Как держать форму. Массаж. Здоровье. Уход за волосами

Психология математических способностей. Что такое математические способности и как их развить

В исследование математических способностей внесли свой вклад такие представители определенных направлений в психологии, как А. Бинэ, Э. Торндайк и Г. Ревеш, и такие выдающиеся математики, как А.Пуанкаре и Ж. Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Все ученые сходятся во мнении, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию, самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

А. Роджерс отмечает две стороны математических способностей: репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет математические способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

В статье «Психологи математического мышления» Д. Мордухай-Болтовский придавал особое значение «бессознательному мыслительному процессу», утверждая, что «мышление математика глубоко внедряется в бессознательную сферу, то всплывая на ее поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движений смычка». Внезапное появление в сознании готового решения какой-либо задачи, которую мы не можем долго решить, мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания. По мнению Д. Мордухай-Болтовского, наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся «черновая» работа, причем бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

Д. Мордухай-Болтовский отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуща даже гениальным людям, что между математическим и нематематическим умом есть существенная разница.

Выделяют следующие компоненты математических способностей:

  • -«сильная память» (память, скорее не на факты, а на идеи и мысли);
  • -«остроумие» как способность «обнимать в одном суждении» понятия из двух малосвязанных областей мысли находить в уже известном сходное с данным, отыскивать сходное в самых отдаленных, совершенно разнородных предметах;
  • -«быстрота мысли» (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному).

Д. Мордухай-Болтовский различает типы математического воображения, которые лежат в основе разных типов математиков - «алгебраистов» и «геометров». Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать, так как «геометр».

Отечественная теория способностей создавалась совместным трудом виднейших психологов, из которых в первую очередь надо назвать Б.М. Теплова, а так же Л.С. Выготского, А.Н. Леонтьева, С.Л. Рубинштейна и Б.Г. Ананьева. Помимо общетеоретических исследований проблемы математических способностей, В.А. Крутецкий своей монографией «Психология математических способностей школьников» положил начало экспериментальному анализу структуры математических способностей. Под способностями к изучению математики он понимает индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями, навыками в области математики.

Д.Н. Богоявленский и Н.А. Менчинская, говоря об индивидуальных различиях обучаемости детей, вводят понятие психологических свойств, определяющих при прочих равных условиях успех в учении.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявление которой называют «синдромом математической одаренности».

Большой вклад в разработку данной проблемы внес В.А. Крутецкий . Собранный им экспериментальный материал позволяет говорить о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одаренность. В.А. Крутецкий представил схему структуры математических способностей в школьном возрасте:

  • · Получение математической информации (способность к формализованному восприятию математического материала, охватыванию формальной структуры задачи).
  • · Переработка математической информации
  • А)Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.
  • Б)Способность к быстрому и широкому обобщению математических объектов, отношений и действий.
  • В)способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.
  • Г)Гибкость мыслительных процессов в математической деятельности.
  • Д)Стремление к ясности, простоте, экономности и рациональности решений.
  • Е)Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).
  • · Хранение математической информации.

Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений, доказательств, методы решения задач и принципы подхода к ним).

· Общий синтетический компонент. Математическая направленность ума.

Не входят в структуру математической одаренности те компоненты, наличие которых в этой структуре не обязательно. Они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее степень развития) определяют типы математического склада ума. Быстрота мыслительных процессов как временная характеристика, индивидуальный темп работы не имеют решающего значения. Математик может размышлять неторопливо, даже медленно, но очень обстоятельно и глубоко. Также к нейтральным компонентам можно отнести вычислительные способности (способности к быстрым и точным вычислениям, часто в уме). Известно, что есть люди, способные воспроизводить в уме сложные математические вычисления (почти мгновенное возведение в квадрат и куб трехзначных чисел), но не умеющие решать сколько-нибудь сложные задачи. Известно также, что существовали и существуют феноменальные «счетчики» не давшие математике ничего, а выдающийся математик А. Пуанкре писал о себе, что без ошибки не может сделать даже сложение.

Память на цифры, формулы и числа является нейтральной по отношению к математической одаренности. Как указывал академик А.Н. Коломогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

Способность к пространственным представлениям, способность наглядно представлять абстрактные математические отношения и зависимости также составляют нейтральный компонент.

Важно отметить, что схема структуры математических способностей имеет в виду математические способности школьника. Нельзя сказать в какой мере ее можно считать общей схемой структуры математических способностей, в какой мере ее можно отнести к вполне сложившимся одаренным математикам.

Известно, что в любой области науки одаренность как качественное сочетание способностей всегда многообразна и в каждом отдельном случае своеобразна. Но при качественном многообразии одаренности всегда можно наметить какие-то основные типологические характеристики различия в структуре одаренности, выделить определенные типы, значительно отличающиеся один от другого, разными путями приходящие с одинаково высокими достижениями в соответствующей области.

Об аналитическом и геометрическом типах упоминается в работах А. Пуанкре, Ж. Адамара, Д. Мордухай-Болтовского, но с этими терминами у них связывается скорее логический, интуитивный пути творчества в математике.

Из отечественных исследователей вопросами индивидуальных различий учащихся при решении задач с точки зрения соотношения абстрактных и образных компонентов мышления много занималась Н.А. Менчинская. Она выделяла учащихся с относительным преобладанием: а) образного мышления над абстрактным в) гармоническим развитием обоих видов мышления.

Нельзя думать, что аналитический тип проявляется только в алгебре, а геометрический - в геометрии. Аналитический склад может проявляться в геометрии, а геометрический - в алгебре. В.А. Крутецкий дал развернутую характеристику каждого типа.

Аналитический тип. Мышление этого типа характеризуется преобладанием очень хорошо развитого словесно-логического компонента над слабым наглядно-образным. Они легко оперируют отвлеченными схемами. У них нет потребности в наглядных опорах, в использовании предметной или схематической наглядности при решении задач, даже таких, когда данные в задаче математические отношения и зависимости «наталкивают» на наглядные представления.

Представители этого типа не отличаются способностью наглядно-образного представления и в силу этого используют более трудный и сложный логико-аналитический путь решения там, где опора на образ дает гораздо более простое решение. Они очень успешно решают задачи, выраженные в абстрактной форме, задачи же, выраженные в конкретно-наглядной форме, стараются по возможности переводить в абстрактный план. Операции, связанные с анализом понятий, осуществляются ими легче, чем операции, связанные с анализатором геометрической схемы или чертежа.

  • -Геометрический тип. Мышление представителей этого типа характеризуется очень хорошо развитым наглядно-образным компонентом. В связи с этим можно говорить о преобладании над хорошо развитым словесно-логическим компонентом. Эти учащиеся испытывают потребность в наглядной интерпретации выражения абстрактного материала и демонстрируют большую избирательность в этом отношении. Но если им не удается создать наглядные опоры, использовать предметную или схематическую наглядность при решении задач, то они с трудом оперируют отвлеченными схемами. Они упорно пытаются оперировать наглядными схемами, образами, представлениями даже там, где задача легко решается рассуждением, а использование наглядных опор излишне или затруднительно.
  • -Гармонический тип. Для этого типа характерно равновесие хорошо развитых словесно-логического и наглядно-образного компонента при ведущей роли первого. Пространственные представления у представителей этого типа развиты хорошо. Они избирательны в наглядной интерпретации абстрактных отношений и зависимостей, но наглядные образы и схемы подчинены у них словесно-логическому анализу. Оперируя наглядными образами, эти учащиеся четко осознают, что содержание обобщения не исчерпывается частными случаями. Представители этого типа успешно осуществляют образно-геометрический подход к решению многих задач.

Установленные типы имеют общее значение. Их наличие подтверждается многими исследованиями.

В зарубежной психологии до настоящего времени широко распространены представления о возрастных особенностях математического развития школьника, исходящих из исследований Ж. Пиаже. Пиаже считал, что ребенок только к 12 годам становится способным к абстрактному мышлению . Анализируя стадии развития математических рассуждений подростка, Л. Шоанн пришел к выводу, что в наглядно-конкретном плане школьник мыслит до 12 - 13 лет, а мышление в плане формальной алгебры, связанное с овладением операциями, символами, складывается к 17 годам.

Исследование отечественных психологов дают иные результаты. П.П. Блонский писал об интенсивном развитии у подростка, обобщающего и абстрагирующего мышления, умения доказывать и разбираться в доказательствах . Исследования И.В. Дубровиной дают основание говорить о том, что применительно к возрасту младших школьников мы не можем утверждать о сколько-нибудь сформированной структуре собственно математических способностей, конечно, исключая случаи особой одаренности. Поэтому «понятие математические способности» условно в применении к младшим школьникам - детям 7 - 10 лет, при исследовании компонентов математических способностей в этом возрасте речь может идти лишь об элементарных формах таких компонентов. Но отдельные компоненты математических способностей формируются уже в начальных классах.

Опытное обучение, которое осуществлялось в ряде школ Института психологии (Д.Б. Эльконин, В.В. Давыдов) показывают, что при специальной методике обучения младшие школьники приобретают большую способность к отвлечению и рассуждению, чем принято думать. Однако, хотя возрастные особенности школьника в большей мере зависят от условий, в которых осуществляется обучение, считать, что они целиком создаются обучением, было бы неверно. Поэтому неправильна крайняя точка зрения на этот вопрос, когда считают, что не существует никакой закономерности естественного психического развития. Более эффективная система обучения может «стать» весь процесс, но до известных пределов, может несколько измениться последовательность развития, но не может придать линии развития совершенно иной характер. Здесь не может быть произвольности. Не может, например, способность к обобщению сложных математических отношений и методов сформироваться раньше, чем способность к обобщению простых математических отношений . Таким образом, возрастные особенности - это несколько условное понятие. Поэтому все исследования ориентированы на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

В зарубежной психологии имеются работы, где сделана попытка выявить отдельные качественные особенности математического мышления мальчиков и девочек. В. Штерн говорит о своем несогласии с той точкой зрения, согласно которой различия в умственной области мужчин и женщин есть результат неодинакового воспитания. По его мнению, причины кроются в разных внутренних задатках. Поэтому женщины менее склонны к абстрактному мышлению и менее способны в этом отношении.

В своих исследованиях Ч. Спирмен и Э. Торндайк пришли к выводу, что «в отношении способностей большой разницы нет», но при этом отмечают большую склонность девочек к детализированию, запоминанию подробностей.

Соответствующие исследования в отечественной психологии были проведены под руководством И.В.Дубровиной и С.И.Шапиро. Они не обнаружили каких-либо качественных специфических особенностей в математическом мышлении мальчиков и девочек. Не указали на эти различия и опрошенные ими учителя.

Разумеется, фактически мальчики чаще обнаруживают математические способности. Победителями в математических олимпиадах чаще бывают мальчики, чем девочки. Но это фактическое различение надо отнести за счет разницы в традициях, в воспитании мальчиков и девочек, за счет распространенного взгляда на мужские и женские профессии. Это приводит к тому, что математика часто оказывается вне направленности интересов девочек.

Исследование математических способностей в зарубежной психологии.

В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей. Если и здесь различать два разных аспекта этих способностей - «школьные» и творческие способности, то в отношении вторых существует полное единство - творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов - биологического потенциала и среды.

Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования. В этом плане можно выделить три важные проблемы.

1. Проблема специфичности математических способностей. Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность - это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?

2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.

3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

7. Педагогические способности

Педагогическим способностями называют совокупность индивидуально-психологических особенностей личности учителя, отвечающих требованиям педагогической деятельности и определяющих успех в овладении этой деятельностью. Отличие педагогических способностей от педагогических умений заключается в том, что педагогические способности - это особенности личности, а педагогические умения - это отдельные акты педагогической деятельности, осуществляемые человеком на высоком уровне.

Каждая способность имеет свою структуру, в ней различают ведущие и вспомогательные свойства.

Ведущими свойствами в педагогических способностях являются:

педагогический такт;

наблюдательность;

любовь к детям;

потребность в передаче знаний.

Педагогический такт - это соблюдение педагогом принципа меры в общении с детьми в самых разнообразных сферах деятельности, умение выбрать правильный подход к учащимся.

Педагогический такт предполагает:

· уважение к школьнику и требовательность к нему;

· развитие самостоятельности учащихся во всех видах деятельности и твердое педагогическое руководство их работой;

· внимательность к психическому состоянию школьника и разумность и последовательность требований к нему;

· доверие к учащимся и систематическая проверка их учебной работы;

· педагогически оправданное сочетание делового и эмоционального характера отношений с учениками и др.

Педагогическая наблюдательность - это способность учителя, проявляемая в умении подмечать существенные, характерные, даже малозаметные свойства учащихся. По-другому можно сказать, что педагогическая наблюдательность - это качество личности педагога, заключающееся в высоком уровне развития способности концентрации внимания на том или ином объекте педагогического процесса.

способность математический педагогический

Пупсень и Вупсень 23 октября 2013 в 21:42

Что такое математические способности и как их развить?

Недавно потерпев очередное поражение в математике задался вопросом: что же все таки такое математические способности? О каких именно свойствах человеческого мышления идет речь? И как их развить? Потом решил обобщить этот вопрос и сформулировать его следующим образом: что такое способности к точным наукам? что в них общего и в чем их отличие? чем отличается мышление математика от мышления физика, химика, инженера, программиста итд. В интернете не было найдено практически никаких вразумительных материалов. Единственное, что понравилось - это эта статья про то существуют ли какие-нибудь специфические способности к химии и связаны ли они со способностями к физике и математике.
Хотелось бы спросить мнение читателей. А ниже я изложу свое субъективное виденье проблемы.

Для начала попытаюсь сформулировать в чем, по моему мнению, заключается камень преткновения при освоении математики.
Как мне кажется, проблема кроется именно в доказательствах. Строгие и формальные доказательства по своей сути очень специфичны и встречаются, в основном в математике и философии (поправьте, если я и ошибаюсь). Не случайно многие великие умы были и математиками и философами одновременно: Бертран Рассел, Лейбниц, Уайтхед, Декарт список далеко не полный. В школах доказательствам почти не учат, они там встречаются в основном в геометрии.Я встречал довольно много людей одаренных технически, являющихся специалистами в своих областях, но при этом впадающих в ступор при виде математической теории и, когда нужно провести простейшее доказательство.
Следующий момент тесно связан с предыдущим. У математиков критическое мышление доходит совершенно до каких-то немыслимых высот. и всегда присутствует желание доказать и проверить на первый взгляд очевидные факты. Вспоминаю свой опыт по изучению алгебры и теории групп наверное, это не достойно человека мыслящего, но мне всегда было скучно выводить какие-то общеизвестные факты из линейной алгебры и я не мог заставить себя проделать 20 доказательств о свойствах линейных пространств, и готов поверить на слово, условию теоремы, лишь бы от меня отстали.

В моем понимании для успешного овладения математикой человеку необходимо обладать следующими навыками:
1.Индуктивные способности.
2.Дедуктивные способности.
3. Умение оперировать с большим объемом информации в уме. Хорошим тестом может служить задача Эйнштейна
Можно вспомнить о советском математике Понтрягине, который ослеп в 14 лет.
4. Усидчивость, способность быстро соображать, плюс интерес способны скрасить те усилия, которые придется приложить, но не являются необходимыми условиями и уж тем более достаточными.
5. Любовь к абсолютно отвлеченной игре ума и абстрактным понятиям
Тут можно привести в пример и топологию и теорию чисел. Еще забавную ситуацию можно наблюдать у тех, кто занимается уравнениями в частных производных сугубо с математической точки зрения и практически полностью игнорируют физическую интерпретацию
6. Для геометров желательно иметь пространственное мышление.
Что касается меня, то я определил свои слабые места. Хочу начать с теории доказательств, математической логики и дискретной математики, а также увеличить количество информации, которой я могу оперировать. Особо стоит отметить книги Д.Пойи «Математика и правдоподобные рассуждения », «Как решать задачу»
А что по вашему является ключом к успешному освоению математики и других точных наук? И как развить эти способности?

Теги: Математика, физика

Чтобы объяснить, откуда в человеке развилась способность к математическим операциям, специалисты предлагали две гипотезы . Одна из них заключалась в том, что склонность к математике является побочным эффектом появления языка и речи. Другая предполагала, что причиной явилась возможность использовать интуитивное понимание пространства и времени, которое имеет куда более древнее эволюционное происхождение.

Для того чтобы ответить на вопрос, какая из гипотез верна, психологи поставили эксперимент с участием 15 профессиональных математиков и 15 обычных людей с равным уровнем образования. Каждой группе представляли сложные математические и нематематические утверждения, которые нужно было оценить как истинные, ложные или бессмысленные. По ходу эксперимента мозг участников сканировали с помощью функциональной томографии.

Результаты исследования показали, что заявления, которые касались математического анализа, алгебры, геометрии и топологии, активировали участки в теменной, нижневисочной и префронтальной коре головного мозга у математиков, но не у контрольной группы. Эти зоны отличались от тех, что возбуждались у всех участников эксперимента при обычных утверждениях. «Математические» участки активировались у обычных людей только в том случае, если испытуемым предлагали проделать простые арифметические действия.

Ученые объясняют полученный результат тем, что математическое мышление высокого уровня задействует нейронную сеть, которая отвечает за восприятие чисел, пространства и времени и отличается от сети, связанной с языком . По словам экспертов, на основе исследования можно предсказать, разовьются ли у ребенка математические способности, если оценить его навыки пространственного мышления.

Таким образом, чтобы стать математиком нужно развивать пространственное мышление.

Что представляет из себя пространственное мышление

Для решения огромного количества задач из тех, что ставит перед нами наша цивилизация, необходим особый вид мыслительной деятельности - пространственное мышление. Термин пространственное воображение, обозначает человеческую способность четко представлять трехмерные объекты в деталях и цветовом исполнении.

При помощи пространственного мышления можно проводить манипуляции с пространственными структурами - настоящими или воображаемыми, анализировать пространственные свойства и отношения, трансформировать исходные структуры и создавать новые. В психологии восприятия давно уже известно, что изначально зачатками пространственного мышления обладает всего несколько процентов населения.

Пространственное мышление - это специфический вид мыслительной деятельности, которая имеет место в решении задач, требующих ориентации в практическом и теоретическом пространстве (как видимом, так и воображённом). В своих наиболее развитых формах это мышление образцами, в которых фиксируются пространственные свойства и отношения.

Как развить пространственное мышление

Упражнения на развитие пространственного мышления очень полезны в любом возрасте. Поначалу многие люди испытывают затруднения при их выполнении, но со временем обретают способность решать все более сложные задачи. Такие упражнения обеспечивают нормальное функционирование головного мозга, позволяют избежать многих заболеваний, вызванных недостаточным уровнем работы нейронов коры полушарий.

Дети с развитым пространственным мышлением часто преуспевают не только в геометрии, черчении, химии и физике, но и в литературе! Пространственное мышление позволяет создавать в голове целые динамические картины, своего рода кинофильм, основанные на прочитанном отрывке текста. Такая способность существенно облегчает анализирование художественной литературы и позволяет сделать процесс чтения намного более интересным. И, конечно же, пространственное мышление незаменимо на уроках рисования и труда.

С развитым пространственным мышлением становится гораздо легче читать чертежи и карты, определять местонахождение и представлять схему движения к цели. Это просто необходимо любителям спортивного ориентирования, а всем остальным существенно поможет в обычной жизни в условиях города.

Пространственное мышление развивается с раннего детства, когда ребенок начинает совершать свои первые движения. Его формирование проходит несколько этапов и заканчивается, примерно, в подростковом возрасте. Однако в течение жизни возможно его доразвитие и преобразование. Проверить уровень развития пространственного мышления можно с помощью небольшого интерактивного теста .

Выделяют три типа такого оперирования:

  1. Изменение пространственного положения образа. Человек мысленно может передвинуть объект без каких-либо изменений его внешнего вида. Например, передвижения согласно карте, мысленное переставление объектов в комнате, перечерчивание и т.д.
  2. Изменение структуры образа . Человек может мысленно каким-либо образом изменить объект, но при этом он остается неподвижным. Например, мысленное добавление одной фигуры к другой и их объединение, представление того, как будет выглядеть объект, если добавить к нему деталь, и пр.
  3. Одновременное изменение и положения, и структуры образа . Человек способен одновременно представить изменения во внешнем облике и пространственном положении предмета. Например, мысленное вращение объемной фигуры с разными сторонами, представление о том, как будет выглядеть такая фигура с той или другой стороны, и др.

Третий тип является наиболее совершенным и предоставляет больше возможностей. Однако для его достижения необходимо сначала хорошо освоить первые два типа оперирования. Представленные ниже упражнения и советы будут направлены на развитие в целом пространственного мышления и всех трех типов действий.

3D пазлы и оригами

Складывание объемных пазлов и фигурок из бумаги позволяет формировать в голове образы различных объектов. Ведь перед началом работы следует представить готовую фигуру, чтобы определить качество и порядок действий. Складывание может проходить в несколько этапов:

  • Повторение действий за кем-то
  • Работа в соответствии с инструкцией
  • Складывание фигуры с частичной опорой на инструкцию
  • Самостоятельная работа без опоры на материал (может осуществляться не сразу, а после нескольких повторений предыдущих этапов)

Важно, чтобы школьник четко прослеживал каждое действие и запоминал его. Вместо пазлов можно также использовать обычный конструктор.

Делятся на два типа:

  1. С использованием наглядного материала. Для этого необходимо иметь несколько заготовок различных объемных геометрических фигур: конус, цилиндр, куб, пирамида и др. Задача: изучить фигуры; узнать, как они выглядят с различных ракурсов; накладывать фигуры друг на друга и смотреть, что получается и т.д.
  2. Без использования наглядного материала . Если школьник хорошо знаком с различными объемными геометрическими фигурами и хорошо представляет, как они выглядят, то задания переносятся в мысленный план. Задача: описать, как выглядит та или иная фигура; назвать каждую ее сторону; представить, что будет при наложении одной фигуры на другую; сказать, какое действие нужно осуществить с фигурой, чтобы превратить ее в другую (например, как превратить параллелепипед в куб) и пр.

Перечерчивание (копирование)

Задания этого типа идут по нарастанию сложности:

  1. Простое перечерчивание фигуры. Перед учеником стоит макет/образец фигуры, который ему необходимо перенести на бумагу без изменений (размеры и внешний вид должны совпадать). Перечерчивается отдельно каждая сторона фигуры.
  2. Копирование с добавлением. Задача: перечертить фигуру без изменений и добавить к ней: 5 см в длину, дополнительную грань, другую фигуру и т.п.
  3. Масштабируемое перечерчивание. Задача: скопировать фигуру с изменением ее размера, т.е. начертить в 2 раза больше чем макет, в 5 раз меньше чем образец, убавив на 3 см каждую сторону и т.д.
  4. Копирование из представления. Задача: представить объемную фигуру и нарисовать ее с разных сторон.

Представления

В качестве объектов представления будут выступать отрезки и линии. Задачи могут быть самыми разнообразными, например:

  • Представь три разнонаправленных отрезка, мысленно соедини их и нарисуй, получившуюся фигуру.
  • Представь, что на два отрезка наложили треугольник. Что получилось?
  • Представь две сближающиеся линии. В каком месте они пересекутся?

Составление чертежей и схем

Могут осуществляться с опорой на наглядный материал или с опорой на представляемые объекты. Составлять чертежи, схемы и планы можно по любому предмету. Например, план комнаты с отображением расположения каждой вещи в ней, схематическое изображение цветка, чертеж здания и пр.

Игра «Угадай на ощупь»

Ребенок закрывает в глаза и получает какой-то предмет, который может ощупать. Объект должен иметь такие размеры, чтобы школьник имел возможность изучить его целиком. На это отводится определенное количество времени в зависимости от возраста ученика и объема предмета (15-90 секунд). По истечении этого времени ребенок должен сказать, что именно это было и почему он так решил.

Также в игре можно использовать разные виды ткани, схожие по форме фрукты (яблоки, нектарины, апельсины, персики), нестандартные геометрические фигуры и другое.

Игра «Муха в клетке»

Для этой игры потребуется не менее трех человек. Два непосредственно участвуют в игре, а третий отслеживает ее ход и проверяет конечный ответ.

Правила: два участника представляют решетку 9 на 9 квадратов (пользоваться графическим изображением нельзя!). В правом верхнем углу находится муха. По очереди делая ходы, игроки перемещают муху по квадратам. Можно использовать обозначения движения (вправо, влево, вверх, вниз) и число клеток. Например, муха передвигается на три клетки вверх. Третий участник имеет графическую схему решетки и обозначает каждый ход (каждое перемещение мухи). Далее он говорит «Стоп» и другие игроки должны сказать, где, по их мнению, находится муха в данный момент. Выигрывает тот, кто правильно назвал квадрат, где остановилась муха (проверяется по схеме, которую составил третий участник).

Игру можно усложнить, добавив количество клеток в решетку или такой параметр, как глубину (сделав решетку трехмерной).

Графические задания-тренажеры

Выполняются на глаз без использования каких-либо вспомогательных предметов (линейки, ручки, циркуля и т.д.).

1. На какую отметку должен переместиться человек, чтобы падающее дерево не задело его?

2. Какая (какие) из фигур сможет (смогут) пройти между объектом А и объектом Б?

Картинка из книги Посталовского И.З. «Тренировка образного мышления»

3. Представь, что овалы на картинке - это машины. Какая из них раньше окажется на перекрестке, если скорость передвижения машин равна?

Картинка из книги Посталовского И.З. «Тренировка образного мышления»

4. Восстанови часть фигуры, которую закрыла линейка.

Картинка из книги Посталовского И.З. «Тренировка образного мышления»

5. Определи, куда упадет шар.

Картинка из книги Посталовского И.З. «Тренировка образного мышления»

Способности к математике – это один из данных природой талантов, проявляющийся уже с раннего возраста и связанный напрямую со становлением творческого потенциала, стремлением к познанию мира вокруг малыша. Но почему изучение математики так сложно дается некоторым детям и можно ли улучшить эти способности?

Мнение, что математика подвластна лишь одарённым детям, ошибочно. Математические способности, как и прочие таланты, являются результатом гармоничного развития ребенка, и начинать надо с самого раннего возраста.

В современном компьютерном мире с его цифровыми технологиями умение “дружить” с числами крайне необходимо. Много профессий основано на математике, развивающей мышление и относящейся к одному из самых важных факторов влияния на интеллектуальный рост детей. Эта точная наука, чья роль в воспитании и обучении ребенка неоспорима, развивает логику, учит последовательно мыслить, определять сходства, связи и отличия предметов и явлений, делает детский ум быстрым, внимательным и гибким.

Чтобы занятия математикой у детей пяти-семи лет были эффективными, необходим серьезный подход, и первым делом следует диагностировать их знания и умения – оценить, на каком уровне находятся у малыша логическое мышление и базовые математические понятия.

Диагностика математических способностей детей 5-7 лет по методу Белошистой А.В.

Если ребенок с математическим складом ума освоил устный счет еще в раннем возрасте, это еще не является основанием для стопроцентной уверенности в его будущем как гения математики. Навыки устного счёта – это лишь небольшой элемент точной науки и далеко не самый сложный. О наличии у ребенка способностей к математике свидетельствует особый способ мышления, которому присущи логика и абстрактное мышление, понимание схем, таблиц и формул, умение анализировать, способность видеть фигуры в пространстве (объемными).

Чтобы определить наличие у детей от младшего дошкольного (4-5 лет) до младшего школьного возраста данных способностей, существует система эффективной диагностики, созданная доктором педагогических наук Анной Витальевной Белошистой. Она основана на создании учителем или родителем определенных ситуаций, в которых ребенок должен применить то или иное умение.

Этапы диагностики:

  1. Проверка ребенка 5-6 лет на предмет владения навыками анализа и синтеза. На данном этапе можно оценить, как ребенок умеет сравнивать предметы различных форм, разделять их и обобщать по определенным признакам.
  2. Тестирование навыков образного анализа у детей в возрасте 5-6 лет.
  3. Проверка умения анализировать и синтезировать информацию, по результатам которого выявляется способность дошкольника (первоклассника) определять формы различных фигур и замечать их в сложных картинках с наложенными друг на друга фигурами.
  4. Тестирование с целью определения у ребенка понимания базовых тезисов математики – речь идет о понятиях “больше” и “меньше”, порядковом счете, форме простейших геометрических фигур.

Первые два этапа такой диагностики проводятся в начале учебного года, остальные – в конце, что дает возможность оценить динамику математического развития ребенка.

Применяемый для проверки материал должен быть понятным и интересным для детей – соответствующим возрасту, ярким и с картинками.

Диагностика математических способностей ребенка по методу Колесниковой Е.В.

Елена Владимировна создала немало учебно-методических пособий для развития математических способностей у дошкольников. Её метод тестирования детей 6 и 7 лет получил широкое распространение у учителей и родителей разных стран и соответствует требованиям ФГОС (Россия).

Благодаря методу Колесниковой можно максимально точно установить уровень основных показателей развития математических навыков детей, узнать их готовность к школе, определить слабые стороны для своевременного восполнения пробелов. Данная диагностика помогает найти пути улучшения математических способностей малыша.

Развитие математических способностей ребенка: советы родителям

С любой наукой, даже такой серьезной, как математика, малыша лучше знакомить в игровой форме – именно это будет лучшим методом обучения, который следует выбрать родителям. Прислушайтесь к словам известного ученого Альберта Эйнштейна: “Игра – это высшая форма исследования”. Ведь при помощи игры можно получить потрясающие результаты:

– познание себя и окружающего мира;

– формирование базы математических знаний;

– развитие мышления:

– становление личности;

– развитие коммуникабельности.

Применять можно различные игры:

  1. Счетные палочки. Благодаря им малыш запоминает формы предметов, развивает свое внимание, память, смекалку, формируются навыки сравнения и усидчивость.
  2. Головоломки, развивающие логику и смекалку, внимание и память. Логические задачи помогают детям научиться лучшему восприятию пространства, взвешенному планированию, простому и обратному, а также порядковому счету.
  3. Математические загадки – это отличный способ развития основных аспектов мышления: логики, анализа и синтеза, сравнения и обобщения. Во время поиска решения дети учатся самостоятельно делать выводы, справляться с трудностями и отстаивать свою точку зрения.

Развитие математических способностей через игру формирует учебный азарт, добавляет яркие эмоции, помогает малышу полюбить заинтересовавший его предмет изучения. Также стоит отметить, что игровая деятельность способствует и развитию творческих способностей.

Роль сказок в развитии математических способностей дошкольников

Детской памяти присущи свои особенности: она фиксирует яркие эмоциональные моменты, то есть ребенок запоминает ту информацию, которая связана с удивлением, радостью, восхищением. И учиться “из-под палки” – крайне неэффективный способ. В поиске результативных методов обучения взрослым следует вспомнить о таком простом и обыденном элементе, как сказка. Именно сказка является одним из первых средств знакомства малыша с окружающим миром.

Для детей сказка и реальность тесно связаны, волшебные персонажи – настоящие и живые. Благодаря сказкам развивается речь ребенка, его фантазия и смекалка; они дают понятие добра, честности, расширяют кругозор, а также дают возможность развивать и математические навыки.

К примеру, в сказке “Три медведя” малыш в ненавязчивой форме знакомится со счётом до трех, понятиями “маленький”, “средний” и “большой”. “Репка”, “Теремок”, “Козленок, который умел считать до 10”, “Волк и семеро козлят”, – в этих сказках можно научиться простому и порядковому счёту.

Обсуждая сказочных персонажей, можно предложить крохе сравнить их по ширине и высоте, “спрятать” в геометрических фигурах, подходящих по размеру или форме, что способствует развитию абстрактного мышления.

Использовать сказки можно не только дома, но и на занятиях в школе. Дети очень любят уроки, построенные на сюжетах их любимых сказок, с применением загадок, лабиринтов, пальцематики. Такие занятия станут настоящим приключением, в которых малыши будут принимать личное участие, а значит, и материал будет усвоен лучше. Главное – вовлечь детей в процесс игры и вызвать у них интерес.