Галилея и для бесконечных множеств.
Парадокс мешка картофеля


Допустим, у некоего фермера имеется мешок картофеля весом ровно 100 кг. Изучив его содержимое, фермер обнаруживает, что мешок хранился в сырости - 99% его массы составляет вода и 1% остальные вещества, содержащиеся в картофеле. Он решает немного высушить картофель, чтобы содержание воды в нём снизилось до 98% и переносит мешок в сухое место. На следующий день оказывается, что, один литр (1 кг) воды действительно испарился, но вес мешка уменьшился со 100 до 50 кг, как такое может быть? Давайте посчитаем - 99% от 100 кг это 99 кг, значит соотношение массы сухого остатка и массы воды изначально было равно 1/99. После сушки вода насчитывает 98% от общей массы мешка, значит соотношение массы сухого остатка к массе воды теперь составляет 1/49. Так как масса остатка не изменилась, оставшаяся вода весит 49 кг.
Конечно, внимательный читатель сразу обнаружит грубейшую математическую ошибку в расчётах - мнимый шуточный «парадокс мешка картофеля» можно считать отличным примером того, как с помощью на первый взгляд «логичных» и «научно подкреплённых» рассуждений можно буквально на пустом месте выстроить теорию, противоречащую здравому смыслу.
Парадокс воронов
Проблема также известна, как парадокс Гемпеля - второе название она получила в честь немецкого математика Карла Густава Гемпеля, автора её классического варианта. Проблема формулируется довольно просто: каждый ворон имеет чёрный цвет. Из этого следует, что всё, что не чёрного цвета, не может быть вороном. Этот закон называется логическая контрапозиция, то есть если некая посылка «А» имеет следствие «Б», то отрицание «Б» равнозначно отрицанию «А». Если человек видит чёрного ворона, это укрепляет его уверенность, что все вороны имеют чёрный окрас, что вполне логично, однако в соответствии с контрапозицией и принципом индукции, закономерно утверждать, что наблюдение предметов не чёрного цвета (скажем, красных яблок) также доказывает, что все вороны окрашены в чёрный цвет. Иными словами - то, что человек живёт в Санкт-Петербурге доказывает, что он живёт не в Москве.
С точки зрения логики парадокс выглядит безукоризненно, однако он противоречит реальной жизни - красные яблоки никоим образом не могут подтверждать тот факт, что все вороны чёрного цвета.

Этот эпизод с умным миссионером является одной из перефразировок парадокса древнегреческих философов Протагора и Эватла.

Но с подобным парадоксом формальной логики сталкивался всякий исследователь, который пытался строго определить все понятия в своей теории. Этого никому еще не удавалось, так как все сводилось в конечном счете к тавталогии типа: "Движение - это перемещение тел в пространстве, а перемещение - это движение тел в пространстве"

Еще один вариант этого парадокса. Некто совершил преступление, караемое смертной казнью. На суде ему представляется последнее слово. Он должен произнести одно утверждение. Если оно окажется истинным, преступника утопят. Если же оно будет ложным, преступника повесят. Какое утверждение он должен высказать, чтобы привести судью в полное замешательство? Подумайте сами.

Озадаченный этим парадоксом, Протагор посвятил этому спору с Еватлом особое сочинение «Тяжба о плате». К сожалению, оно, как и большая часть написанного Протагором, не дошло до нас. Философ Протагор сразу почувствовавал, что за этим парадоксом скрывается сто-то сущностное, заслуживающее специального исследования.

Апория Зенона Элейского. Летящая стрела по законам формальной логики не может лететь. Летящая стрела в каждый момент времени занимает равное себе положение, то есть покоится; поскольку она покоится в каждый момент времени, то она покоится во все моменты времени, то есть не существует момента времени, в котором стрела совершает движение и не занимает равное себе место.

Эта апория является следствием представления о дискретности движения о том, что движущееся тело в дискретные единицы времени проходит дискретные промежутки расстояния, и расстояние - это сумма бесконечного числа неделимых отрезков, которые тело проходит. Эта апория затрагивает глубокий вопрос о природе пространства и времени - о дискретности и непрерывности. Если наш мир дискретен, то движение в нем невозможно, а если он непрерывен, то измерить его дискретными единицами длины и дискретными единицами времени невозможно.

Формальная логика основана на концепции дискретности мира, начало которой следует искать в учении Демокрита об атомах и пустоте, а может быть, и в более ранних философских учениях древней Греции. Мы не задумываемся о парадоксальности формальной логики, когда говорим, что скорость - это количество метров или километров, пройденных телом, которые оно проходит в секунду или в минуту (физика нас учит, что расстояние, деленное на время - это скорость). Расстояние мы измеряем дискретными единицами (метрами, километрами, верстами, аршинами и т.д.), время - тоже дискретными единицами (минуты, секунды, часы и т.д.). У нас есть эталон расстояния - метр, или иной отрезок, с которым мы сравниваем путь. Эталоном времени (по сути, тоже отрезком) мы измеряем время. Но ведь расстояние и время непрерывны. А если прерывны (дискретны), то что находится в стыках их дискретных частей? Потусторонний мир? Параллельный мир? Гипотезы о параллельных мирах неверны, т.к. основаны на рассуждениях по законам формальной логики, полагающей, что мир дискретен. Но если бы он был дискретен, то в нем было бы невозможно движение. А это значит, что все в таком мире было бы мертво.

Действительно, этот парадокс неразрешим в двоичной логике. Но ведь именно эта логика лежит в основе большинства наших рассуждений. Из этого парадокса следует, что истинное суждение о чем-то нельзя построить в рамках этого чего-то. Для этого надо выйти за его пределы. Это значит, что критянин Эпименид не может объективно судить о критянах и давать им характеристики, так как сам является критянином.

Парадокс лжеца. «То, что я утверждаю сейчас - ложно», или «Данное высказывание - ложь». Этот парадокс сформулировал философ мегарской школы Евбулид. Он сказал: «Критянин Эпименид утверждал, что все критяне лжецы». Если Эпименид прав, что все критяне лжецы, то он тоже лжец. Если же Эпименид лжец, то он лжет, что все критяне лжецы. Так лжецы или не лжецы критяне? Ясно, что цепочка этих рассуждений ущербна, но в чем?.

В науке это значит, что невозможно понять и объяснить систему, исходя из элементов только этой системы, свойств этих элементов и процессов, происходящих внутри этой системы. Для этого следует рассматривать систему как часть чего-то большего - внешней среды, системы большего порядка, частью которой является система, которую мы изучаем. Иначе: чтобы понять частное, надо подняться до более всеобщего.

Парадокс Платона и Сократа
Платон: «Следующее высказывание Сократа будет ложным».
Сократ: «То, что сказал Платон, истинно».
То есть, если предположить, что Платон говорит правду, что Сократ лжет, то Сократ лжет, что Платон говорит правду, значит Платон лжет. Если же Платон лжет, что Сократ лжет, то Сократ говорит правду, что Платон прав. И цепочка рассуждений возвращается в начало.

Парадокс этот состоит в том, что в рамках формальной логики суждение может быть одновременно и истинно, и ложно. Это утверждение, составляющее парадокс лжеца, в формальной логике не доказуемо и не опровержимо. Считается, что данное высказывание вообще не является логическим утверждением. Попытка разрешить этот парадокс приводит к тройственной логике, комплексной логике.

Этот парадокс показывает несовершенство формальной логики, попросту - ее ущербность.

Этот парадокс говорит о том, что для характеристики элементов системы элементами этой системы, требуется, чтобы количество элементов в этой системе было больше двух. Тезы и антитезы недостаточно, чтобы охарактеризовать какой-то элемент. Если высказывание не истинно, то из этого не следует, что оно ложно. И наоборот, если высказывание не ложно, то это не значит, что оно истинно. Нашему разуму нелегко согласиться с этим утверждением, ведь мы пользуемся формальной альтернативной логикой. А случай с высказываниями Платона и Сократа говорит о том, что это возможно. Посудите сами: нам говорят: "Шар в коробке не черный". Если мы подумаем, что он белый, то мы можем ошибиться, так как шар может оказаться синим, красным, или желтым.

В двух последних примерах мы видим, что парадоксы рождаются из ущербности формальной (двоичной) логики. Вдумаемся в то, как фраза должна быть построена правильно: "История учит человека, а он из истории ничему не учится". В такой формулировке, при таком уточнении никакой парадокс уже не содержится. Два последних парадокса не являются антиномиями, их можно устранить в рамках законов формальной логики, правильно построив фразу.

Брадобрей себя не бреет, парадокс Рассела запрещает ему это. Фото с сайта: http://positivcheg.ru/foto/837-solidnye-dyadenki.html

Парадокс Рассела: Содержит ли множество всех множеств само себя, если множества, в него входящие, не содержат самих себя (являются пустыми множествами)? Рассел популяризовал его в форме «парадокса брадобрея»: «Брадобрей бреет только тех людей, которые не бреются сами. Бреет ли он себя?».

Здесь налицо парадокс определения: Мы начали строить логическую конструкцию, не определив, что такое множество. Если брадобрей - часть множества людей, которых он бреет, то он за бритье должен брать плату и с самого себя. Так что же такое определение? А ведь и ученые нередко оперирует понятиями, которые никак не определяют, отчего не могут понять друг друга и бессмысленно спорят.

Понятие "пустое множество" абсурдно по определению. Как может быть множество пустым, ничего не содержащим? Брадобрей не входит во множество людей, которых он бреет как брадобрей. Ведь себя любой мужчина бреет не как брадобрей, а как бреющийся мужчина. А бреющийся мужчина - не брадобрей, так как плату с себя за это не берет.

Парадокс из разряда антиномий - порожден ошибкой в рассуждениях, в построении фразы. Следующий парадокс также относится к антиномиям.

В этом случае надо вспомнить о том, что человек должен учиться размышлять, а не только запоминать. Учение как механическое запоминание большой ценности не имеет. Примерно 85-90% того, что человек запоминает, обучаясь в школе и вузе, он забывает в течение первых 3-5 лет. А вот если его научили размышлять, то этим умением он владеет практически всю жизнь. Но что будет с людьми, если им при обучении давать запоминать только те 10% информации, которую они запоминают надолго? К сожалению, такого эксперимента еще никто не ставил. Хотя...

Был в нашем селе один мужик, кторый закончил в начале 30-х только 4 класса школы. Но в 60-х он работал главным бухгалтером колхоза и с работой справлялся лучше, чем сменивший его потом бухгалтер со средним техническим образованием.

Но если корабль определить как систему, сущность которой определяется его свойствами как целого: весом, водоизмещением, скоростью, КПД и прочими характеристиками, то и при замене всех деталей аналогичными деталями корабль остается прежним. Свойства целого отличаются от свойств его частей и не сводятся к свойствам этих частей. Целое больше суммы его частей! Поэтому и в 50 лет человек остается самим собой, хотя 95% атомов его тела уже много раз за это время заменены другими, да и атомов в его теле становится больше, чем было в возрасте 10 лет.

Так что не совсем прав был древний философ, заявив, что нельзя дважды войти в одну и ту же реку, так как вода в ней течет и все время молекулы ее в потоке заменяются. В этом случае неявно постулируется, что река - это сумма именно этих молекул воды и никаких других молекул воды. Но ведь это не так, ведь мы реку воспринимаем не как набор молекул воды, а как поток определенной глубины и ширины, с определенной скоростью течения, одним словом, река - это динамическая система, а не сумма своих частей.

Лысеющий орангутанг. Фото с сайта: http://stayer.35photo.ru/photo_125775

Лысеющий одуванчик. Фото с сайта: http://www.fotonostra.ru/4101.html

Часто ответ на вопрос об облысении лежит в иной плоскости, чем та, в которой его сформулировали. Чтобы ответить на такой вопрос, надо выйти из одной плоскости рассуждений и восприятия в совершенно иную. Например, публикации одного ученого цитируют 100 раз в год, а другого 1 раз в год. Вопрос: кто из них гениальный ученый? Разных ответов на этот вопрос может быть четыре: 1 - никто, 2 - оба, 3 - первый, 4 - второй. И все четыре ответа в данном случае равновероятны, так как количество цитирований в принципе не может быть признаком гениальности. Правильный ответ на этот вопрос можно плучить только через 100 лет или чуть меньше.

Абсурдность в данном случае проистекает от отсутствия четкого определения понятия "демократия". Если общественная система (государство) должна быть демократичной, то следует выполнить равное представительство именно от избирателей. Равное представительство от штатов, если численность населения в них разная, - это не принцип демократии, а что-то иное. Равное представительство от партий - это что-то третье, от религиозных кофессий - четвертое и т.д.

Парадокс демократии (голосования): "нельзя совместить все требования к избирательной системе в одной системе". Если выполнить равное представительство в парламенте от штатов или областей, то при этом невозможно выполнить равное представительство в парламенте от избирателей. А ведь еще есть религиозные конфессии и т.д.

Но в политике даже формальная логика не в почете, а зачастую она нарушается намеренно, чтобы запудрить мозги электорату. В США технологии "пудрения мозгов" развиты просто превосходно. Выборы у них не демократические, а мажоритарные, но американцы свято верят в то, что у них демократическое государство и готовы порвать всякого, кто об их общественной системе думает иначе. Аристократическую форму управления государством они ухитряются выдать за демократическую. А возможна ли демократические выборы в принципе?

Но практически вывод Монте-Карло может быть ложным и по другой причине. Ведь условие о независимости элементарных событий при игре в рулетку может и не выполняться. А если элементарные события не независимы, а "сцеплены" друг с другом как известными нам, так и неизвестными пока способами... то в этом случае лучше ставить на черное, а не на красное.

Может оказаться, что во Вселенной есть и другие носители энергии и информации, а не только колебания электромагнитного поля и потоки элементарных частиц. Если в своей основе Вселенная не дискретна (вакуум), а сплошная, то этот парадокс неуместен. Тогда на каждую часть Вселенной оказывает влияние вся остальная ее часть, тогда каждый атом мироздания связан и взаимодействует со всеми остальными атомами, как бы далеко они от него не находились. А ведь в бесконечной Вселенной атомов должно быть бесконечное количество... Стоп! Опять начинают кипеть мозги.

Этот парадокс проистекает от нашего непонимания, что такое время. Если время - это поток мира со множеством протоков (как часто бывает у реки), а скорость течения в протоках разная, то щепочка, попавшая в быструю протоку, потом опять попадет в медленную, когда быстрая протока сольется с медленной, в которой плывет другая щепочка, с которой когда-то они плыли рядом. Но теперь одна щепочка окажется впереди своей "подруги" и с ней не уже встретится. Чтобы им встретиться, отставшая "подруга" должна попасть в другую быструю протоку, а опередившая - плыть в это время в медленной протоке. Получается, что брат близнец, улетевший на субсветовом корабле, в принципе не может вернуться в прошлое и встретиться со своим братом. Медленный поток времени (субсветовой корабль) задержал его в потоке времени. За это время его брат не просто стал старше, но он ушел в будущее, вместе с ним в будущее ушло все, что его окружало. Так что брат, отставший во времени, в будущее попасть уже не сможет в принципе.

А если река времени не имеет проток с разной скоростью, то и никакого парадокса быть не может. Может, теория относительности неверна, и время не относительно, а абсолютно?

Парадокс убитого дедушки: вы перемещаетесь в прошлое и убиваете своего дедушку до того, как он познакомился с вашей бабушкой. Из-за этого вы не сможете появиться на свет и, следовательно, не сможете убить своего дедушку.

Этот парадокс доказывает, что путешествия в прошлое невозможны. Для того, чтобы попасть в прошлое, человеку надо превратиться в иную сущность - перейти в пятимерное пространство время, в котором прошлое, настоящее и будущее существуют вместе - слиты воедино, ему придется родиться, умереть и жить, и все это в виде некоего единосущного яления, когда "родится, жить и умереть" не раздельны друг с другом. Стать таким существом для человека означает верную смерть - распад на субатомные частицы. В общем, мы живем в четырехмерном мире, и в пятимерный мир нам путь заказан.

И слава Богу! Поэтому дедушке не грозит, что его внук явится из будущего и убьет его. А таких внуков, накурившихся марихуаны, сегодня немало.

Недавно центральное бюро Китая по вопросам кино, радио и телевидения запретило показывать фильмы о путешествиях во времени, поскольку они «демонстрируют неуважение к истории». Кинокритик Раймонд Чжоу Лимин пояснил причины запрета тем, что сейчас путешествия во времени - популярная тема в сериалах и в кино, но смысл таких произведений, а также их подача весьма сомнительны. «Большинство из них полностью вымышлены, не соответствуют логике и не соответствуют историческим реалиям. Продюсеры и сценаристы слишком легкомысленно относятся к истории, искажают ее и навязывают этот образ зрителям, и это не стоит поощрять», - добавил он. Такие произведения не опираются на науку, а пользуются ею как предлогом для комментирования текущих событий.

Я считаю, что китайцы попали в самую точку, поняв вред таких фильмов. Морочить людей глупостями, выдавая их за научную фантастику, опасно. Дело в том, что подобные фильмы расшатывают у людей чувство реальности, границы реальности. А это верный путь к шизофрении.

Сальвадор Дали средствами живописи показал абсурдность наших представлений о времени. Текущие часы - это еще не время. А что же такое время? Если бы не было времени, то не было бы движения. А может, правильнее говорить так: если бы не было движения, то не было бы и времени?. А может, время и движение - это одно и то же? Нет, скорее с помощью категорий время и пространство мы пытаемся характеризовать и измерять движение. В этом случае время - это что-то вроде аршина малалана. Чтобы путешествовать во времени, надо перестать быть живыми (живущими) людьми и надо научиться двигаться внутри самого движения.

Времени нет, есть движение, а движение - это и есть время. Все парадоксы, связанные со временем, происходят от того, что времени приписываются свойства пространства. Но пространство - это скаляр, а время - вектор.

Прошлое и настоящее. Если бы можно было вот так соединить прошлое с настоящим, то мы могли бы по вечерам ходить гулять во двор нашего детства и встречаться там с друзьями детства, причем друзья детства были бы детьми, а мы взрослыми. Но это сделать невозможно. Время - это не характеристика любого движения, а характеристика движения необратимого. Даже если пустить движение по кругу - зациклить, то каждый цикл будет отличаться чем-то от предыдущего. Фото с сайта: http://kluchikov.net/node/76

Вот так мы изменяемся во времени. Путешествие в прошлое возможно только с помощью просмотра старых фотографий и старых кино. Еще с помощью нашей памяти. Может быть, память как раз и есть то, что делает нас пятимерными сущностями? Наверное, память и есть единственно возможная машина времени, которая может умчать нас в прошлое. Надо только научиться все вспоминать. Фото с сайта: http://loveopium.ru/page/94

Ахиллес и черепаха: Быстроногий Ахиллес никогда не догонит неторопливую черепаху, если в начале движения черепаха находится впереди Ахиллеса, так как пока он переместится в точку, где была черепаха в начале состязания, она успеет продвинуться хоть немного вперёд. Пока Ахиллес добежит до точки, где находилась черепаха, она успеет переместиться на определенное расстояние вперед. Теперь Ахиллесу придется снова пробежать некоторое расстояние до места, где была черепаха, а она за это время снова переместится вперед, и так далее – количество точек приближения Ахиллеса к черепахе стремится к бесконечности. Получается, что Ахиллес никогда не догонит черепаху, но мы же понимаем, что в реальности он ее легко догонит и обгонит.

Почему так происходит, из-за чего образовался этот парадокс? А дело в том, что расстояние - это не совокупность точек. Ведь точка не имеет размера и на любом геометрическом отрезке количество точек может равняться бесконечности. Чтобы побывать в бесконечном количестве точек, Ахиллесу потребуется бесконечное время. Поэтому получается, что дискретная математика и формальная логика к реальности неприменимы, а если и применимы, то с большими оговорками.

Этот парадокс связан с тем, что формальная логика оперирует в дискретном мире с дискретными телами, состоящими из точек, и явлениями, которые тоже представляют совокупности точек в четырехмерном пространстве-времени. Этот парадокс не столь уж безобиден. Вот уже 2,5 тыс. лет он показывает ученым абсурдность формальной логики и ограниченность математики. Но ученые упрямо верят в формальную логику и математику и ничего не хотят менять. Хотя... Робкие попытки изменить логику предпринимались и в философии, и в математике.

Черепахе стало жалко Ахиллеса и она остановилась. Только тогда измученный и постаревший Ахиллес смог догнать ее и наконец отдохнуть. Рисунок с сайта: http://ecolours.pl/life.php?q=zeno-of-elea&page=2

Ахиллес бежит за черепахой. В реальности он ее запросто догоняет, а вот в логической конструкции этого процесса он догнать ее не может. Черепаха имеет фору в 100 метров. Оба бегуна одновременно начинают движение. Пока Ахиллес добежит до точки А, черепаха переместится в точку В, ахиллес опять сократит расстояние между собой и черепахой и переместится в точку С. Но в это время черепаха переместится вперед и окажется впереди Ахиллеса в точке Д. Ахиллес снова сократит расстояние между собой и черепахой и окажется в точке Е. Но черепаха за это время опять уползет вперед и окажется в точке Ж. И так до бесконечности. Расстояние между Ахиллесом и черепахой будет сокращаться, но догнать ее он не сможет. Этот вывод следует из формальной логики. Рисунок с сайта: http://nebesa87.livejournal.com/

В математике попыткой вырваться из плена формальной логики было создание дифференциального и интегрального исчисления. И то и другое предполагает непрерывное изменение некоторой величины в зависимости от непрерывного же изменения другой величины. Столбчатые диаграммы изображают зависимость дискретных явлений и процессов, а графики (линии) - непрерывных процессов и явлений. Однако переход от диаграммы к графику есть некое таинство - что-то вроде святотатства. Ведь все экспериментальные данные (результаты конкретных измерений) дискретны. А исследователь вместо диаграммы берет и рисует график. Что это? Если подходить строго, то дело тут обстоит так: график - это трансформация диаграммы в график, который аппроксимирует эту диаграмму. Строя график в виде сплошной линии, мы совершаем переход из мира дискретных явлений и предметов в мир непрерывный. Это попытка вырваться за пределы формальной логики и тем самым избежать ее парадоксы.

В философии уже в XIX веке ученые осознали ущербность формальной логики, некоторые стали пытаться разрешить эту проблему. Дружно заговорили о диалектике, о триаде (Гегель), об иной теории познания. Философы раньше ученых поняли, что формальная логика заводит познание в тупик. Результатом внедрения диалектики в науку стало, например, учение об эволюции (развитии). Ведь если строго находиться на позициях формальной логики, то развитие невозможно в принципе. Преформизм - это жалкая попытка формальной логики объяснить происходящую всюду эволюцию. Преформисты утверждают, что все предначертано в некоторой программе в зародыше, и наблюдаемое развитие - это только реализация (развертывание) этой программы. Формальная генетика родилась из преформизма, но она смогла объяснить только развитие организма в онтогенезе. А вот изменение видов и макроэволюцию формальная генетика объяснить не смогла. Пришлось к той первоначальной формальной генетике пристраивать новое здание, которое на несколько порядков оказалось больше здания классической генетики, вплоть до отрицания дискретных генов. Но и в таком измененном виде генетика смогла объяснить только микроэволюцию, а макроэволюция ей оказалась не по зубам. А те попытки, которые генетики делают, чтобы объяснить макроэволюцию, дают парадоксы, подобные рассмотренным выше.

Но и сегодня позиции формальной логики очень прочны в умах ученых: биологов, биофизиков, генетиков, биохимиков. Диалектика с трудом пробивает себе дорогу в этой науке.

Парадокс гласит, что кто-то всемогущий может создать любую ситуацию, в том числе такую, в которой будет неспособен что-либо сделать. В упрощенном варианте это звучит так: может ли Бог создать камень, который не сможет сам поднять? С одной стороны, он всемогущ и может создать какой угодно камень. С другой стороны, если он не может поднять созданный собой же камень, значит он не всемогущ!

Куча песка состоит из 1 000 000 песчинок. Если забрать из нее одну песчинку, то это все равно будет куча песка. Если продолжить это действие много раз, то получится, что 2 песчинки, и даже одна песчинка – это тоже куча песка. На это можно возразить, что одна песчинка – это всего лишь одна песчинка, но в таком случае нарушается принцип взаимосвязанности утверждений, и мы снова приходим к парадоксу. Спасти эту ситуацию можно только в том случае, если ввести исключение для одной песчинки, которая не является кучей. Но две песчинки тоже трудно назвать кучей. Так с какого же количества песчинок начинается куча?

В действительности так не случается, так как в мире не существует одинаковых вещей, явлений, пучков сена, равноценных видов казни. Если даже пучки сена одинаковые по вкусовым качествам и размеру, то один из них может быть чуть дальше другого, или один глаз осла может быть более зорким, чем другой и т.д. К сожалению, формальная логика этого не учитывает, поэтому применять ее следует осторожно и не во всех суждениях, не всегда ей доверять.

Люди в жизни и в своей деятельности (в том числе и в экономической) ведут себя совсем не как "идеальные" шары в теории. Кроме выгоды, люди стремятся к устойчивости и комфорту в широком смысле этого слова. Неизвестный риск может быть как меньше известного, так и больше его. Можно, конечно, выиграть больше и стать богаче. Но ведь можно и проиграть больше и стать банкротом. А деньги в рост отдают небедные люди, им есть чем дорожить, и оказаться в бомжах они не хотят.

Допустим, я у подруги взял 100 рублей, пошёл в магазин и потерял их. Встретил друга и занял у него еще 50 рублей. Купил бутылку пива за 20 рублей, у меня осталось 30 рублей, которые я отдал подруге и остался должен ей 70 руб. И другу я остался должен 50 руб., итого 120 руб. Плюс у меня бутылка пива за 20 рублей.
Итого 140 рублей!
Где остальные 10 рублей?

Вот пример логической ошибки, заложенной в рассуждения. Ошибка кроется в неверном построении рассуждения. Если "ходить" по заданному логическому кругу, то выбраться из него невозможно.

Попробуем порассуждать. Логическая ошибка в данном случае состоит в том, что долг считается вместе с тем, что у нас имеется, что мы не теряли - с бутылкой пива. Действительно, я занял 100+50=150 рублей. Но я убавил свой долг, вернув 30 рублей подруге, после чего я стал должен ей 70 рублей и 50 рублей стал должен другу (70+50=120). Итого мой долг составил теперь 120 рублей. Но если я отдам бутылку пива стоимостью 20 рублей другу, то я останусь должен ему только 30 рублей. Вместе с долгом подруге (70 рублей) мой долг составит 100 рублей. Но ведь именно эту сумму я и потерял.

В космофизике сегодня очень модной стала теория чёрных дыр. Согласно этой теории, огромные звезды, в которых "сгорает" термоядерное топливо, сжимаются - коллапсируют. При этом их плотность чудовищно возрастает - так, что электроны падают на ядра и внутриатомные пустоты схлопываются. Такая коллапсировавшая сверхплотная потухшая звезда обладает сильной гравитацией и поглощает вещество из космического пространства (как пылесос). При этом такая нейтронная звезда становится все плотнее и тяжелее. Наконец, ее гравитация становится такой мощной, что даже кванты света не могут покинуть ее. Так образуется чёрная дыра.

Этот парадокс позволяет усомниться в физической теории чёрных дыр. Может оказаться, что они не такие уж чёрные . Скорее всего, они обладают структурой и, следовательно, энергией и информацией. Мало того, чёрные дыры не могут вбирать в себя вещество и энергию бесконечно. В конце концов, "объевшись", они "лопаются" и выбрасывают из себя сгустки сверхплотного вещества, которое становится ядрами звезд и планет. Неслучайно чёрные дыры обнаружены в центрах галактик, а в этих центрах наблюдается самая высокая концентрация звезд, убегающих от этих центров.

Всякое противоречие в теоретических догматах науки должно побуждать ученых изменять (совершенствовать) теорию. Столь большое количество парадоксов в логике, математике, физике показывает, что далеко не все обстоит хорошо в этих науках с теоретическими построениями.

В 1850 г. немецкий физик Р. Клаузиус пришёл к выводу, что теплота переходит только от тёплого тела к холодному, и никогда наоборот, отчего состояние Вселенной должно всё больше изменяться в определённом направлении. Физик Уильям Томсон утверждал, что все физические процессы во Вселенной сопровождаются превращением световой энергии в теплоту. Следовательно, Вселенную ожидает «тепловая смерть» - т.е. остывание до абсолютного нуля -273 градуса по Цельсию. Поэтому бесконечно долгое существование "теплой" Вселенной во времени невозможно, она должна остыть.

Теория тепловой смерти Вселенной, по всей вероятности, - теория красивая, но ложная. Что-то термодинамика не учитывает, раз ее постулаты приводят к такому выводу. Однако господа физики слишком любят эту теорию и никак не желают с ней растаться или хотя бы сильно ограничить ее применимость.

Назревает очередная революция в физике. Кто-то гениальный создаст новую теорию, в которой энергия может не только рассеиваться во Вселенной, но и собираться. А может, в черных дырах она и собирается? Ведь если есть механизм рассеяния вещества и энергии, то обязательно должен быть и противоположный ему процесс концентрирования материи. Мир зиждется на единстве и борьбе противоположностей.

Фото с сайта: http://grainsoft.dpspa.org/referat/referat-teplovoy-smerti-vselennoy.html

Клаузиус писал об этом так: «Работа, могущая быть произведенной силами природы и содержащаяся в существующих движениях небесных тел, будет постепенно все больше и больше превращаться в теплоту. Теплота, переходя постоянно от более теплого к более холодному телу и стремясь этим выравнивать существующие различия в температуре, будет постепенно получать все более и более равномерное распределение и наступит также известное равновесие между наличной в эфире лучистой теплотой и теплотой, находящейся в телах. И, наконец, в отношении своего молекулярного расположения тела приблизятся к некоторому состоянию, в котором, что касается господствующей температуры, совокупное рассеяние будет возможно наибольшим». И далее: «Мы должны, следовательно, вывести заключение, что во всех явлениях природы совокупная величина энтропии всегда может лишь возрастать, а не уменьшаться, и мы получаем поэтому как краткое выражение всегда и всюду совершающегося процесса превращения следующее положение: энтропия Вселенной стремится к некоторому максимуму. (http://msd.com.ua/vechnyj-dvigatel/teplovaya-smert-vselennoj-i-rrt-2/)

Но все идет нормально до тех пор, пока не случится кризис производства. А при кризисе производства в США исчезает дефицит платежного баланса. Капитала в банках скопилось много, а вложить его некуда. Капиталы живут только за счет оборота через производство. Как говорят: "Только в полете живут самолеты". А капиталы живут только в процессах производства и потребления. А без производства и потребления капиталы исчезают - превращаются в ничто (вчера был, а сегодня нету), от этого в США растет дефицит платежного баланса - подушки безопасности других стран в банках США бесследно исчезли. США, сделав доллар международной валютой, посадили себя на долларовую иглу. Мировой экономический кризис резко усугубляет ситуацию и здоровье у долларового "наркомана". Стремясь приобрести очередную "дозу", наркоман идет на все, он становится агрессивен.

Китай прекрасно развивается и при социализме. Вовсе не потому, что там мало частной собственности, а больше государственной. Просто китайцы цену на товары стали определять спросом на них. А такое возможно только в условиях рыночной экономики.

Парадокс бережливости. Если каждый будет экономить деньги во время экономического спада, то совокупный спрос упадёт и в результате уменьшатся суммарные накопления населения.

Этот парадокс я бы назвал парадоксом Анжелы Меркель и Саркози. Введя жесткую экономию бюджетов в странах Объединенной Европы, политики резко сократили спрос населения на товары и услуги. Сокращение спроса привело к сокращению производства, в том числе и в самих Германии и Франции.

Европе, чтобы справиться с кризисом, надо перестать экономить и надо смириться с неизбежностью инфляции. При этом часть капиталов будет потеряна, но зато за счет потребления будет спасено производство.

Фото с сайта: http://www.free-lance.ru/commune/?id=11&site=Topic&post=1031826

Но инфляция неизбежно приведет к потере капиталов - накоплений, которые хранит население в банках. Говорят, греки при евро жили не по средствам, бюджет Греции был с большим дефицитом. Но ведь получая эти деньги в виде зарплат и пособий, греки покупали товары, произведенные в Германии, Франции и тем самым стимулировали производство в этих странах. Стало схлопываться производство, выросло число безработных. Кризис усугубился и в странах, считавших себя донорами европейской экономики. Но экономика - это не только производство и его кредитование. Это еще и потребление. Игнорирование законов системы - причина этого парадокса.

Заключение

Заканчивая эту статью, хочу обратить внимание на то, что формальная логика и математика - науки не совершенные и, кичась своими доказательствами и строгостью своих теорем, зиждутся на аксиомах, принятых на веру как вполне очевидные вещи. Но так ли они очевидны эти аксиомы математики?

Что такое точка, не имеющая длины, ширины и тощины? И как так получается, что совокупность этих "бестелесных" точек, если они выстроены в ряд, является линией, а если одним слоем, то плоскостью? Мы берем бесконечное множество точек, не имеющих обьема, выстраиваем их в ряд, и получаем линию бесконечной длины. По-моему, это чушь какая-то.

Этот вопрос я еще в школе задавал учительнице математики. Она сердилась на меня и говорила: "какой же ты бестолковый! Ведь это очевидно." Тогда я спрашивал ее: "А сколько точек можно втиснуть в линию между двумя соседними точками, и можно ли это сделать?" Ведь если бесконечное множество точек приблизить вплотную друг к другу без расстояний между ними, то получится не линия, а точка. Чтобы получить линию или плоскость, надо точки располагать в ряд на некотором расстоянии друг к другу. Такую линию даже пунктирной не назовешь, ведь точки не имеют площади и объема. Они как бы есть, а как бы их вовсе нет, они нематериальны.

В школе я часто задумывался: а правильно ли мы ведем арифметические действия, например, сложение? В арифметике при сложении, 1+1 = 2. Но ведь это может быть и не всегда так. Если к одному яблоку прибавить еще одно яблоко, то получится 2 яблока. Но если на это посмотреть по-другому и считать не яблоки, а абстрактные множества, то сложив 2 множества, мы получим еще третье, состоящее из двух множеств. То есть в этом случае 1 + 1 = 3, а может быть 1+1=1 (два множества слились в одно).

А сколько будет 1+1+1? В обычной арифметике получается 3. А если учесть все комбинации из 3 элементов сначала по 2, а потом по 3? Правильно, в этом случае 1+1+1=6 (три сочетания по 1 элементу, два сочетания по 2 элемента и 1 сочетание по 3 элемента). Комбинаторная арифметика на первый взгляд кажется глупостью, но это так только с непривычки. В химии приходится считать сколько получится молекул воды, если взять 200 атомов водорода и 100 атомов кислорода. Получится 100 молекул воды. А если взять 300 атомов водорода и 100 атомов кислорода? Все равно получится 100 молекул воды и останется 100 атомов водорода. Итак, мы видим, что в химии находит себе применение иная арифметика. Подобные задачи имеют место и в экологии. Например, известно правило Либиха о том, что на растения оказывает влияние химический элемент в почве, который находится в минимуме. Даже если все другие элементы в большом количестве, растение сможет их усвоить столько, сколько позволяет элемент, находящийся в минимуме.

Математики кичатся своей якобы независимостью от реального мира, их мир - это мир абстрактный. Но если это так, то почему мы пользуемся десятеричной системой счета? А у каких-то племен была двадцатеричная система. Очень просто, те южные племена, которые не носили обуви, пользовались двадцатеричной системой - по числу пальцев на руках и на ногах, а вот те, кто жил на севере и носил обувь, при счете использовали только пальцы рук. Будь на руке у нас по три пальца, мы бы пользовались шестеричной системой. А вот если бы мы произошли от динозавров, то у нас было бы по три пальца на каждой руке. Вот вам и независимость математики от внешнего мира.

Порой мне кажется, что будь математика ближе к природе (реальности, опыту), будь она менее абстрактна, не считай себя царицей наук, а будь их слугой, она бы развивалась гораздо быстрее. А так получается, что нематематик Пирсон придумал математический критерий хи-квадрат, который с успехом используют при сравнениях рядов чисел (экспериментальных данных) в генетике, геологии, экономике. Если приглядеться к математике попристальнее, то оказывается, что все принципиально новое в нее вносили как раз физики, химики, биологи, геологи, а математики в лучшем случае это развивали - доказывали с позиций формальной логики.

Исследователи-нематематики постоянно вытаскивали математику из той ортодоксии, в которую ее старались погрузить "чистые" математики. Например, теорию сходства-различия создали не математики, а биологи, теорию информации - телеграфисты, теорию термодинамики - физики-теплотехники. Математики всегда пытались доказать теоремы с помощью формальной логики. Но некоторые теоремы с помощью формальной логики доказать, вероятно, в принципе невозможно.

Использованные источники информации

Математический парадокс. Адрес доступа: http://gadaika.ru/logic/matematicheskii-paradoks

Парадокс. Адрес доступа: http://ru.wikipedia.org/wiki/%CF%E0%F0%E0%E4%EE%EA%F1

Парадокс логический. Адрес доступа: http://dic.academic.ru/dic.nsf/enc_philosophy/

Парадоксы логики. Адрес доступа: http://free-math.ru/publ/zanimatelnaja_matematika/paradoksy_logiki/paradoksy_logiki/11-1-0-19

Храпко Р.И. Логические парадоксы в физике и математике. Адрес доступа:

План:

I. Введение

II. Апории Зенона

Ахилл и черепаха

Дихотомия

III . Парадокс лжеца

IV . Парадокс Рассела

I . Введение.

Парадокс - это два противоположных, несовместимых утверждения, для каждого из которых имеются кажущиеся убедительными аргументы. Наиболее резкая форма парадокса - антиномия, рассуждение, доказывающее эквивалентность двух утверждений, одно из которых является отрицанием другого.

Особой известностью пользуются парадоксы в самых строгих и точных науках - математике и логике. И это не случайно.

Логика - абстрактная наука. В ней нет экспериментов, нет даже фактов в обычном смысле этого слова. Строя свои системы, логика исходит в конечном счете из анализа реального мышления. Но результаты этого анализа носят синтетический характер. Они не являются констатациями каких-либо отдельных процессов или событий, которые должна была бы объяснить теория. Такой анализ нельзя, очевидно, назвать наблюдением: наблюдается всегда конкретное явление.

Конструируя новую теорию, ученый обычно отправляется от фактов, от того, что можно наблюдать в опыте. Как бы ни была свободна его творческая фантазия, она должна считаться с одним непременным обстоятельством: теория имеет смысл только в том случае, когда она согласуется с относящимися к ней фактами. Теория, расходящаяся с фактами и наблюдениями, является надуманной и ценности не имеет.

Но если в логике нет экспериментов, нет фактов и нет самого наблюдения, то чем сдерживается логическая фантазия? Какие если не факты, то факторы принимаются во внимание при создании новых логических теорий?

Расхождение логической теории с практикой действительного мышления нередко обнаруживается в форме более или менее острого логического парадокса, а иногда даже в форме логической антиномии, говорящей о внутренней противоречивости теории. Этим как раз объясняется то значение, которое придается парадоксам в логике, и то большое внимание, которым они в ней пользуются.

Один из первых и, возможно, лучших парадоксов был записан Эвбулидом, греческим поэтом и философом, жившим на Крите в VI веке до н. э. В этом парадоксе критянин Эпименид утверждает, что все критяне - лжецы. Если он говорит правду, то он лжет. Если он лжет, то он говорит правду. Так кто же Эпименид - лжец или нет?

Другой греческий философ Зенон Элейский составил серию парадоксов о бесконечности - так называемые “апории” Зенона.

То, что сказал Платон, есть ложь.
Сократ

Сократ говорит только правду.
Платон

II. Апории Зенона.

Большой вклад в развитие теории пространства и времени, в исследование проблем движения внесли элеаты (жители города Элея в южной Италии). Философия элеатов опиралась на выдвинутую Парменидом (учителем Зенона) идею о невозможности небытия. Всякая мысль, утверждал Парменид, всегда есть мысль о существующем. Поэтому несуществующего нет. Нет и движения, так как мировое пространство заполнено все целиком, а значит, мир един, в нем нет частей. Всякое множество есть обман чувств. Из этого вытекает вывод о невозможности возникновения, уничтожения. По Пармениду ничто не возникает и не уничтожается. Этот философ был первым, кто начал доказывать выдвигаемые мыслителями положения

Элеаты доказывали свои предположения отрицанием утверждения, обратного предположению. Зенон пошел дальше своего учителя, что дало основание Аристотелю видеть в Зеноне родоначальника "диалектики"- этим термином тогда называлось искусство достигать истины в споре путем выяснения противоречий в суждении противника и путем уничтожения этих противоречий.

Ахилл и черепаха. Начнем рассмотрение зеноновских затруднений с апорий о движении “Ахилл и черепаха” . Ахилл - герой и, как бы мы сейчас сказали, выдающийся спортсмен. Черепаха, как известно, одно из самых медлительных животных. Тем не менее, Зенон утверждал, что Ахилл проиграет черепахе состязание в беге. Примем следующие условия. Пусть Ахилла отделяет от финиша расстояние 1, а черепаху - ½. Двигаться Ахилл и черепаха начинают одновременно. Пусть для определенности Ахилл бежит в 2 раза быстрее черепахи (т.е. очень медленно идет). Тогда, пробежав расстояние ½, Ахилл обнаружит, что черепаха успела за то же время преодолеть отрезок ¼ и по-прежнему находится впереди героя. Далее картина повторяется: пробежав четвертую часть пути, Ахилл увидит черепаху на одной восьмой части пути впереди себя и т. д. Следовательно, всякий раз, когда Ахилл преодолевает отделяющее его от черепахи расстояние, последняя успевает уползти от него и по-прежнему остается впереди. Таким образом, Ахилл никогда не догонит черепаху. Начав движение, Ахилл никогда не сможет его завершить.

Знающие математический анализ обычно указывают, что ряд сходится к 1. Поэтому, дескать, Ахилл преодолеет весь путь за конечный промежуток времени и, безусловно, обгонит черепаху. Но вот что пишут по данному поводу Д. Гильберт и П. Бернайс:

“Обычно этот парадокс пытаются обойти рассуждением о том, что сумма бесконечного числа этих временных интервалов все-таки сходится и, таким образом, дает конечный промежуток времени. Однако это рассуждение абсолютно не затрагивает один существенно парадоксальный момент, а именно парадокс, заключающийся в том, что некая бесконечная последовательность следующих друг за другом событий, последовательность, завершаемость которой мы не можем себе даже представить (не только физически, но хотя бы в принципе), на самом деле все-таки должна завершиться”.

Принципиальная незавершаемость данной последовательности заключается в том, что в ней отсутствует последний элемент. Всякий раз, указав очередной член последовательности, мы можем указать и следующий за ним. Интересное замечание, также указывающее на парадоксальность ситуации, встречаем у Г. Вейля:

“Представим себе вычислительную машину, которая выполняла бы первую операцию за ½ минуты, вторую - за ¼ минуты, третью - за ⅛ минуты и т. д. Такая машина могла бы к концу первой минуты “пересчитать” весь натуральный ряд (написать, например, счетное число единиц). Ясно, что работа над конструкцией такой машины обречена на неудачу. Так почему же тело, вышедшее из точки А, достигает конца отрезка В, “отсчитав” счетное множество точек А 1 , А 2 , ..., А n , ... ?”

Дихотомия . Рассуждение очень простое. Для того, чтобы пройти весь путь, движущееся тело сначала должно пройти половину пути, но чтобы преодолеть эту половину, надо пройти половину половины и т. д. до бесконечности. Иными словами, при тех же условиях, что и в предыдущем случае, мы будем иметь дело с перевернутым рядом точек: (½) n , ..., (½) 3 , (½) 2 , (½) 1 . Если в случае апории Ахилл и черепаха соответствующий ряд не имел последней точки, то в Дихотомии этот ряд не имеет первой точки. Следовательно, заключает Зенон, движение не может начаться. А поскольку движение не только не может закончиться, но и не может начаться, движения нет. Существует легенда, о которой вспоминает А. С. Пушкин в стихотворении «Движение»:

Движенья нет, сказал мудрец брадатый.

Другой смолчал и стал пред ним ходить.

Сильнее бы не мог он возразить;

Хвалили все ответ замысловатый.

Но, господа, забавный случай сей

Другой пример на память мне приводит:

Ведь каждый день пред нами солнце ходит,

Однако ж прав упрямый Галилей.

Действительно, согласно легенде, один из философов так и “возразил” Зенону. Зенон велел бить его палками: ведь он не собирался отрицать чувственное восприятие движения. Он говорил о его немыслимости , о том, что строгое размышление о движении приводит к неразрешимым противоречиям. Поэтому, если мы хотим избавиться от апорий в надежде, что это вообще возможно (а Зенон как раз считал, что невозможно), то мы должны прибегать к теоретическим аргументам, а не ссылаться на чувственную очевидность. Рассмотрим одно любопытное теоретическое возражение, которое было выдвинуто против апории Ахилл и черепаха .

“Представим себе, что по дороге в одном направлении движутся быстроногий Ахилл и две черепахи, из которых Черепаха-1 несколько ближе к Ахиллу, чем Черепаха-2. Чтобы показать, что Ахилл не сможет перегнать Черепаху-1, рассуждаем следующим образом. За то время, как Ахилл пробежит разделяющее их вначале расстояние, Черепаха-1 успеет уползти несколько вперед, пока Ахилл будет пробегать этот новый отрезок, она опять-таки продвинется дальше, и такое положение будет бесконечно повторяться. Ахилл будет все ближе и ближе приближаться к Черепахе-1, но никогда не сможет ее перегнать. Такой вывод, конечно же, противоречит нашему опыту, но логического противоречия у нас пока нет.

Пусть, однако, Ахилл примется догонять более дальнюю Черепаху-2, не обращая никакого внимания на ближнюю. Тот же способ рассуждения позволяет утверждать, что Ахилл сумеет вплотную приблизиться к Черепахе-2, но это означает, что он перегонит Черепаху-1. Теперь мы приходим уже к логическому противоречию”.

Здесь трудно что-либо возразить, если оставаться в плену образных представлений. Необходимо выявить формальную суть дела, что позволит перевести дискуссию в русло строгих рассуждений. Первую апорию можно свести к следующим трем утверждениям:

1. Каков бы ни был отрезок , движущееся от А к В тело должно побывать во всех точках отрезка .

2. Любой отрезок можно представить в виде бесконечной последовательности убывающих по длине отрезков ... .

3. Поскольку бесконечная последовательность а i (1 ≤ i < ω) не имеет последней точки, невозможно завершить движение, побывав в каждой точке этой последовательности.

Проиллюстрировать полученный вывод можно по-разному. Наиболее известная иллюстрация - “самое быстрое никогда не сможет догнать самое медленное” - была рассмотрена выше. Но можно предложить более радикальную картину, в которой обливающийся потом Ахилл (вышедший из пункта А) безуспешно пытается настичь черепаху, преспокойно греющуюся на Солнце (в пункте В) и даже не думающую убегать. Суть апории от этого не меняется. Иллюстрацией тогда станет куда более острое высказывание - “самое быстрое никогда не сможет догнать неподвижное”. Если первая иллюстрация парадоксальна, то вторая - тем более.

Известно, что сформулировать проблему часто важнее и труднее, чем решить ее. “В науке, — писал английский химик Ф. Содди, — задача, надлежащим образом поставленная, более чем наполовину решена. Процесс умственной подготовки, необходимый для выяснения того, что существует определенная задача, часто отнимает больше времени, чем само решение задачи”.
Формы, в которых проявляется и осознается проблемная ситуация, очень разнообразны. Далеко не всегда она обнаруживает себя в виде прямого вопроса, вставшего в самом начале исследования. Мир проблем так же сложен, как и порождающий их процесс познания. Выявление проблем связано с самой сутью творческого, мышления. Парадоксы представляют собой наиболее интересный случай неявных, безвопросных способов постановки проблем. Парадоксы обычны на ранних стадиях развития научных теорий, когда делаются первые шаги в еще неизученной области и нащупываются самые общие принципы подхода к ней.

Парадоксы и логика

В широком смысле парадокс — это положение, резко расходящееся с общепринятыми, устоявшимися, ортодоксальными мнениями. “Общепризнанные мнения и то, что считают делом давно решенным, чаще всего заслуживают исследования” (ГЛихтенберг). Парадокс — начало такого исследования.
Парадокс в более узком и специальном значении — это два противоположных, несовместимых утверждения, для каждого из которых имеются кажущиеся убедительными аргументы.
Наиболее резкая форма парадокса — антиномия, рассуждение, доказывающее эквивалентность двух утверждений, одно из которых является отрицанием другого.
Особой известностью пользуются парадоксы в самых строгих и точных науках — математике и логике. И это не случайно.

Логика — абстрактная наука. В ней нет экспериментов, нет даже фактов в обычном смысле этого слова. Строя свои системы, логика исходит в конечном счете из анализа реального мышления. Но результаты этого анализа носят синтетический, нерасчлененный характер. Они не являются констатациями каких-либо отдельных процессов или событий, которые должна была бы объяснить теория. Такой анализ нельзя, очевидно, назвать наблюдением: наблюдается всегда конкретное явление.
Конструируя новую теорию, ученый обычно отправляется от фактов, от того, что можно наблюдать в опыте. Как бы ни была свободна его творческая фантазия, она должна считаться с одним непременным обстоятельством: теория имеет смысл только в том случае, когда она согласуется с относящимися к ней фактами. Теория, расходящаяся с фактами и наблюдениями, является надуманной и ценности не имеет.
Но если в логике нет экспериментов, нет фактов и нет самого наблюдения, то чем сдерживается логическая фантазия? Какие если не факты, то факторы принимаются во внимание при создании новых логических теорий?
Расхождение логической теории с практикой действительного мышления нередко обнаруживается в форме более или менее острого логического парадокса, а иногда даже в форме логической антиномии, говорящей о внутренней противоречивости теории. Этим как раз объясняется то значение, которое придается парадоксам в логике, и то большое внимание, которым они в ней пользуются.

Варианты парадокса “Лжеца”

Наиболее известным и, пожалуй, самым интересным из всех логических парадоксов является парадокс “Лжец”. Он-то главным образом и прославил имя открывшего его Евбулида из Милета.
Имеются варианты этого парадокса, или антиномии, многие из которых являются только по видимости парадоксальными.
В простейшем варианте “Лжеца” человек произносит всего одну фразу: “Я лгу”. Или говорит: “Высказывание, которое я сейчас произношу, является ложным”. Или: “Это высказывание ложно”.

Если высказывание ложно, то говорящий сказал правду, и значит, сказанное им не является ложью. Если же высказывание не является ложным, а говорящий утверждает, что оно ложно, то это его высказывание ложно. Оказывается, таким образом, что, если говорящий лжет, он говорит правду, и наоборот.

В средние века распространенной была такая формулировка:

— Сказанное Платоном — ложно, — говорит Сократ.

— То, что сказал Сократ, — истина, — говорит Платон.

Возникает вопрос, кто из них высказывает истину, а кто ложь?
А вот современная перефразировка этого парадокса. Допустим, что на лицевой стороне карточки написаны только слова: “На другой стороне этой карточки написано истинное высказывание”. Ясно, что эти слова представляют собой осмысленное утверждение. Перевернув карточку, мы должны либо обнаружить обещанное высказывание, либо его нет. Если оно написано на обороте, то оно является либо истинным, либо нет. Однако на обороте стоят слова: “На другой стороне этой карточки написано ложное высказывание” — и ничего более. Допустим, что утверждение на лицевой стороне истинно. Тогда утверждение на обороте должно быть истинным и, значит, утверждение на лицевой стороне должно быть ложным. Но если утверждение на лицевой стороне ложно, тогда утверждение на обороте также должно быть ложным, и, следовательно, утверждение на лицевой стороне должно быть истинным. В итоге — парадокс.
Парадокс “Лжец” произвел громадное впечатление на греков. И легко понять почему. Вопрос, который в нем ставится, с первого взгляда кажется совсем простым: лжет ли тот, кто говорит только то, что он лжет? Но ответ “да” приводит к ответу “нет”, и наоборот. И размышление ничуть не проясняет ситуацию. За простотой и даже обыденностью вопроса оно открывает какую-то неясную и неизмеримую глубину.
Ходит даже легенда, что некий Филит Косский, отчаявшись разрешить этот парадокс, покончил с собой. Говорят также, что один из известных древнегреческих логиков, Диодор Кронос, уже на склоне лет дал обет не принимать пищу до тех пор, пока не найдет решение “Лжеца”, и вскоре умер, так ничего и не добившись.
В средние века этот парадокс был отнесен к так называемым неразрешимым предложениям и сделался объектом систематического анализа.В новое время “Лжец” долго не привлекал никакого внимания. В нем не видели никаких, даже малозначительных затруднений, касающихся употребления языка. И только в наше, так называемое новейшее время развитие логики достигло наконец уровня, когда проблемы, стоящие, как представляется, за этим парадоксом, стало возможным формулировать уже в строгих терминах.
Теперь “Лжец” — этот типичный бывший софизм — нередко именуется королем логических парадоксов. Ему посвящена обширная научная литература. И тем не менее, как и в случае многих других парадоксов, остается не вполне ясным, какие именно проблемы скрываются за ним и как следует избавляться от него.

Язык и метаязык

Сейчас “Лжец” обычно считается характерным примером тех трудностей, к которым ведет смешение двух языков: языка, на котором говорится о лежащей вне его действительности, и языка, на котором говорят о самом первом языке.

В повседневном языке нет различия между этими уровнями: и о действительности, и о языке мы говорим на одном и том же языке. Например, человек, родным языком которого является русский язык, не видит никакой особой разницы между утверждениями: “Стекло прозрачно” и “Верно, что стекло прозрачно”, хотя одно из них говорит о стекле, а другое — о высказывании относительно стекла.
Если бы у кого-то возникла мысль о необходимости говорить о мире на одном языке, а о свойствах этого языка — на другом, он мог бы воспользоваться двумя разными существующими языками, допустим русским и английским. Вместо того, чтобы просто сказать: “Корова — это существительное”, сказал бы “Корова is a noun”, а вместо: “Утверждение “Стекло не прозрачно” ложно” произнес бы “The assertion “Стекло не прозрачно” is false”. При таком использовании двух разных языков сказанное о мире ясно отличалось бы от сказанного о языке, с помощью которого говорят о мире. В самом деле, первые высказывания относились бы к русскому языку, в то время как вторые — к английскому.

Если бы далее нашему знатоку языков захотелось высказаться по поводу каких-то обстоятельств, касающихся уже английского языка, он мог бы воспользоваться еще одним языком. Допустим немецким. Для разговора об этом последнем можно было бы прибегнуть, положим, к испанскому языку и т.д.
Получается, таким образом, своеобразная лесенка, или иерархия, языков, каждый из которых используется для вполне определенной цели: на первом говорят о предметном мире, на втором — об этом первом языке, на третьем — о втором языке и т.д. Такое разграничение языков по области их применения — редкое явление в обычной жизни. Но в науках, специально занимающихся, подобно логике, языками, оно иногда оказывается весьма полезным. Язык, на котором рассуждают о мире, обычно называют предметным языком. Язык, используемый для описания предметного языка, именуют метаязыком.

Ясно, что, если язык и метаязык разграничиваются указанным образом, утверждение “Я лгу” уже не может быть сформулировано. Оно говорит о ложности того, что сказано на русском языке, и, значит, относится к метаязыку и должно быть высказано на английском языке. Конкретно оно должно звучать так: “Everything I speak in Russian is false” (“Все сказанное мной по-русски ложно”); в этом английском утверждении ничего не говорится о нем самом, и никакого парадокса не возникает.
Различение языка и метаязыка позволяет устранить парадокс “Лжеца”. Тем самым появляется возможность корректно, без противоречия определить классическое понятие истины: истинным является высказывание, соответствующее описываемой им действительности.
Понятие истины, как и все иные семантические понятия, имеет относительный характер: оно всегда может быть отнесено к определенному языку.

Как показал польский логик АТарский, классическое определение истины должно формулироваться в языке более широком, чем тот язык, для которого оно предназначено. Иными словами, если мы хотим указать, что означает оборот “высказывание, истинное в данном языке”, нужно, помимо выражений этого языка, пользоваться также выражениями, которых в нем нет.
Тарский ввел понятие семантически замкнутого языка. Такой язык включает, помимо своих выражений, их имена, а также, что важно подчеркнуть, высказывания об истинности формулируемых в нем предложений.

Границы между языком и метаязыком в семантически замкнутом языке не существует. Средства его настолько богаты, что позволяют не только что-то утверждать о внеязыковой реальности, но и оценивать истинность таких утверждений. Этих средств достаточно, в частности, для того, чтобы воспроизвести в языке антиномию “Лжец”. Семантически замкнутый язык оказывается, таким образом, внутренне противоречивым. Каждый естественный язык является, очевидно, семантически замкнутым.
Единственно приемлемый путь для устранения антиномии, а значит, и внутренней противоречивости, согласно Тарскому, — отказ от употребления семантически замкнутого языка. Этот путь приемлем, конечно, только в случае искусственных, формализованных языков, допускающих ясное подразделение на язык и метаязык. В естественных же языках с их неясной структурой и возможностью говорить обо всем на одном и том же языке такой подход не очень реален. Ставить вопрос о внутренней непротиворечивости этих языков не имеет смысла. Их богатые выразительные возможности имеют и свою обратную сторону — парадоксы.

Другие решения парадокса

Итак, существуют высказывания, говорящие о своей собственной истинности или ложности. Идея, что такого рода высказывания не являются осмысленными, очень стара. Ее отстаивал еще древнегреческий логик Хрисипп.
В средние века английский философ и логик У.Оккам заявлял, что утверждение “Всякое высказывание ложно” бессмысленно, поскольку оно говорит в числе прочего и о своей собственной ложности. Из этого утверждения прямо следует противоречие. Если всякое высказывание ложно, то это относится и к самому данному утверждению; но то, что оно ложно, означает, что не всякое высказывание является ложным.

Аналогично обстоит дело и с утверждением “Всякое высказывание истинно”. Оно также должно быть отнесено к бессмысленным и также ведет к противоречию: если каждое высказывание истинно, то истинным является и отрицание самого этого высказывания, то есть высказывание, что не всякое высказывание истинно.
Почему, однако, высказывание не может осмысленно говорить о своей собственной истинности или ложности?
Уже современник Оккама, французский философ XIV в. Ж. Буридан, не был согласен с его решением. С точки зрения обычных представлений о бессмысленности, выражения типа “Я лгу”, “Всякое высказывание истинно (ложно)” и т.п. вполне осмысленны. О чем можно подумать, о том можно высказаться, — таков общий принцип Буридана. Человек может думать об истинности утверждения, которое он произносит, значит, он может и высказаться об этом. Не все утверждения, говорящие о самих себе, относятся к бессмысленным. Например, утверждение “Это предложение написано по-русски” является истинным, а утверждение “В этом предложении десять слов” ложно. И оба они совершенно осмысленны. Если допускается, что утверждение может говорить и о самом себе, то почему оно не способно со смыслом говорить и о таком своем свойстве, как истинность?
Сам Буридан считал высказывание “Я лгу” не бессмысленным, а ложным. Он обосновывал это так.

Когда человек утверждает какое-то предложение, он утверждает тем самым, что оно истинно. Если же предложение говорит о себе, что оно само является ложным, то оно представляет собой только сокращенную формулировку более сложного выражения, утверждающего одновременно и свою истинность, и свою ложность. Это выражение противоречиво и, следовательно, ложно. Но оно никак не бессмысленно.

Аргументация Буридана и сейчас иногда считается убедительной.
Имеются и другие направления критики того решения парадокса “Лжец”, которое было в деталях развито Тарским. Действительно ли в семантически замкнутых языках — а таковы ведь все естественные языки — нет никакого противоядия против парадоксов этого типа?
Если бы это было так, то понятие истины можно было бы определить строгим образом только в формализованных языках. Только в них удается разграничить предметный язык, на котором рассуждают об окружающем мире, и метаязык, на котором говорят об этом языке. Эта иерархия языков строится по образцу усвоения иностранного языка с помощью родного. Изучение такой иерархии привело ко многим интересным выводам, и в определенных случаях она существенна. Но ее нет в естественном языке. Дискредитирует ли это его? И если да, то в какой именно мере? Ведь в нем понятие истины все-таки употребляется, и обычно без всяких осложнений. Является ли введение иерархии единственным способом исключения парадоксов, подобных “Лжецу?”

В 30-е годы ответы на эти вопросы представлялись несомненно утвердительными. Однако сейчас былого единодушия уже нет, хотя традиция устранять парадоксы данного типа путем “расслаивания” языка остается господствующей.
В последнее время все больше внимания привлекают эгоцентрические выражения. В них встречаются слова, подобные “я”, “это”, “здесь”, “теперь”, и их истинность зависит от того, когда, кем, где они употребляются.

В утверждении “Это высказывание является ложным” встречается слово “это”. К какому именно объекту оно относится? “Лжец” может говорить о том, что слово “это” не относится к смыслу данного утверждения. Но тогда к чему оно относится, что обозначает? И почему данный смысл не может быть все-таки обозначен словом “это”?
Не вдаваясь здесь в детали, стоит отметить только, что в контексте анализа эгоцентрических выражений “Лжец” наполняется совершенно иным содержанием, чем ранее. Оказывается, он уже не предостерегает от смешения языка и метаязыка, а указывает на опасности, связанные с неправильным употреблением слова “это” и подобных ему эгоцентрических слов.
Проблемы, связывавшие на протяжении веков с “Лжецом”, радикально менялись в зависимости от того, рассматривался ли он как пример двусмысленности, или же как выражение, внешне представляющееся как образец смешения языка и метаязыка, или же, наконец, как типичный пример неверного употребления эгоцентрических выражений. И нет уверенности в том, что с этим парадоксом не окажутся связанными в будущем и другие проблемы.

Известный современный финский логик и философ Г. фон Вригт писал в своей работе, посвященной “Лжецу”, что данный парадокс ни в коем случае не должен пониматься как локальное, изолированное препятствие, устранимое одним изобретательным движением мысли. “Лжец” затрагивает многие наиболее важные темы логики и семантики. Это и определение истины, и истолкование противоречия и доказательства, и целая серия важных различий: между предложением и выражаемой им мыслью, между употреблением выражения и его упоминанием, между смыслом имени и обозначаемым им объектом.
Аналогично обстоит дело и с другими логическими парадоксами. “Антиномии логики, — пишет фон Вригг, — озадачили с момента своего открытия и, вероятно, будут озадачивать нас всегда. Мы должны, я думаю, рассматривать их не столько как проблемы, ожидающие решения, сколько как неисчерпаемый сырой материал для размышления. Они важны, поскольку размышление о них затрагивает наиболее фундаментальные вопросы всей логики, а значит, и всего мышления”.

В заключение этого разговора о “Лжеце” можно вспомнить курьезный эпизод из того времени, когда формальная логика еще преподавалась в школе. В учебнике логики, изданном в конце 40-х годов, школьникам восьмого класса предлагалось в качестве домашнего задания — в порядке, так сказать, разминки — найти ошибку, допущенную в этом простеньком на вид утверждении: “Я лгу”. И, пусть это не покажется странным, считалось, что школьники в большинстве своем успешно справлялись с таким заданием.

§ 2. Парадокс Рассела

Самым знаменитым из открытых уже в нашем веке парадоксов является антиномия, обнаруженная Б. Расселом и сообщенная им в письме к Г. Ферге. Эту же антиномию обсуждали одновременно в Геттингене немецкие математики 3. Цермело и Д. Гильберт.
Идея носилась в воздухе, и ее опубликование произвело впечатление разорвавшейся бомбы. Этот парадокс вызвал в математике, по мнению Гильберта, эффект полной катастрофы. Нависла угроза над самыми простыми и важными логическими методами, самыми обыкновенными и полезными понятиями.
Сразу же стало очевидным, что ни в логике, ни в математике за всю долгую историю их существования не было выработано решительно ничего, что могло бы послужить основой для. устранения антиномии. Явно оказался необходимым отход от привычных способов мышления. Но из какого места и в каком направлении? Насколько радикальным должен был стать отказ от устоявшихся способов теоретизирования?
С дальнейшим исследованием антиномии убеждение в необходимости принципиально нового подхода неуклонно росло. Спустя полвека после ее открытия специалисты по основаниям логики и математики Л. Френкель и И.Бар-Хиллел уже без всяких оговорок утверждали: “Мы полагаем, что любые попытки выйти из положения с помощью традиционных (то есть имевших хождение до XX столетия) способов мышления, до сих пор неизменно проваливавшихся, заведомо недостаточны для этой цели”.
Современный американский логик X. Карри писал немного позднее об этом парадоксе: “В терминах логики, известной в XIX в., положение просто не поддавалось объяснению, хотя, конечно, в наш образованный век могут найтись люди, которые увидят (или подумают, что увидят), в чем же состоит ошибка”.

Парадокс Рассела в первоначальной его форме связан с понятием множества, или класса.
Можно говорить о множествах различных объектов, например, о множестве всех людей или о множестве натуральных чисел. Элементом первого множества будет всякий отдельный человек, элементом второго — каждое натуральное число. Допустимо также сами множества рассматривать как некоторые объекты и говорить о множествах множеств. Можно ввести даже такие понятия, как множество всех множеств или множество всех понятий.

Множество обычных множеств

Относительно любого произвольно взятого множества представляется осмысленным спросить, является оно своим собственным элементом или нет. Множества, не содержащие себя в качестве элемента, назовем обычными. Например, множество всех людей не является человеком, так же как множество атомов — это не атом. Необычными будут множества, являющиеся собственными элементами. Например, множество, объединяющее все множества, представляет собой множество и, значит, содержит само себя в качестве элемента.
Рассмотрим теперь множество всех обычных множеств. Поскольку оно множество, о нем тоже можно спрашивать, обычное оно или необычное. Ответ, однако, оказывается обескураживающим. Если оно обычное, то, согласно своему определению, должно содержать само себя в качестве элемента, поскольку содержит все обычные множества. Но это означает, что оно является необычным множеством. Допущение, что наше множество представляет собой обычное множество, приводит, таким образом, к противоречию. Значит, оно не может быть обычным. С другой стороны, оно не может быть также необычным: необычное множество содержит само себя в качестве элемента, а элементами нашего множества являются только обычные множества. В итоге приходим к заключению, что множество всех обычных множеств не может быть ни обычным, ни необычным множеством.

Итак, множество всех множеств, не являющихся собственными элементами, есть свой элемент в том и только том случае, когда оно не является таким элементом. Это явное противоречие. И получено оно на основе самых правдоподобных предположений и с помощью бесспорных как будто шагов.Противоречие говорит о том, что такого множества просто не существует. Но почему оно не может существовать? Ведь оно состоит из объектов, удовлетворяющих четко определенному условию, причем само условие не кажется каким-то исключительным или неясным. Если столь просто и ясно заданное множество не может существовать, то в чем, собственно, заключается различие между возможными и невозможными множествами? Вывод о несуществовании рассматриваемого множества звучит неожиданно и внушает беспокойство. Он делает наше общее понятие множества аморфным и хаотичным, и нет гарантии, что оно не способно породить какие-то новые парадоксы.

Парадокс Рассела замечателен своей крайней общностью. Для его построения не нужны какие-либо сложные технические понятия, как в случае некоторых других парадоксов, достаточно понятий “множество” и “элемент множества”. Но эта простота как раз и говорит о его фундаментальности: он затрагивает самые глубокие основания наших рассуждений о множествах, поскольку говорит не о каких-то специальных случаях, а о множествах вообще.

Другие варианты парадокса

Парадокс Рассела не имеет специфически математического характера. В нем используется понятие множества, но не затрагиваются какие-то особые, связанные именно с математикой его свойства.
Это становится очевидным, если переформулировать парадокс в чисто логических терминах.

О каждом свойстве можно, по всей вероятности, спрашивать, приложимо оно к самому себе или нет.
Свойство быть горячим, например, неприложимо к самому себе, поскольку само не является горячим; свойство быть конкретным тоже не относится к самому себе, ибо это абстрактное свойство. Но вот свойство быть абстрактным, являясь абстрактным, приложимо к самому себе. Назовем эти неприменимые к самим себе свойства неприложимыми. Применимо ли свойство быть неприложимым к самому себе? Оказывается, неприложимость является неприложимой только в том случае, если она не является таковой. Это, конечно, парадоксально.
Логическая, касающаяся свойств разновидность антиномии Рассела, столь же парадоксальна, как и математическая, относящаяся к множествам, ее разновидность.
Рассел предложил также следующий популярный вариант открытого им парадокса.

Представим, что совет одной деревни так определил обязанности парикмахера: брить всех мужчин деревни, которые не бреются сами, и только этих мужчин. Должен ли он брить самого себя? Если да, то он будет относиться к тем, кто бреется сам, а тех, кто бреется сам, он не должен брить. Если нет, он будет принадлежать к тем, кто не бреется сам, и, значит, он должен будет брить себя. Мы приходим, таким образом, к заключению, что этот парикмахер бреет себя в том и только том случае, когда он не бреет себя. Это, разумеется, невозможно. Рассуждение о парикмахере опирается на допущение, что такой парикмахер существует. Полученное противоречие означает, что это допущение ложно, и нет такого жителя деревни, который брил бы всех тех и только тех ее жителей, которые не бреются сами.
Обязанности парикмахера не кажутся на первый взгляд противоречивыми, поэтому вывод, что его не может быть, звучит несколько неожиданно. Но этот вывод не являтся все-таки парадоксальным. Условие, которому должен удовлетворять деревенский брадобрей, на самом деле внутренне противоречиво и, следовательно, невыполнимо. Подобного парикмахера не может быть в деревне по той же причине, по какой в ней нет человека, который был бы старше самого себя или который родился бы до своего рождения.
Рассуждение о парикмахере может быть названо псевдопарадоксом. По своему ходу оно строго аналогично парадоксу Рассела и этим интересно. Но оно все-таки не является подлинным парадоксом.

Другой пример такого же псевдопарадокса представляет собой известное рассуждение о каталоге.
Некая библиотека решила составить библиографический каталог, в который входили бы все те и только те библиографические каталоги, которые не содержат ссылки на самих себя. Должен ли такой каталог включать ссылку на себя?
Нетрудно показать, что идея создания такого каталога неосуществима; он просто не может существовать, поскольку должен одновременно и включать ссылку на себя и не включать.
Интересно отметить, что составление каталога всех каталогов, не содержащих ссылки на самих себя, можно представить как бесконечный, никогда не завершающийся процесс. Допустим, что в какой-то момент был составлен каталог, скажем К1, включающий, все отличные от него каталоги, не содержащие ссылки на себя. С созданием К1 появился еще один каталог, не содержащий ссылки на себя. Так как задача заключается в том, чтобы составить полный каталог всех каталогов, не упоминающих себя, то очевидно, что К1 не является ее решением. Он не упоминает один из таких каталогов — самого себя. Включив в К1 это упоминание о нем самом, получим каталог К2. В нем упоминается К1, но не сам К2. Добавив к К2 такое упоминание, получим КЗ, который опять-таки не полон из-за того, что не упоминает самого себя. И далее без конца.

§ 3. Парадоксы Греллинга и Берри

Интересный логический парадокс был открыт немецкими логиками К. Греллингом и Л. Нельсоном (парадокс Греллинга). Этот парадокс можно сформулировать очень просто.

Аутологические и гетерологические слова

Некоторые слова, обозначающие свойства, обладают тем самым свойством, которое они называют. Например, прилагательное “русское” само является русским, “многосложное” — само многосложное, а “пятислоговое” само имеет пять слогов. Такие слова, относящиеся к самим себе, называются самозначными, или аутологическими.
Подобных слов не так много, в подавляющем большинстве прилагательные не обладают свойствами, которые они называют. “Новое” не является, конечно, новым, “горячее” — горячим, “однослоговое” — состоящим из одного слога, а “английское” — английским. Слова, не имеющие свойства, обозначаемого ими, называются инозначными, или гетерологтескими. Очевидно, что все прилагательные, обозначающие свойства, неприложимые к словам, будут гетерологическими.
Это разделение прилагательных на две группы кажется ясным и не вызывает возражений. Оно может быть распространено и на существительные: “слово” является словом, “существительное” — существительным, но “часы” — это не часы и “глагол” — не глагол.
Парадокс возникает, как только задается вопрос: к какой из двух групп относится само прилагательное “гетерологическое”? Если оно аутологическое, оно обладает обозначаемым им свойством и должно быть ге-терологическим. Если же оно гетерологическое, оно не имеет называемого им свойства и должно быть поэтому аутологическим. Налицо парадокс.

По аналогии с этим парадоксом легко сформулировать другие парадоксы такой же структуры. Например, является или не является самоубийцей тот, кто убивает каждого несамоубийцу и не убивает ни одного самоубийцу?

Оказалось, что парадокс Греллига был известен еще в средние века как антиномия выражения, не называющего самого себя. Можно представить себе отношение к софизмам и парадоксам в новое время, если проблема, требовавшая ответа и вызывавшая оживленные споры, оказалась вдруг забытой и была переоткрыта только пятьсот лет спустя!

Еще одна, внешне простая антиномия была указана в самом начале нашего века Д. Берри.

Множество натуральных чисел бесконечно. Множество же тех имен этих чисел, которые имеются, например, в русском языке и содержат меньше, чем, допустим, сто слов, является конечным. Это означает, что существуют такие натуральные числа, для которых в русском языке нет имен, состоящих менее чем из ста слов. Среди этих чисел есть, очевидно, наименьшее число. Его нельзя назвать посредством русского выражения, содержащего менее ста слов. Но выражение: “Наименьшее натуральное число, для которого не существует в русском языке его сложное имя, слагающееся менее чем из ста слов” является как раз именем этого числа! Это имя только что сформулировано в русском языке и содержит только девятнадцать слов. Очевидный парадокс: названным оказалось то число, для которого нет имени!

§ 4. Неразрешимый спор

В основе одного знаменитого парадокса лежит как будто небольшое происшествие, случившееся две с лишним тысячи лет назад и не забытое до сих пор.

У знаменитого софиста Протагора, жившего в V в. до нашей эры, был ученик по имени Еватл, обучавшийся праву. По заключенному между ними договору Еватл должен был заплатить за обучение лишь в том случае, если выиграет свой первый судебный процесс. Если же он этот процесс проиграет, то вообще не обязан платить. Однако, закончив обучение, Еватл не стал участвовать в процессах. Это длилось довольно долго, терпение учителя иссякло, и он подал на своего ученика в суд. Таким образом, для Еватла это был первый процесс. Свое требование Протагор обосновал так:

— Каким бы ни было решение суда, Еватл должен будет заплатить мне. Он либо выиграет этот свой первый процесс, либо проиграет. Если выиграет, то заплатит в силу нашего договора. Если проиграет, то заплатит согласно этому решению.

Судя по всему, Еватл был способным учеником, поскольку он ответил Протагору:

— Действительно, я либо выиграю процесс, либо проиграю его. Если выиграю, решение суда освободит меня от обязанности платить. Если решение суда будет не в мою пользу, значит, я проиграл свой первый процесс и не заплачу в силу нашего договора.

Решения парадокса "Протагор и Еватл"

Озадаченный таким оборотом дела, Протагор посвятил этому спору с Еватлом особое сочинение “Тяжба о плате”. К сожалению, оно, как и большая часть написанного Протагором, не дошло до нас. Тем не менее нужно отдать должное Протагору, сразу почувствовавшему за простым судебным казусом проблему, заслуживающую специального исследования.

Г. Лейбниц, сам юрист по образованию, также отнесся к этому спору всерьез. В своей докторской диссертации “Исследование о запутанных казусах в праве” он пытался доказать, что все случаи, даже самые запутанные, подобно тяжбе Протагора и Еватла, должны находить правильное разрешение на основе здравого смысла. По мысли Лейбница, суд должен отказать Протагору за несвоевременностью предъявления иска, но оставить, однако, за ним право потребовать уплаты денег Еватлом позже, а именно после первого выигранного им процесса.

Было предложено много других решений данного парадокса.

Ссылались, в частности, на то, что решение суда должно иметь большую силу, чем частная договоренность двух лиц. На это можно ответить, что не будь этой договоренности, какой бы незначительной она ни казалась, не было бы ни суда, ни его решения. Ведь суд должен вынести свое решение именно по ее поводу и на ее основе.

Обращались также к общему принципу, что всякий труд, а значит, и труд Протагора, должен быть оплачен. Но ведь известно, что этот принцип всегда имел исключения, тем более в рабовладельческом обществе. К тому же он просто неприложим к конкретной ситуации спора: ведь Протагор, гарантируя высокий уровень обучения, сам отказывался принимать плату в случае неудачи своего ученика в первом процессе.

Иногда рассуждают так. И Протагор и Еватл — оба правы частично, и ни один из них в целом. Каждый из них учитывает только половину возможностей, выгодную для себя. Полное или всестороннее рассмотрение открывает четыре возможности, из которых только половина выгодна для одного из спорящих. Какая из этих возможностей реализуется, это решит не логика, а жизнь. Если приговор судей будет иметь большую силу, чем договор, Еватл должен будет платить, только если проиграет процесс, т.е. в силу решения суда. Если же частная договоренность будет ставится выше, чем решение судей, то Протагор получит плату только в случае проигрыша процесса Еватлу, т.е. в силу договора с Протагором.Эта апелляция к жизни окончательно все запутывает. Чем, если не логикой, могут руководствоваться судьи в условиях, когда все относящиеся к делу обстоятельства совершенно ясны? И что это будет за руководство, если Протагор, претендующий на оплату через суд, добьется ее, лишь проиграв процесс?

Впрочем, и решение Лейбница, кажущееся вначале убедительным, немного лучше, чем неясное противопоставление логики и жизни. В сущности, Лейбниц предлагает задним числом заменить формулировку договора и оговорить, что первым с участием Еватла судебным процессом, исход которого решит вопрос об оплате, не должен быть суд по иску Протагора. Мысль эта глубокая, но не имеющая отношения к конкретному суду. Если бы в исходной договоренности была такая оговорка, нужды в судебном разбирательстве вообще не возникло бы.

Если под решением данного затруднения понимать ответ на вопрос, должен Еватл уплатить Протагору или нет, то все эти, как и все другие мыслимые решения, являются, конечно, несостоятельными. Они представляют собой не более чем уход от существа спора, являются, так сказать, софистическими уловками и хитростями в безвыходной и неразрешимой ситуации. Ибо ни здравый смысл, ни какие-то общие принципы, касающиеся социальных отношений, не способны разрешить спор.
Невозможно выполнить вместе договор в его первоначальной форме и решение суда, каким бы последнее ни было. Для доказательства этого достаточно простых средств логики. С помощью этих же средств можно также показать, что договор, несмотря на его вполне невинный внешний вид, внутренне противоречив. Он требует реализации логически невозможного положения: Еватл должен одновременно и уплатить за обучение, и вместе с тем не платить.

Правила, заводящие в тупик

Человеческому уму, привыкшему не только к своей силе, но и к своей гибкости и даже изворотливости, трудно, конечно, смириться с этой абсолютной безвыходностью и признать себя загнанным в тупик. Это особенно трудно тогда, когда тупиковая ситуация создается самим умом: он, так сказать, оступается на ровном месте и угождает в свои собственные сети. И тем не менее приходится признать, что иногда, и впрочем, не так уж редко, соглашения и системы правил, сложившиеся стихийно или введенные сознательно, приводят к неразрешимым, безвыходным положениям.

Пример из недавней шахматной жизни еще раз подтвердит эту мысль.

Международные правила проведения шахматных соревнований обязывают шахматистов записывать партию ход за ходом ясно и разборчиво. До недавнего времени в правилах было указано также, что шахматист, пропустивший из-за недостатка времени запись нескольких ходов, должен, “как только его цейтнот закончится, немедленно заполнить свой бланк, записав пропущенные ходы”. На основе этого указания один судья на шахматной олимпиаде 1980 г. (Мальта) прервал проходившую в жестком цейтноте партию и остановил часы, заявив, что контрольные ходы сделаны и, следовательно, пора привести в порядок записи партий.

— Но позвольте, — вскричал участник, находившийся на грани проигрыша и рассчитывавший только на накал страстей в конце партии, — ведь ни один флажок еще не упал и никто никогда (так тоже записано в правилах) не может подсказывать, сколько сделано ходов.
Судью поддержал, однако, главный арбитр, заявивший, что, действительно, поскольку цейтнот закончился, надо, следуя букве правил, приступить к записи пропущенных ходов.
Спорить в этой ситуации было бессмысленно: сами правила завели в тупик. Оставалось только изменить их формулировку таким образом, чтобы подобные случаи не могли возникнуть в будущем.
Это и было сделано на проходившем в то же время конгрессе Международной шахматной федерации: вместо слов “как только цейтнот закончится” в правилах теперь записано: “как только флажок укажет на окончание времени”.
Этот пример наглядно показывает, как следует поступать в тупиковых ситуациях. Спорить о том, какая сторона права, бесполезно: спор неразрешим, и победителя в нем не будет. Остается только смириться с настоящим и позаботиться о будущем. Для этого нужно так переформулировать исходные соглашения или правила, чтобы они не заводили более никого в такую же безвыходную ситуацию.
Разумеется, подобный способ действий — никакое не решение неразрешимого спора и не выход из безвыходного положения. Это скорее остановка перед непреодолимым препятствием и дорога в обход его.

Парадокс “Крокодил и мать”

В Древней Греции пользовался большой популярностью рассказ о крокодиле и матери, совпадающий по своему логическому содержанию с парадоксом “Протагор и Еватл”.
Крокодил выхватил у египтянки, стоявшей на берегу реки, ее ребенка. На ее мольбу вернуть ребенка крокодил, пролив, как всегда, крокодилову слезу, ответил:

— Твое несчастье растрогало меня, и я дам тебе шанс получить назад ребенка. Угадай, отдам я его тебе или нет. Если ответишь правильно, я верну ребенка. Если не угадаешь, я его не отдам.

Подумав, мать ответила:

— Ты не отдашь мне ребенка.

— Ты его не получишь, — заключил крокодил. — Ты сказала либо правду, либо неправду. Если то, что я не отдам ребенка, — правда, я не отдам его, так как иначе сказанное не будет правдой. Если сказанное — неправда, значит, ты не угадала, и я не отдам ребенка по уговору.

Однако матери это рассуждение не показалось убедительным.

— Но ведь если я сказала правду, то ты отдашь мне ребенка, как мы и договорились. Если же я не угадала, что ты не отдашь ребенка, то ты должен мне его отдать, иначе сказанное мною не будет неправдой.

Кто прав: мать или крокодил? К чему обязывает крокодила данное им обещание? К тому, чтобы отдать ребенка или, напротив, чтобы не отдать его? И к тому и к другому одновременно. Это обещание внутренне противоречиво, и, таким образом, оно не выполнимо в силу законов логики.
Миссионер очутился у людоедов и попал как раз к обеду. Они разрешают ему выбрать, в каком виде его съедят. Для этого он должен произнести какое-нибудь высказывание с условием, что, если это высказывание окажется истинным, они его сварят, а если оно окажется ложным, его зажарят.

Что следует сказать миссионеру?

Разумеется, он должен сказать: “Вы зажарите меня”.

Если его действительно зажарят, окажется, что он высказал истину, и значит, его надо сварить. Если же его сварят, его высказывание будет ложным, и его следует как раз зажарить. Выхода у людоедов не будет: из “зажарить” вытекает “сварить”, и наоборот.

Этот эпизод с хитрым миссионером является, конечно, еще одной из перефразировок спора Протагора и Еватла.

Парадокс Санчо Пансы

Один старый, известный еще в Древней Греции парадокс обыгрывается в “Дон Кихоте” М.Сервантеса. Санчо Панса сделался губернатором острова Баратария и вершит суд.
Первым к нему является какой-то приезжий и говорит: — Сеньор, некое поместье делится на две половины многоводной рекой... Так вот, через эту реку переброшен мост, и тут же с краю стоит виселица и находится нечто вроде суда, в коем обыкновенно заседает четверо судей, и судят они на основании закона, изданного владельцем реки, моста и всего поместья, каковой закон составлен таким образом: “Всякий проходящий по мосту через сию реку долженствует объявить под присягою: куда и зачем он идет, и кто скажет правду, тех пропускать, а кто солжет, тех без всякого снисхождения отправлять на находящуюся тут же виселицу и казнить”. С того времени, когда этот закон во всей своей строгости был обнародован, многие успели пройти через мост, и как скоро судьи удовлетворялись, что прохожие говорят правду, то пропускали их. Но вот однажды некий человек, приведенный к присяге, поклялся и сказал: он-де клянется, что пришел за тем, чтобы его вздернули вот на эту самую виселицу, и ни за чем другим. Клятва сия привела судей в недоумение, и они сказали: “Если позволить этому человеку беспрепятственно следовать дальше, то это будет означать, что он нарушил клятву и согласно закону повинен смерти; если же мы его повесим, то ведь он клялся, что пришел только за тем, чтобы его вздернули на эту виселицу, следовательно, клятва его, выходит, не ложна, и на основании того же самого закона надлежит пропустить его”. И вот я вас спрашиваю, сеньор губернатор, что делать судьям с этим человеком, ибо они до сих пор недоумевают и колеблются...
Санчо предложил, пожалуй, не без хитрости: ту половину человека, которая сказала правду, пусть пропустят, а ту, которая соврала, пусть повесят, и таким образом правила перехода через мост будут соблюдены по всей форме. Этот отрывок интересен в нескольких отношениях.
Прежде всего он является наглядной иллюстрацией того, что с описанным в парадоксе безвыходным положением вполне может столкнуться — и не в чистой теории, а на практике — если не реальный человек, то хотя бы литературный герой.

Выход, предложенный Санчо Панса, не был, конечно, решением парадокса. Но это было как раз то решение, к которому только и оставалось прибегнуть в его положении.
Когда-то Александр Македонский вместо того, чтобы развязывать хитрый гордиев узел, чего еще никому не удалось сделать, просто разрубил его. Подобным же образом поступил и Санчо. Пытаться решить головоломку на ее собственных условиях было бесполезно — она попросту неразрешима. Оставалось отбросить эти условия и ввести свое.
И еще один момент. Сервантес этим эпизодом явно осуждает непомерно формальный, пронизанный духом схоластической логики масштаб средневековой справедливости. Но какими распространенными в его время — а это было около четырехсот лет назад — были сведения из области логики! Не только самому Сервантесу известен данный парадокс. Писатель находит возможным приписать своему герою, безграмотному крестьянину, способность понять, что перед ним неразрешимая задача!

§ 5. Другие парадоксы

Приведенные парадоксы — это рассуждения, итог которых — противоречие. Но в логике есть и другие типы парадоксов. Они также указывают на какие-то затруднения и проблемы, но делают это в менее резкой и бескомпромиссной форме. Таковы, в частности, парадоксы, рассматриваемые далее.

Парадоксы неточных понятий

Большинство понятий не только естественного языка, но и языка науки являются неточными, или, как их еще называют, размытыми. Нередко это оказывается причиной непонимания, споров, а то и просто ведет к тупиковым ситуациям.
Если понятие неточное, граница области объектов, к которым оно приложимо, лишена резкости, размыта. Возьмем, к примеру, понятие “куча”. Одно зерно (песчинка, камень и т.п.) — это еще не куча. Тысяча зерен — это уже, очевидно, куча. А три зерна? А десять? С прибавлением какого по счету зерна образуется куча? Не очень ясно. Точно так же, как не ясно, с изъятием какого зерна куча исчезает.
Неточными являются эмпирические характеристики “большой”, “тяжелый”, “узкий” и т.д. Неточны такие обычные понятия, как “мудрец”, “лошадь”, “дом” и т.п.
Нет песчинки, убрав которую мы могли бы сказать, что с ее устранением оставшееся уже нельзя назвать домом. Но ведь это означает как будто, что ни в какой момент постепенной разборки дом — вплоть до полного его исчезновения — нет оснований заявлять, что дома нет! Вывод явно парадоксальный и обескураживающий.
Нетрудно заметить, что рассуждение о невозможности образования кучи проводится с помощью хорошо известного метода математической индукции. Одно зерно не образует кучи. Если п зерен не образуют кучи, то n+1 зерно не образуют кучи. Следовательно, никакое число зерен не может образовать кучи.
Возможность этого и подобных ему доказательств, приводящих к нелепым заключениям, означает, что принцип математической индукции имеет ограниченную область приложения. Он не должен применяться в рассуждениях с неточными, расплывчатыми понятиями.

Хорошим примером того, что эти понятия способны приводить к неразрешимым спорам, может служить любопытный судебный процесс, состоявшийся в 1927 г. в США. Скульптор К. Бранкузи обратился в суд с требованием признать свои работы произведениями искусства. В числе работ, отправляемых в Нью-Йорк на выставку, была и скульптура “Птица”, которая сейчас считается классикой абстрактного стиля. Она представляет собой модулированную колонну из полированной бронзы около полутора метров высоты, не имеющую никакого внешнего сходства с птицей. Таможенники категорически отказались признать абстрактные творения Бранкузи художественными произведениями. Они провели их по графе “Металлическая больничная утварь и предметы домашнего обихода” и наложили на них большую таможенную пошлину. Возмущенный Бранкузи подал в суд.

Таможню поддержали художники — члены Национальной академии, отстаивавшие традиционные приемы в искусстве. Они выступали на процессе свидетелями защиты и категорически настаивали на том, что попытка выдать “Птицу” за произведение искусства — просто жульничество.
Этот конфликт рельефно подчеркивает трудность оперирования понятием “произведение искусства”. Скульптура по традиции считается видом изобразительного искусства. Но степень подобия скульптурного изображения оригиналу может варьироваться в очень широких пределах. И в какой момент скульптурное изображение, все более удаляющееся от оригинала, перестает быть произведением искусства и становится “металлической утварью”? На этот вопрос так же трудно ответить, как на вопрос о том, где проходит граница между домом и его развалинами, между лошадью с хвостом и лошадью без хвоста и т.п. К слову сказать, модернисты вообще убеждены, что скульптура — это объект выразительной формы и она вовсе не обязана быть изображением.

Обращение с неточными понятиями требует, таким образом, известной осторожности. Не лучше ли тогда вообще отказаться от них?

Немецкий философ Э.Гуссерль был склонен требовать от знания такой крайней строгости и точности, какая не встречается даже в математике. Биографы Гуссерля с иронией вспоминают в связи с этим случай, произошедший с ним в детстве. Ему был подарен перочинный ножик, и, решив сделать лезвие предельно острым, он точил его до тех пор, пока от лезвия ничего не осталось.
Более точные понятия во многих ситуациях предпочтительнее неточных. Вполне оправдано обычное стремление к уточнению используемых понятий. Но оно должно, конечно, иметь свои пределы. Даже в языке науки значительная часть понятий неточна. И это связано не с субъективными и случайными ошибками отдельных ученых, а с самой природой научного познания. В естественном языке неточных понятий подавляющее большинство; это говорит, помимо всего прочего, о его гибкости и скрытой силе. Тот, кто требует от всех понятий предельной точности, рискует вообще остаться без языка. “Лишите слова всякой двусмысленности, всякой неопределенности, — писал французский эстетик Ж. Жубер, — превратите их... в однозначные цифры — из речи уйдет игра, а вместе с нею — красноречие и поэзия: все, что есть подвижного и изменчивого в привязанностях души, не сможет найти своего выражения. Но что я говорю: лишите... Скажу больше. Лишите слова всякой неточности — и вы лишитесь даже аксиом”.
Долгое время и логики, и математики не обращали внимания на трудности, связанные с размытыми понятиями и соответствующими им множествами. Вопрос ставился так: понятия должны быть точными, а все расплывчатое недостойно серьезного интереса. В последние десятилетия эта чрезмерно строгая установка потеряла, однако, привлекательность. Построены логические теории, специально учитывающие своеобразие рассуждений с неточными понятиями.
Активно развивается математическая теория так называемых размытых множеств, нечетко очерченных совокупностей объектов.
Анализ проблем неточности — это шаг на пути сближения логики с практикой обычного мышления. И можно предполагать, что он принесет еще многие интересные результаты.

Парадоксы индуктивной логики

Нет, пожалуй, такого раздела логики, в котором не было бы своих собственных парадоксов.
В индуктивной логике есть свои парадоксы, с которыми активно, но пока без особого успеха борются уже почти полвека. Особенно интересен парадокс подтверждения, открытый американским философом К.Гемпелем. Естественно считать, что общие положения, в частности научные законы, подтверждаются своими положительными примерами. Если рассматривается, скажем, высказывание “Все А есть В”, то положительными его примерами будут объекты, обладающие свойствами А и В. В частности, подтверждающие примеры для высказывания “Все вороны черные” — это объекты, являющиеся и воронами, и черными. Данное высказывание равносильно, однако, высказыванию “Все предметы, не являющиеся черными, не вороны”, и подтверждение последнего должно быть также подтверждением первого. Но “Все не черное не ворона” подтверждается каждым случаем не черного предмета, не являющегося вороной. Выходит, таким образом, что наблюдения “Корова белая”, “Ботинки коричневые” и т.п. подтверждают высказывание “Все вороны черные”.

Из невинных, казалось бы, посылок вытекает неожиданный парадоксальный результат.

В логике норм беспокойство вызывает целый ряд ее законов. Когда они формулируются в содержательных терминах, несоответствие их обычным представлениям о должном и запрещенном становится очевидным. Например, один из законов говорит, что из распоряжения “Отправьте письмо!” вытекает распоряжение “Отправьте письмо или сожгите его!”.
Другой закон утверждает, что, если человек нарушил одну из своих обязанностей, он получает право делать все, что угодно. С такого рода “законами долженствования” наша логическая интуиция никак не хочет мириться.
В логике знания усиленно обсуждается парадокс логического всеведения. Он утверждает, что человек знает все логические следствия, вытекающие из принимаемых им положений. Например, если человеку известны пять постулатов геометрии Евклида, то, значит, он знает и всю эту геометрию, поскольку она вытекает из них. Но это не так. Человек может соглашаться с постулатами и вместе с тем не уметь доказать теорему Пифагора и потому сомневаться, что она вообще верна.

§ 6. Что такое логический парадокс

Никакого исчерпывающего перечня логических парадоксов не существует, да он и невозможен.
Рассмотренные парадоксы — это только часть из всех обнаруженных к настоящему времени. Вполне вероятно, что в будущем откроют и многие другие парадоксы, и даже совершенно новые их типы. Само понятие парадокса не является настолько определенным, чтобы удалось составить список хотя бы уже известных парадоксов.
“Теоретико-множественные парадоксы являются очень серьезной проблемой, не для математики, однако, а скорее для логики и теории познания”, — пишет австрийский математик и логик К.Гедель. “Логика непротиворечива. Не существует никаких логических парадоксов”, — утверждает математик Д.Бочвар. Такого рода расхождения иногда существенны, иногда словесны. Дело во многом в том, что именно понимается под логическим парадоксом.

Своеобразие логических парадоксов

Необходимым признаком логических парадоксов считается логический словарь.
Парадоксы, относимые к логическим, должны быть сформулированы в логических терминах. Однако в логике нет четких критериев деления терминов на логические и нелогические. Логика, занимающаяся правильностью рассуждений, стремится свести понятия, от которых зависит правильность практически применяемых выводов, к минимуму. Но этот минимум не предопределен однозначно. Кроме того, в логических терминах можно сформулировать и нелогические утверждения. Использует ли конкретный парадокс только чисто логические посылки, далеко не всегда удается определить однозначно.
Логические парадоксы не отделяются жестко от всех иных парадоксов, подобно тому как последние не отграничиваются ясно от всего непарадоксального и согласующегося с господствующими представлениями. На первых порах изучения логических парадоксов казалось, что их можно выделить по нарушению некоторого, еще не исследованного положения или правила логики. Особенно активно претендовал на роль такого правила введенный Б.Расселом принцип порочного круга. Этот принцип утверждает, что совокупность объектов не может содержать членов, определимых только посредством этой же совокупности.
Все парадоксы имеют одно общее свойство — самоприменимость, или циркулярность. В каждом из них объект, о котором идет речь, характеризуется посредством некоторой совокупности объектов, к которой он сам принадлежит. Если мы выделяем, например, самого хитрого человека, мы делаем это при помощи совокупности людей, к которой относится и данный человек. И если мы говорим: “Это высказывание ложно”, мы характеризуем интересующее нас высказывание путем ссылки на включающую его совокупность всех ложных высказываний.

Во всех парадоксах имеет место самоприменимость понятий, а значит, есть как бы движение по кругу, приводящее в конце концов к исходному пункту. Стремясь охарактеризовать интересующий нас объект, мы обращаемся к той совокупности объектов, которая включает его. Однако оказывается, что сама она для своей определенности нуждается в рассматриваемом объекте и не может быть ясным образом понята без него. В этом круге, возможно, и кроется источник парадоксов.
Ситуация осложняется, однако, тем, что такой круг имеется во многих совершенно непарадоксальных рассуждениях. Циркулярным является огромное множество самых обычных, безвредных и вместе с тем удобных способов выражения. Такие примеры, как “самый большой из всех городов”, “наименьшее из всех натуральных чисел”, “один из электронов атома железа” и т.п., показывают, что далеко не всякий случай самоприменимости ведет к противоречию и что она важна не только в обычном языке, но и в языке науки.
Простая ссылка на использование самоприменяемых понятий недостаточна, таким образом, для дискредитации парадоксов. Необходим еще какой-то дополнительный критерий, отделяющий самоприменимость, ведущую к парадоксу, от всех иных ее случаев.
Было много предложений на этот счет, но удачного уточнения циркулярности так и не было найдено. Невозможным оказалось охарактеризовать циркулярность таким образом, чтобы каждое циркулярное рассуждение вело к парадоксу, а каждый парадокс был итогом некоторого циркулярного рассуждения.
Попытка найти какой-то специфический принцип логики, нарушение которого было бы отличительной особенностью всех логических парадоксов, ни к чему определенному не привела.
Несомненно полезной была бы какая-то классификация парадоксов, подразделяющая их на типы и виды, группирующая одни парадоксы и противопоставляющая их другим. Однако и в этом деле ничего устойчивого не было достигнуто.

Английский логик Ф.Рамсей, умерший в 1930 г., когда ему еще не исполнилось и двадцати семи лет, предложил разделить все парадоксы на синтаксические и семантические. К первым относится, например, парадокс Рассела, ко вторым — парадоксы “Лжеца”, Греллинга и др.
По мнению Рамсея, парадоксы первой группы содержат только понятия, принадлежащие логике или математике. Вторые включают такие понятия, как “истина”, “определимость”, “именование”, “язык”, не являющиеся строго математическими, а относящиеся скорее к лингвистике или даже теории познания. Семантические парадоксы обязаны, как кажется, своим возникновением не какой-то ошибке в логике, а смутности или двусмысленности некоторых нелогических понятий, поэтому поставленные ими проблемы касаются языка и должны решаться лингвистикой.

Рамсею казалось, что математикам и логикам незачем интересоваться семантическими парадоксами. В дальнейшем оказалось, однако, что некоторые из наиболее значительных результатов современной логики были получены как раз в связи с более глубоким изучением именно этих нелогических парадоксов.
Предложенное Рамсеем деление парадоксов широко использовалось на первых порах и сохраняет некоторое значение и теперь. Вместе с тем становится все яснее, что это деление довольно-таки расплывчато и опирается по преимуществу на примеры, а не на углубленный сопоставительный анализ двух групп парадоксов. Семантические понятия сейчас получили точные определения, и трудно не признать, что эти понятия действительно относятся к логике. С развитием семантики, определяющей свои основные понятия в терминах теории множеств, различие, проведенное Рамсеем, все более стирается.

Парадоксы и современная логика

Какие выводы для логики следуют из су ществования парадоксов?
Прежде всего наличие большого числа парадоксов говорит о силе логики как науки, а не о ее слабости, как это может показаться.

Обнаружение парадоксов не случайно совпало с периодом наиболее интенсивного развития современной логики и наибольших ее успехов.
Первые парадоксы были открыты еще до возникновения логики как особой науки. Многие парадоксы были обнаружены в средние века. Позднее они оказались, однако, забытыми и были вновь открыты уже в нашем веке.
Средневековым логикам не были известны понятия “множество” и “элемент множества”, введенные в науку только зо второй половине XIX в. Но чутье на парадоксы было отточено в средние века настолько, что уже в то давнее время высказывались определенные опасения по поводу самоприменимых понятий. Простейшим их примером является понятие “быть собственным элементом”, фигурирующее во многих нынешних парадоксах.
Однако такие опасения, как и вообще все предостережения, касающиеся парадоксов, не были до нашего века в должной мере систематическими и определенными. Они не вели к каким-либо четким предложениям о пересмотре привычных способов мышления и выражения.
Только современная логика извлекла из забвения саму проблему парадоксов, открыла или переоткрыла большинство конкретных логических парадоксов. Она показала далее, что способы мышления, традиционно исследовавшиеся логикой, совершенно недостаточны для устранения парадоксов, и указала принципиально новые приемы обращения с ними.
Парадоксы ставят важный вопрос: в чем, собственно, подводят нас некоторые обычные методы образования понятий и методы рассуждений? Ведь они представлялись совершенно естественными и убедительными, пока не выявилось, что они парадоксальны.

Парадоксами подрывается вера в то, что привычные приемы теоретического мышления сами по себе и без всякого особого контроля за ними обеспечивают надежное продвижение к истине.
Требуя радикальных изменений в излишне доверчивом подходе к теоретизированию, парадоксы представляют собой резкую критику логики в ее наивной, интуитивной форме. Они играют роль фактора, контролирующего и ставящего ограничения на пути конструирования дедуктивных систем логики. И эту их роль можно сравнить с ролью эксперимента, проверяющего правильность гипотез в таких науках, как физика и химия, и заставляющего вносить в эти гипотезы изменения.
Парадокс в теории говорит о несовместимости допущений, лежащих в ее основе. Он выступает как своевременно обнаруженный симптом болезни, без которого ее можно было бы и проглядеть.
Разумеется, болезнь проявляется многообразно, и ее в конце концов удается раскрыть и без таких острых симптомов, как парадоксы. Скажем, основания теории множеств были бы проанализированы и уточнены, если бы даже никакие парадоксы в этой области не были обнаружены. Но не было бы той резкости и неотложности, с какой поставили проблему пересмотра теории множеств обнаруженные в ней парадоксы.

Парадоксам посвящена обширная литература, предложено большое число их объяснений. Но ни одно из этих объяснений не является общепризнанным, и сколь-нибудь полного согласия в вопросе о происхождении парадоксов и способах избавления от них нет.
“За последние шестьдесят лет сотни книг и статей были посвящены цели разрешения парадоксов, однако результаты поразительно бедны в сравнении с затраченными усилиями”, — пишет А.Френкель. “Похоже на то, — заключает свой анализ парадоксов Х.Карри, — что требуется полная реформа логики, и математическая логика может стать главным инструментом для проведения этой реформы”.

Виды парадоксов

Существуют парадоксы, которые возникают в определенной области научного знания в процессе исторического развития науки, когда обнаруживается противоречие между определенной устоявшейся системой знания и новыми фактами, между закрепленной в определенных парадигмах направлениях исследований и новыми открытиями, что не укладываются в эти парадигмы. Так, научные открытия в космологии, квантовой физике, биологии, сделанные в XX в., противоречат классическим теориям в этих отраслях наук и трактуются как парадоксальные с точки зрения классических теорий.

В каждой отрасли научного познания появляются специфические парадоксы - физические, химические, биологические, математические и др.

Парадоксы, которые возникают в рамках определенной научной теории, обнаруживают противоречивость самого движения материальных объектов, которые изучает наука, "двойственность" природы самого объекта исследования, предопределяя переосмысление фундаментальных принципов и парадигм конкретной науки. Например, в теории квантовой химии обнаружено, что электрон вокруг ядра в любой момент находится в каждой элементарной точке пространства, хотя электрон - элементарная частица.

Типы парадоксов

Парадоксы по типам логики классифицировали на семантические и логические.

Семантические парадоксы возникают в рассуждениях:

В процессе связи выражений языка с их предметным значением, то есть денотатом;

Когда смешиваются два уровня символической репрезентации объектов соображений, а именно - уровень объектного языка и метамови;

Когда используют абстрактные, неопределенные сроки, под которые можно подвести любой объект;

Когда возникает проблема определения истинности или ложности высказываний в определенном контексте.

В семантических парадоксов относятся: парадокс "Лжец", гетерологічний парадокс, парадокс теории имен, парадокс (антиномия) отношение наименования.

Парадокс "Лжец" логики классифицируют как антиномию. Его впервые сформулировал древнегреческий философ Эвбулид из Милета, и он имеет два варианта выражения: 1. Кое-кто говорит "Я вру"; 2. Критянин Эпименид сказал: "Все критяне - - лжецы".

Смысл парадокса "Лжец" заключается в том, что нельзя однозначно определить истинность или ложность высказывания "Я вру". Так, если Эпименид не врет, то его высказывание истинно и, следовательно, Эпименид-лжец; если Эпименид лжет, то его высказывания - ложное, следовательно, Эпименид не лжец. Получаем антиномию - "Эпименид лжет и не лжет", или "Высказывания "Я вру" истинное, поскольку оно ложно, и ложное, поскольку оно верно".

Другую модификацию парадокса "Лжец" сформулировал английский логик П. Журден: "Высказывание, написанное на первом стороне этой карточки, - истинное; а на другой стороне той же карте написано: Высказывание, написанное на другой стороне этой карточки, - ложное". Если первое высказывание истинно, то второе высказывание также истинно, поскольку в первом высказывании утверждается, что второе высказывание - истинно. Но если второе высказывание истинно, то "первое высказывание - ложное" - ошибочное. Итак, из двух возможных предположений истинности этих двух высказываний возникает противоречие.

Ученые предлагали много способов решения парадокса "Лжец". Например, польский логик А. Тарский предложил четко различать уровни языка - объектной и метамови. Именно высказывания "Я вру" сформулировано объектным языком, а то, что оно является парадоксальным, определяется на уровне его металогічного анализа средствами метамови. Для этого стоит создать формализованную язык, который содержит высказывания А, предикат истины Г. Формула Р1 (А) г А (высказывание А-истинно, если и только если А). Это значит: высказывание А истинно тогда и только тогда, когда высказывание А истинно, то есть фиксирует (отражает) существование предмета, о котором идет речь в высказывании.

Высказывание критянина Епіменіда "Все критяне - - лжецы" также выражено объектным языком. Согласно металогічним анализом, Эпименид также является лжецом, поскольку он, как критянин, входит к классу жителей острова Крит. Если бы Эпименид не был критянином, то высказывания " Все критяне - лжецы" не было бы парадоксальным.

Гетерологічний парадокс сформулировал К. Греллінг (1886 - 1941 гг.). Это парадокс, который возникает в результате выделения таких выражений речи, как прилагательные, значением которых являются свойства, например, "красное", "новое", "старое", "украинский". Слово, которое имеет свойство Р, именем которого оно является, называется автологічним. Слово, которое не является автологічним, называют гетерологічним. Если слово (прилагательное) обозначает свойство, присущее ему самому, то его называют автологічним. Это, например, слово "украинский", а слова "белое", "черное" не являются словами автологічними, следовательно, они - гетерологічні. К какому виду слов - автологічних или гетерологичных принадлежит именно слово "гетерологічне"? Получаем антиномию: "Если слово "гетерологічне" - гетерологічне, то оно не гетерологічне, а если оно не гетерологічне, то оно гетерологічне".

Парадокс теории имен - семантический парадокс, который возник в рамках теории логической семантики, что разработали Г. Фреге, Б. Рассел, Г. Карнап и другие логики, заменяя собственное имя дескрипцией и наоборот, дескрипцію собственным именем (см. 2.2.4). Собственное имя - простой знак, которым обозначается единичный (индивидуальный) предмет. Дескрипція - сложный знак, в котором определяют свойства предмета или отношения между классами. Если в определенном контексте подменить собственное имя дескрипцией, то возникает семантический парадокс. Например, за Бы. Расселом, имя собственное "Вальтер Скотт" и дескрипція "автор "Веверлея" указывают на один предмет, соответственно, утверждение. "Король Генрих IV желает знать, является ли Вальтер Скотт автором "Веверлея" не содержит парадокса, но, если заменить имя собственное "Вальтер Скотт" дескрипцией "автор "Веверлея", то получаем утверждение: "Король Генрих IV желает знать, является ли Вальтер Скотт Вальтером Скоттом", которое парадоксальное.

Логические парадоксы - парадоксы, возникшие в пределах определенной логической теории в процессе развития науки логики. В логических парадоксов относятся парадоксы материальной импликации, парадоксы строгой импликации, парадоксы епістемічної логики, парадоксы логики существования и др. (содержание этих парадоксов будет определен в контексте анализа конкретной логической теории, где возникли эти парадоксы).

Парадокс теории классов (множеств). В логико-математической теории классов (множеств) английский логик и математик Б. Рассел обнаружил логическую противоречивость, которая получила название парадокса (антиномии) классов (множеств). Все множества можно разделить на следующие виды: 1. Множества, которые не являются элементами самих себя. Такие множества называют собственными. Например, множество всех государств, всех натуральных чисел, всех книг в научной библиотеке университета города Н. и др. 2. Множества, которые являются элементами самих себя. Такие множества называют несобственными. Первый вид множеств обозначается символом М., а второй - символом М2. Далее предполагаем, что можно образовать множество М тех и только тех множеств, которые являются собственными, то есть всех тех множеств, которые не содержат самих себя как элементы. Это множественное число - - противоречива, поскольку, по определению, она принадлежит к числу своих элементов тогда и только тогда, когда она не принадлежит к их числу.

Для решения парадокса теории множеств Бы. Рассел разработал теорию типов, сущность которой заключается вот в чем. Все множества можно разделить на типы, каждый из которых отделяет элементы, принадлежащие только к одному типу и не относятся к другому. Так создается иерархия типов множеств: нулевой тип содержит только элементы, имеющие свойство Р, первый тип содержит элементы, имеющие свойства Г.; второй тип - имеет свойства Р2 и под. Каждый тип означает определенный уровень абстрагирования и обобщения множеств: а) обычное множество; б) необычная множество (множество всех множеств), т.е. множество, которое содержит само себя в качестве элемента. К которой множества отнести множество всех обычных множеств? По мнению Б. Рассела и теория типов позволяет выделить иерархию множеств и тем самым преодолеть парадокс теории множеств.

Популярными вариантами парадокса теории множеств есть парадоксы "Мэр муниципалитета" и "Парикмахер".

Парадокс "Мэр муниципалитета" сформулировал американский логик С. Клини (1909-1994 гг.) как популярный вариант парадокса теории множеств. "Каждый муниципалитет в Голландии должен иметь мэра, и два разные муниципалитеты не могут иметь одного и того же мэра. Иногда оказывается, что мэр не живет в своем муниципалитете. Предполагаем, что издан закон, согласно которому определенную территорию выделяют только для таких мэров, которые не живут в своих муниципалитетах, и он обязывает всех мэров поселиться на этой территории. Еще допустим, что этих мэров оказалось столько, что эта территория Н. образует муниципалитет. Где должен жить мэр муниципалитета Я.?"

Парадокс "Парикмахер" - второй популярный вариант парадокса теории множеств. "Парикмахер бреет тех и только тех мужчин одного поселка, которые не бреются сами. Или парикмахер бреет самого себя?"

Аристотель. Сочинения: В 4 т. - М., 1978. Белнап Н., Стил Т. Логика вопросов и ответов. - М., 1981. Войшвилло Е. Понятие как форма мышления. - М., 1989. Г. фон Вригт. Гетерологический парадокс // Логико-философские исследования. - М., 1986.

Жоль К. Вступление к современной логики. - К., 1992.

Ивин А. Искусство правильно мыслить. - М., 1986.

Ивин А. Логика. - К., 1996.

Кайберг Г. Вероятность и индуктивная логика. - М., 1978. Кант И. Сочинения: В 6 т. - М., 1964. Конверский А. Логика (традиционная и современная). - К., 2004. Кондаков Н. Логический словарь-справочник. - М., 1975. Лейбниц Г. Сочинения: В 4 т. - М., 1984. Логический словарь "Дефорт". - М., 1994. Минто В. Дедуктивная и индуктивная логика. - С.-Пб., 1995.

Фреге Г. Логика и логическая семантика. - М., 2000. Хоменко И. Логика для юристов. - К., 2001. Шуман А. Современная логика: Теория и практика. - М., 2004.

Kotarbinski Т. Kurs logiki. - Warszawa, 1955.