Как держать форму. Массаж. Здоровье. Уход за волосами

Компьютеры будущего — ДНК и бактерии. Новые технологии производства компьютеров

Что такое биологическая система?

Биологическая система - это живая структура, существующая в определенной для неё среде обитания, обладающая способностью обмена веществ и энергии, а также защитой обмена и копирования информации, которая определяет её функции и возможности совершенствования способов взаимодействия с окружающей средой для сохранения и передачи информации о себе.

Структура биологической системы "клетка":

1. Информационный блок - информационный код, записанный в виде молекул ДНК, РНК. По аналогии с компьютерной программой - является "воплощенным Словом" определяющим функции и параметры системы. Его авторство принадлежит Творцу, Источнику жизни, Создателю всего видимого и не видимого - Богу.
2. Энергетический блок - запрограммированные возможности получения, преобразования и расхода энергии (циркуляции энергии). Энергия - сила необходимая для поддержания жизнедеятельности структурных элементов системы и активации их функций. Или, энергия - это количественная мера взаимодействия всех видов материи и информации, вызывающее изменение их состояния или структуры.
3. МПТ блок (материя, плоть, тело) - внешнее проявление информационного кода. Его функции - защита, сохранение, обмен информации. Является матрицей хранения и копирования информации. К нему относятся: мембраны, ферменты, рецепторы мембран, транспортные каналы мембран, биологически активные вещества (БАВ).

Основные задачи биологической системы "клетка": сохранение, обмен, копирование информации заключенной в ней.

Для выполнения своих задач, в первую очередь копирования, система должна попасть и находиться в определенной среде обеспечивающей ей адекватное потребностям поступление веществ и энергии.
Для регуляции процессов обеспечивающих сохранение, обмен и копирования информации используется рецепторно-медиаторный принцип.

Рецепторно-медиаторный принцип

Рецептор - (от лат. recipere - получать) любая информационно-энергетическая материальная система или структура (ИЭМ система, структура) воспринимающая информацию и изменяющая свое состояние или структуру определенным образом в результате действия медиатора.

Медиатор - (посредник, передатчик) любая ИЭМ система или структура, предназначенная для передачи определенной информации для рецептора.

Мы знаем о разных уровнях организации ИЭМ систем и структур это - атом, молекула, сложная молекула, вещество, вирус, клетка, ткань, орган, организм, коллектив, народ, государство, планета земля, солнечная система, галактика, вселенная.
На разных уровнях организации ИЭМ систем или структур свои механизмы рецепторно-медиаторного взаимодействия. Это относится и к межуровневому взаимодействию.
Изучение этих механизмов, а также поиск медиаторов для рецепторов и описание ответов (изменения состояния или структуры) ИЭМ систем или структур относится к задачам ученых.

Виды взаимодействия рецептора и медиатора

1. Определенный медиатор действует на определенный рецептор биологической системы, что ведет к определенному ответу.

2. Определенный медиатор действует на рецепторы, определяющие разные ответы биологической системы.

3. Несколько медиаторов действует на определенный рецептор биологической системы, что ведет к определенному ответу.

4. Несколько медиаторов действует на определенный рецептор, что ведет к разным ответам биологической системы (взаимодействие характерное для сложных биологических систем).

Результатом взаимодействия медиатора и рецептора является изменение состояния или структуры системы.

Состояние физиологического покоя - это состояние, при котором биологическая система находится в своей среде обитания и выполняет свои задачи, не выходя за рамки среднестатистических данных ее функциональной активности.

Основные механизмы регуляции состояния биологической системы

1. Изменение количества медиатора или рецептора (увеличение, уменьшение)
2. Изменение качества медиатора или рецептора путем изменения их структуры (усиление, ослабление, разрушение) и как следствие изменение их связи и передачи информации.

В биологической системе любая ИЭМ структура может быть, как рецептором для одних ИЭМ структур, так и медиатором для других. Контроля над регуляцией определенного состояния системы можно добиться тогда, когда мы знаем способы воздействия, изменяющие количество и качество медиатора и рецептора, отвечающих за это состояние.

Возможности изменения состояния клетки

Единственная возможность изменить состояние и структуру биологической системы "Клетка" - это изменить медиаторное действие окружающей среды обитания.
Изменение окружающей среды, которое обеспечивает поступление веществ, энергии и информации (воды или жидкости, воздуха или газов, земли или органических и неорганических химических элементов, температуры, физических полей, излучений, давления) ведет к изменению состояния или структуры клетки.

Структуры клетки, изменяющиеся в результате изменений окружающей среды.

1. Молекулы ДНК, РНК (источник информации о клетке и копирования).
2. Мембраны клетки и органел (защита клетки и внутренней среды).
3. Ферменты (регуляторы скорости обмена веществ, энергии, информации в клетке).
4. Рецепторы мембран (воспринимают информацию для клетки).
5. Транспортные каналы мембран (ворота входа и выхода веществ, энергии и информации).
6. Биологически активные вещества (медиаторы - продукты клетки, предназначенные для передачи информации внешней и внутренней среде).

Изменение качества и количества любой из этих структур в нужном направлении происходит за счет определенного изменения поступления жидкости, газа, органических или неорганических химических элементов, изменения температуры, физических полей, излучений, давления.


- Как Вы бывший военный врач, организатор с большим стажем вышли на теоретическую проблему устройства живого?

Каждый из нас в мыслях не раз обращался к этой теме, часто сомневаясь в справедливости гипотез спонтанного появления живого и теории эволюции . Навсегда сохранилось чувство изумления от "ума" компьютера после знакомства с его устройством и работой. Бурю мыслей породило исследование генома человека и других организмов, не оправдавшиеся сенсации , прогнозы и парадоксы . Впечатления , слившись, подвигли вновь читать биологию, затем информатику, искать в доступном пространстве всё, что касалось генетики , геномики , генов . Вскоре понял , что клетка и компьютер работают на основе общих информационных правил .

Но это надо доказать!

Конечно. Вначале, используя сравнения и аналогии, убедился, что клетка имеет строение типичное для компьютеров. Мембрана, как корпус компьютера, защищает внутреннее содержимое клетки от внешних воздействий и служит местом для подключения устройств ввода - вывода, роль которых выполняют рецепторы. Функцию материнской платы несёт цитоплазма, удерживая органеллы клетки в нужном положении и связывая их между собой. А вот и "сердце" клетки - ядро, хромосомы, гены, нить ДНК у про-кариот, выполняющие главную функцию по обработке информации, хранению долговременной и оперативной памяти, как винчестер в техническом компьютере. Аналогично переносным носителям информации - жестким и гибким дискам, в клетке интенсивно работают подвижные носители - это РНК, белки, прионы. Отличительной особенностью любой информационной машины является наличие часов и источника энергии . В клетке количество делений и время отсчитывают теломеры, а митохондрии обеспечивают энергией в виде АТФ. Молекулярная электроника опередила биологические отрасли наук, подтвердив предсказанную ранее миниатюризацию компьютеров, возможность использования в силу своей структуры и свойств многих органических молекул, в том числе и ДНК, в качестве транзисторов , триггеров , логических элементов и создания на их основе информацион-ных машин . Лабораторные варианты органического компьютера существуют, программное обеспечение для них также обязательно.

Какие ещё факты свидетельствуют об информационной состав-ляющей клеток?

Мне представляется самым весомым аргументом геномный парадокс , проявления которого до сих пор традиционными способами не могут быть объяснены. Оказалось, что структура генов не всегда определяет их свойства. Не подтвердились положения "ген - признак ", "ген - функция ", "ген -заболевание ". Один и тот же ген на разных этапах развития организма может выполнять разные функции . В генной сети функция гена может отличаться от функции изученной в изолированном состоянии. Много генов, которые "молчат", их свойства не известны. Общие по структуре гены могут контролировать развитие разных вариантов клеток. Ген человека и дрозофилы вырабатывает один и тот же сигнал - белковый лиганд для клеток мезодермы, контролируя образование крыльев мухи и парных конечностей человека. Начальные этапы миогенеза осуществляются набором генов, общих у дрозофилы, низших и высших животных и млекопитающих, включая человека. Число и организация НОХ-генов на хромосомах одинаковы практически у всех млекопитающих. Один и тот же ген можеткодировать несколько белков, а одному и тому же варианту белка могут соответствовать несколько генов. ДНК - дупликации, какую роль они играют и почему так разнятся геномы шимпанзе и человека по этому признаку? В Вашем обзоре ("МГ", №77 - 5.10.2005, с.14) отмечено, что у человека и шимпанзе одни и те же гены имеют в разных органах разную активность. Это за счёт разных программ , которые определяют существенные различия между биологическими видами. Теперь о парадоксальном количестве генов и "лишней ДНК" у разных биологических видов . У нематоды, (размером около 1мм.), генов 19903, у рыбки фугу (около 10 см) - 33609, крысы примерно 25000 и человека - 30000; соответственно некодирующей ДНК ("лишней, эгоистичной, мусорной") в % - 25, 16, 75, 97. Чем выше организован организм , тем меньше генов в его геноме и больше не кодирующей части нуклеотидов, чем сложнее процессы , тем меньше требуется генов для обеспечения жизнедеятельности. И, конечно же, по геномам не наблюдается никакого эволюционного ряда в развитии организмов.

В "мусорной" части ДНК много одинаковых повторяющихся последовательностей нуклеотидов. Есть ли здесь информационный смысл?

Предположение, основанное на развитии информационных техно-логий , уместно. Сейчас показано, что если на одной интегральной схеме штампуются микропроцессоры , места для хранения информации и другие элементы конструкции компьютера , то его производительность при сокращении размеров значительно повышается. Не надо "ходить" далеко за информацией, тратить лишнюю энергию. Огромное информационное пространство ДНК требует, чтобы вокруг генов концентрировались свои процессоры для работы с информацией , места для её хранения ,оперативной и долговременной памяти , что обеспечивало бы и последовательную и параллельную работу по анализу поступающей информации и выработке ответных решений и команд . Этим достигается быстродействие и дублирование на случай "внештатной " ситуации . Возможно, что нуклеотидные повторы и ДНК - дупликации как-то специализированы по информационным функциям .

А каковы существенные отличия биологических компьютеров от технических?

- Высокая надёжность за счёт стабильности органических соедине-ний и наличия системы многоуровневой защиты от повреждения носителей и искажения собственной информации . ДНК самая стойкая к тлению молекула, а апоптоз самый эффективный механизм защиты . Огромнаяпроизводительность , исчисляемая триллионами операций в секунду. Органические молекулы способны мгновенно изменять своё состояние под воздействием лазера , видимых частей светового спектра, звука, радиоволн. Наверное, не случайно двадцать аминокислот, участвующих в построении белков, в живом "левые", при изменении положения аминогруппы в углеродной цепи, им может быть доступна функция двоичной системы исчисления. Часть молекул могут генерировать лазерные отстрелы, выполнять функции хроматофоров, светодиодов, преобразователей сигналов. Геномы светятся, издают звуки, генерируют радиоволны определённых диапазонов, что регистрируется приборами. Приведенные рассуждения позволили дать одноклеточному организму и клетке информационное определение . Это органические замкнутые информационные машины , работающие на основе сложного программного обеспечения , определяющего их структурно-функциональную организацию, видовую принадлежность , целевые механизмы гомеостаза, воспроизводства себе подобных , с автономным энергетическим обеспечением и счётчиком времени . Я избегаю терминаэлектронно-вычислительная машина , потому что в клетке при обработке информации поток электронов не используется, и это не вычислительная , а логическая машина .

Но термин "биокомпьютер" я встречал задолго до вашей публикации.

Да, но в очень вольных интерпретациях. Всё, что не укладывается в приведенное выше определение, биокомпьютерами не являются, в том числе вирусы . На заре компьютерной эпохи биокомпьютером называли высокоорганизованные организмы. Затем представители определённых профессий считали компьютером мозг , с развитием генетики и геномики - перешли на геном, даже говорили о ДНК-компьютерах . Сегодня специалисты , исследующие информационные свойства воды , называют её "биокомпьютером живого ". Вода, хотя и обязательная, но только составная часть биологическогокомпьютера . В клетках, где информационные процессы превалируют, в частности в нейронах, воды до 90%, в волосах и ногтях её всего 8-10%.

А как же организмы или мозг ?

А вот многоклеточные организмы состоят из биокомпьютеров , скомпонованных и объединённых по принципам информационной сети .

Но как объединяются биологические компьютеры , составляющие организм ?

На помощь вновь приходит порождение информационной эпохи - созданная человеком глобальная информационная сеть Интернет . Главным условием для функционирования сети является совместимость всех компьютеров по техническим параметрам и программному обеспечению . В каждом организме клетки идентичны по структуре и имеют абсолютно одинаковое программное обеспечение . Исключение составляют эритроциты , они не имеют ядра и лишены информационных функций . В сети также необходим механизм для поддержания порядка и организованности, который обеспечивается серией технологий и протоколов Интернет . Назовём только часть из них.Transmission Control Protocol (ТСР) - вы не войдёте в сеть , не зарегистрировавшись у провайдера .Протоколы единой информационной паутины - в живом подобных протоколов и программ должно быть значительно больше, учитывая сложность , многофункциональность процессов и количествосоставляющих сеть биологических компьютеров . Человек это 14 трлн биокомпьютеров , в полтора раза больше, чем звёзд в двух галактиках вместе взятых - Млечном пути и Туманности Андромеды . Главная особенность Internet - это серверы на различных участках в сети . Это те же компьютеры , только предназначенные для обслуживания других компьютеров . Они, имея свои программы , напоминают нейроны с их удивительными функциональными возможностями. Их у человека 20 млрд.Чем выше организован организм, тем выше функциональные возможности нейронов. К примеру, у нематоды каждый нейрон приходится на 5 соматических клеток, у человека на 5000. Модем с соответствующей программой позволяют войти в сеть , осуществлять удалённое соединение ,загрузку файлов из компьютера в сеть и обратно - из сети в компьютер , обеспечиватьрегистрацию , смену протокола и другие функции. Бесспорно, это аналог синапсов, которые обеспечивают контакты между клетками. Информационная система человека на сегодня - вершина технологии . Интернет в сравнении с ней находится в зародышевом состоянии, его возраст около 40 лет. Основное отличие это огромная разница по количеству и мощности составляющихкомпьютеров , по сложности , многослойности и разнообразию программ . Считается, что для развития информационных сетей существует лишь два ограничения : быстродействие компьютеров и пропускная способность , связывающих их каналов. Так что перспективы развития у Интернета огромные. Но сегодня ни один из компьютеров , ни информационная система , созданные человеком, не в состоянии повторить работу биологического компьютера и самого простого многоклеточного организма.

Каковы же главные выводы из Ваших рассуждений?

Нельзя познать живое без изучения его информационной составляющёй, как и бесперспективно, искать живое и жизнедеятельность вне клетки. Информационная составляющая живого неизменна , геномы организмов стабильны и имеют многовариантную защиту . Изменчивость геномов ипрограмм угрожала бы гибелью не только особям , но и биологическим видам . Эволюции , как её трактует классическая биология , не могло быть, мутации не наследуются , а "лечатся "информационной системой живого . Все организмы не приспосабливаются, а противостоят факторам среды и способны к научению на основе собственного опыта. И организмы, и их репродуктивные способности программировались, создавались, возникали одновременно. Это один из многочисленных прогностических целевых цикличных процессов, присущих живому. Извечной проблемы "курицы " и "яйца " просто не существует. Темпы развития информационных технологий , особенно молекулярной электроники, удивляют - за 60 лет от вычислительных залов до молекулярного компьютера . Удивляют учёных короткие по эволюционным меркам промежутки времени, за которые усложнялись биологические виды, необъяснимые мутациями . Создаваяинформационные устройства , человечество , возможно, повторяет уже кем-то пройденный путь .Информационная составляющая как основа каждого живого организма существует! Однако сегодня нет отрасли знаний, методология, цели и методы исследований которой могли бы найти ключ к информационной части и информационным процессам в живом. Пора лечить очень распространённый хронический недуг цивилизации - "флюс " односторонности узких специалистов! Нужна информационная биология, как новая интеграционная наука, которая вобрала бы в себя современные информационные , технические , биологические , медицинские знания , достижения физики , химии и поставила бы задачу познать информационную суть живого . Здесь кроется самая тайная из тайн и самая загадочная из загадок устройства нашего мира!

Создавая информационные устройства , ч еловечество , возможно, повторяет уже кем-то пройденный путь ........

На протяжении многих лет ученые пытаются превратить живые клетки в компьютеры. Эта цель вполне логична: клетки умеют хранить информацию, данный механизм чем-то напоминает всем известную память. Поведение клеток строго соответствует внутренней программе, которая определяет, каким должен быть ответ на различные стимулы. Кроме того, клетки с поразительной скоростью могут выполнять определенные операции.

Каждая клетка - это достаточно сложная в физическом смысле структура, которая теоретически способна самостоятельно выполнять роль достаточно мощного вычислительного блока. В то же время клетки очень малы, в самые крошечные физические пространства их можно "упаковывать" миллионами. На практике программировать поведение клетки ничуть не сложнее, чем программировать поведение цифрового компьютера.

Ученые из Массачусетского технологического института (MIT) вплотную занялись изучением возможностей, которые таят в себе так называемые "биологические" компьютеры, созданные на основе живых клеток. Следует отметить, что исследований на данную тему было проведено в MIT уже достаточно. В 2013 году эта же группа ученых приступила к исследованиям, которые явились основой для разработки биологической "машины состояний".

Конечный автомат (или машина состояний) является наиболее понятной (хотя и не обязательно простой) формой компьютера или компьютерной модели. Такая машина управляет потоком каких-либо команд. Список команд конечного состояния машины строго определен, переход между состояниями может осуществляться с помощью ввода переменных. Классический пример конечного автомата - это всем известные торговые автоматы.

В своей работе ученые их Массачусетского технологического института используют штамм e.coli. Его немного изменили, чтобы он мог подстраиваться под специальные "последовательности-мишени" по всему геному. Ученые используют определенную комбинацию химических сигналов, старых и добрых методов генной инженерии, применяемых для того, чтобы заставить клетку выпустить конкретную "рекомбиназу" - тип фермента, который может инвертировать ориентацию запрограммированного участка ДНК или полностью его удалить. Рекомбинаторное действие ферментов и их взаимодействие с короткими последовательностями-мишенями как раз и составляет основу "вычислительной" способности биологических клеток.

В качестве переменной служит, вероятно, определенный химический агент. В ответ на ввод этого агента рекомбиназа будет или удалять его, или инвертировать связанную с ним часть генома. А самое главное состоит в том, что часть генома сама содержит цели, которые далее диктуют варианты рекомбинаторных связей. Таким образом, действие любой рекомбиназы меняет окружающие условия, благодаря которым следующая рекомбиназа будет активирована и тоже, в свою очередь, внесет свои изменения при взаимодействии с геномом.

Цепь ответов на введение каждой новой переменной должна быть сохранена в бактериальной последовательности ДНК. Извлечь ее можно себе с помощью секвенирования генома. В своей исследовательской работе ученые используют специально окрашенный флуоресцентный белок. Он наглядно показывает последовательность состояний клетки режиме реального времени. При этом никаких разночтений быть уже не может. В экспериментальной биологической машине состояний задействованы только три флуоресцентных цвета - красный, зеленый и синий. Они легко различимы и позволяют легко дифференцировать состояние клетки.

Клетки изначально поддаются программированию, поэтому в геноме и хранится столь обширная биологическая информация. Создать компьютер на основе клеток позволяют глубокие знания давно использующихся методов исследования внутриклеточных биологических механизмов. Но здесь возникает один вопрос. Что можно делать с программируемой клеткой или, в идеале, с взаимосвязанной группой клеток? Иными словами: у нас уже есть компьютеры. Почему стоит снова "изобретать колесо", но на основе живой клетки?

Экспрессия гена происходит очень быстро, но современные компьютерные процессоры функционируют быстрее. И даже с применением флуоресцентных маркеров процесс считывания информации с клетки никогда не будет столь же эффективным, как передача электрических импульсов проводным способом.


Но в наш век одним из главных преимуществ различных форм жизни над современной техникой является энергоэффективность. На то, чтобы обеспечить функционирование алгоритмов искусственного интеллекта каждый год требуется много гигаватт-часов электроэнергии. Гораздо легче и доступнее решить проблему энергопотребления, если использовать достижения биотехнологии. Возможно, скорость вычислений e.coli будет равна только одной тысячной от того, на что способен дата-центр компании Google. Но электроснабжение каждого суперкомпьютера в этом дата-центре обходится в миллионы долларов каждый год, в то время как биокомпьютер работает всего лишь за счет дешевого естественного процесса метаболизма.

Нужно учитывать, что биологические клетки отличаются от компьютеров. Пока в принципе не известно, что можно сделать на программном уровне с целой сетью миллионов или даже миллиардов простых биологических машин. Даже если каждый компьютер в этой сети будет относительно медленным или ограниченным, технология все равно может предложить эффективные способы их применения. Например, они могут использоваться для маршрутизации миллионов пакетов данных или для надежного шифрования этих данных, которое станет защитным барьером в информационной сети какой-либо державы.

На данный момент никто не знает, будут ли простые биологические машины развиваться дальше, смогут ли они произвести на современные полупроводниковые системы исторически важное воздействие. Возможно, особого технологического переворота не получится, но потенциал на будущее у биологических компьютеров, конечно же, есть.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Биокомпьютеры будут управлять гигантскими заводами, странами и поведением людей. Компьютерами будущего станут ДНК и бактерии.

Учёные уже определились, как можно будет обойти закон Мура, согласно которому количество транзисторов, размещаемых на кристалле интегральной схемы, удваивается каждые два года.

Закон предсказывает, что к 2060 г. элементы микросхемы станут размером с атом, что невозможно с точки зрения квантовой механики. Хотя произойти это может гораздо раньше.

За последние несколько лет период удвоения производительности сократился с двух до полутора лет.

Впрочем, сам Гордон Мур еще в 2007 г. высказал мысль, что его закон скоро перестанет действовать из-за атомарной природы вещества и ограничения скорости света. Однако это не означает остановку технического прогресса. Принципиально новый его этап начнется, когда человечество откажется от квантових компьютеров в пользу биологических.

Биокомпьютеры — своеобразный гибрид информационных технологий и биологических систем

Исследователи биологии, физики, химии, генетики — используют природные процессы для создания искусственных вычислительных схем. Согласно прогнозу агентства IDC к 2020 г. объём данных, созданных и сохраненных человечеством, достигнет 40 000 эксабайт. Это 40 трлн гигабайт, или по 5200 гигабайт на человека.

Для хранения такого объёма информации было бы достаточно менее 100 г ДНК. Вычислительная мощность ДНК-процессора размером с каплю превышает возможности самых продвинутых суперкомпьютеров.

Более 10 трлн ДНК-молекул занимают объём всего в 1 куб. см. Такого количества достаточно для хранения объёма информации в 10 Тбайт, при этом они могут производить 10 трлн операций в секунду.

Ещё одно преимущество ДНК-процессоров в сравнении с обычными кремниевыми заключается в том, что триллионы молекул ДНК, работая одновременно, могут производить все вычисления не последовательно, а параллельно, что обеспечивает моментальное выполнение сложнейших математических расчётов (до 1014 операций в секунду).

Теоретически кодировать информацию в молекулах несложно: по сути, это происходит по аналогии с обычным программированием. Современные компьютеры работают с бинарной логикой: используя последовательность нулей и единиц, можно закодировать любую информацию.

В молекулах ДНК имеется четыре базовых основания: аденин (A), гуанин (G), цитозин (C) и тимин (T), связанных в цепочку. При кодировании информации на молекуле ДНК используется четверичная логика.

Как современные микропроцессоры имеют набор базовых функций типа сложения, сдвига, логических операций, так ДНК-молекулы под воздействием энзимов могут выполнять такие базовые операции, как разрезание, копирование, вставка и т. п.

Причём разные манипуляции с ДНК-молекулами идут параллельно — они не будут влиять друг на друга. Это необходимо для решения многоуровневых задач.

Экспериментов было немало, причём использовались не только ДНК, но и РНК. Ученые Принстонского университета заставили молекулы рибонуклеиновой кислоты решать комбинаторную шахматную задачу. РНК нашли правильный ход шахматного коня на доске из 512 вариантов.

Первый «физически осязаемый» биокомпьютер в 1999 г. создал профессор Ихуд Шапиро Вейцмановского института естественных наук. Пластмассовая модель имитировала работу молекулярной машины в живой клетке.

В 2001-м Шапиро удалось воплотить систему в реальном биокомпьютере, который состоял из молекул ДНК, РНК и специальных ферментов. Молекулы фермента выполняли роль аппаратного, а молекулы ДНК — программного обеспечения. При этом в одной пробирке помещалось около триллиона элементарных вычислительных модулей.

В результате скорость вычислений достигла миллиарда операций в секунду, а точность — 99,8%. Но биокомпьютер Шапиро может применяться лишь для решения самых простых задач, выдавая всего два типа ответа: «истина» или «ложь».

В конце февраля 2002 г. появилось сообщение, что японская фирма Olympus Optical в сотрудничестве с профессором Токийского университета Акирой Тоямой претендует на первенство в создании коммерческой версии ДНК-компьютера. Обычно анализ генов выполняется вручную и занимает более трёх дней: Биосистема же способна выполнять все необходимые расчёты всего за шесть часов.

Результаты более свежих исследований и достижений в этой сфере остаются засекреченными. Из дозированных сообщений известно лишь, что учёные работают над решением двух принципиальных задач, без ответа на которые невозможно создать полноценный биокомпьютер. Первая — организация клеток в единую рабочую систему. Вторая — быстрое и правильное извлечение сохраненной информации.

Биокомпьютер заменит все традиционные технические средства

Биокомпьютеры произведут революцию не только в IT-сфере, но и во многих других отраслях.

Учёные уверены, что в перспективе ДНК-машины смогут взаимодействовать с клетками человека, осуществлять наблюдение за потенциальными болезнетворными изменениями и синтезировать лекарства для борьбы с ними, производить гормоны и доставлять определенную дозу препарата к конкретному органу.

Психиатры говорят о возможности внедрения крошечных биомашин в организм человека для лечения психических расстройств, а со временем и для коррекции поведенческих реакций.

С помощью клеточных компьютеров можно будет объединить технологии для управления предприятиями всех видов продукции. Причём всего за несколько часов можно будет проанализировать эффективность деятельности огромного завода, просчитать конкурентоспособность основных видов товаров и необходимость расширения производства.

Биокомпьютерные технологии в бизнесе, науке, производстве и даже в управлении государством позволят моментально найти наилучшие решения — это избавит мир от фатальных проблем, связанных с не­­умелым руководством.

Способность получать как можно больше пользы за счёт технологий

В настоящее время, когда каждый новый шаг в совершенствовании полупроводниковых технологий дается со все большим трудом, ученые ищут альтернативные возможности развития вычислительных систем. Естественный интерес ряда исследовательских групп (среди них Оксфордский и Техасский университеты, Массачусетский технологический институт, лаборатории Беркли, Сандия и Рокфеллера) вызвали природные способы хранения и обработки информации в биологических системах. Итогом их изысканий явился (или, точнее, еще только должен явиться) гибрид информационных и молекулярных технологий и биохимии - биокомпьютер. Идут разработки нескольких типов биокомпьютеров, которые базируются на разных биологических процессах. Это, в первую очередь, находящиеся в стадии разработки ДНК- и клеточные биокомпьютеры.

ДНК-компьютеры

Как известно, в живых клетках генетическая информация закодирована в молекуле ДНК (дезоксирибонуклеиновой кислоты). ДНК - это полимер, состоящий из субъединиц, называемых нуклеотидами. Нуклеотид представляет собой комбинацию сахара (дезоксирибозы), фосфата и одного из четырех входящих в состав ДНК азотистых оснований: аденина (А), тимина (Т), гуанина (G) и цитозина (C). Молекула ДНК образует спираль, состоящую из двух цепей, объединенных водородными связями. При этом основание А одной цепи может соединяться водородными связями только с основанием Т другой цепи, а основание G - только с основанием С. То есть, имея одну из цепей ДНК, всегда можно восстановить строение второй. Благодаря этому фундаментальному свойству ДНК, получившему название комплементарности, генетическая информация может точно копироваться и передаваться от материнских клеток к дочерним. Репликация молекулы ДНК происходит за счет работы специального фермента ДНК-полимеразы. Этот фермент скользит вдоль ДНК и синтезирует на ее основе новую молекулу, в которой все основания заменены на соответствующие парные. Причем фермент начинает работать только если к ДНК прикрепился коротенький кусочек-затравка (праймер). В клетках существует также родственная молекуле ДНК молекула матричной рибонуклеиновой кислоты (РНК). Она синтезируется специальным ферментом, использующим в качестве образца одну из цепей ДНК, и комплементарна ей. Именно на молекуле РНК в клетке, как на матрице, с помощью специальных ферментов и вспомогательных факторов происходит синтез белков. Молекула РНК химически устойчивее, чем ДНК, поэтому экспериментаторам с ней работать удобнее. Последовательность нуклеотидов в цепи ДНК/РНК определяет генетический код. Единицей генетического кода - кодоном - является последовательность из трех нуклеотидов.

Ученые решили попытаться по примеру природы использовать молекулы ДНК для хранения и обработки данных в биокомпьютерах.

Первым из них был Леонард Эдлмен из Университета Южной Калифорнии (см.: “Molecular Computation of Solutions to Combinatorial Problems. Science, 1994, № 266, р. 1021), сумевший решить задачу гамильтонова пути. Суть ее в том, чтобы найти маршрут движения с заданными точками старта и финиша между несколькими городами (в данном случае семью), в каждом из которых разрешается побывать только один раз. “Дорожная сеть” представляет собой однонаправленный граф. Эта задача решается прямым перебором, однако при увеличении числа городов сложность ее возрастает экспоненциально. Каждый город Эдлмен идентифицировал уникальной последовательностью из 20 нуклеотидов. Тогда путь между любыми двумя городами будет состоять из второй половины кодирующей последовательности для точки старта и первой половины кодирующей последовательности для точки финиша (молекула ДНК, как и вектор, имеет направление). Синтезировать такие последовательности современная молекулярная аппаратура позволяет очень быстро. В итоге последовательность ДНК с решением составит 140 нуклеотидов (7x20).

Остается только синтезировать и выделить такую молекулу ДНК. Для этого в пробирку помещается около 100 триллионов молекул ДНК, содержащих все возможные 20-нуклеотидные последовательности, кодирующие города и пути между ними. Далее за счет взаимного притяжения нуклеотидов А-Т и G-C отдельные цепочки ДНК сцепляются друг с другом случайным образом, а специальный фермент лигаза сшивает образующиеся короткие молекулы в более крупные образования. При этом синтезируются молекулы ДНК, воспроизводящие все возможные маршруты между городами. Нужно лишь выделить из них те, что соответствуют искомому решению.

Эдлмен решил эту задачу биохимическими методами, последовательно удалив сначала цепочки, которые не начинались с первого города - точки старта - и не заканчивались местом финиша, затем те, что содержали более семи городов или не содержали хотя бы один. Легко понять, что любая из оставшихся после такого отбора молекула ДНК представляет собой решение задачи. (Подробнее см.: Боркус В. “ДНК - основа вычислительных машин”. PC Week/RE, № 29-30/99, с. 29).

Вслед за работой Эдлмена последовали другие. Ллойд Смит из Университета Висконсин решил с помощью ДНК задачу доставки четырех сортов пиццы по четырем адресам, которая подразумевала 16 вариантов ответа. Ученые из Принстонского университета решили комбинаторную шахматную задачу: при помощи РНК нашли правильный ход шахматного коня на доске из девяти клеток (всего их 512 вариантов).

Ричард Липтон из Принстона первым показал, как, используя ДНК, кодировать двоичные числа и решать проблему удовлетворения логического выражения. Суть ее в том, что, имея некоторое логическое выражение, включающее n логических переменных, нужно найти все комбинации значений переменных, делающих выражение истинным. Задачу можно решить только перебором 2n комбинаций. Все эти комбинации легко закодировать с помощью ДНК, а дальше действовать по методике Эдлмена. Липтон предложил также способ взлома шифра DES (американский криптографический), трактуемого как своеобразное логическое выражение (www.wisdom.weizmann.ac.il/users/udi/public_html/index.html). Первую модель биокомпьютера, правда, в виде механизма из пластмассы, в 1999 г. создал Ихуд Шапиро из Вейцмановского института естественных наук. Она имитировала работу “молекулярной машины” в живой клетке, собирающей белковые молекулы по информации с ДНК, используя РНК в качестве посредника между ДНК и белком.

А в 2001 г. Шапиро удалось реализовать модель в реальном биокомпьютере (см. Programmable andautonomous computing machine made of biomoleciles, Nature, 2001, № 44, р. 430), который состоял из молекул ДНК, РНК и специальных ферментов. Молекулы фермента выполняли роль аппаратного, а молекулы ДНК - программного обеспечения. При этом в одной пробирке помещалось около триллиона элементарных вычислительных модулей. В результате скорость вычислений могла достигать миллиарда операций в секунду, а точность - 99,8%.

Пока биокомпьютер Шапиро может применяться лишь для решения самых простых задач, выдавая всего два типа ответов: “истина” или “ложь”. В проведенных экспериментах за один цикл все молекулы ДНК параллельно решали единственную задачу. Однако потенциально они могут трудиться одновременно над разными задачами, в то время как традиционные ПК являются, по сути, однозадачными.

В конце февраля 2002 г. появилось сообщение, что фирма Olympus Optical претендует на первенство в создании коммерческой версии ДНК-компьютера, предназначенного для генетического анализа. Машина была создана в сотрудничестве с доцентом Токийского университета Акирой Тояма.

Компьютер, построенный Olympus Optical, имеет молекулярную и электронную составляющие. Первая осуществляет химические реакции между молекулами ДНК, обеспечивает поиск и выделение результата вычислений. Вторая - обрабатывает информацию и анализирует полученные результаты.

Анализ генов обычно выполняется вручную и требует много времени: при этом формируются многочисленные фрагменты ДНК и контролируется ход химических реакций. “Когда ДНК-компьютинг будет использоваться для генетического анализа, задачи, которые ранее выполнялись в течение трех дней, можно будет решать за шесть часов”, - сказал сотрудник Olympus Optical Сатоши Икута.

В компании надеются поставить технологию генетического анализа на основе ДНК-компьютера на коммерческую основу. Она найдет применение в медицине и фармации. Ученые планируют внедрять молекулярные наноустройства в тело человека для мониторинга состояния его здоровья и синтеза необходимых лекарств.

Возможностями биокомпьютеров заинтересовались и военные. Американское агентство по исследованиям в области обороны DARPA выполняет проект, получивший название Bio-Comp (Biological Computations, биологические вычисления). Его цель - создание мощных вычислительных систем на основе ДНК. Попутно исследователи надеются научиться управлять процессами взаимодействия белков и генов. Для этого планируется создать мощный симулятор Bio-SPICE, способный средствами машинной графики визуализировать биомолекулярные процессы. Bio-SPICE планируется развивать на принципах открытых исходников (open source). Программа рассчитана на пять лет.

Клеточные компьютеры

Еще одним интересным направлением является создание клеточных компьютеров. Для этой цели идеально подошли бы бактерии, если бы в их геном удалось включить некую логическую схему, которая могла бы активизироваться в присутствии определенного вещества. Такие компьютеры очень дешевы в производстве. Им не нужна столь стерильная атмосфера, как при производстве полупроводников. И единожды запрограммировав клетку, можно легко и быстро вырастить тысячи клеток с такой же программой.

В 2001 г. американские ученые создали трансгенные микроорганизмы (т. е. микроорганизмы с искусственно измененными генами), клетки которых могут выполнять логические операции И и ИЛИ.

Специалисты лаборатории Оук-Ридж, штат Теннесси, использовали способность генов синтезировать тот или иной белок под воздействием определенной группы химических раздражителей. Ученые изменили генетический код бактерий Pseudomonas putida таким образом, что их клетки обрели способность выполнять простые логические операции. Например, при выполнении операции И в клетку подаются два вещества (по сути - входные операнды), под влиянием которых ген вырабатывает определенный белок. Теперь ученые пытаются создать на базе этих клеток более сложные логические элементы, а также подумывают о возможности создания клетки, выполняющей параллельно несколько логических операций.

Потенциал биокомпьютеров очень велик. По сравнению с обычными вычислительными устройствами они имеют ряд уникальных особенностей. Во-первых, они используют не бинарный, а тернарный код (так как информация в них кодируется тройками нуклеотидов). Во-вторых, поскольку вычисления производятся путем одновременного вступления в реакцию триллионов молекул ДНК, они могут выполнять до 1014 операций в секунду (правда, извлечение результатов вычислений предусматривает несколько этапов очень тщательного биохимического анализа и осуществляется гораздо медленнее). В-третьих, вычислительные устройства на основе ДНК хранят данные с плотностью, в триллионы раз превышающей показатели оптических дисков. И наконец, ДНК-компьютеры имеют исключительно низкое энергопотребление.

Однако в разработке биокомпьютеров ученые столкнулись с целым рядом серьезных проблем. Первая связана со считыванием результата - современные способы секвенирования (определения кодирующей последовательности) не совершенны: нельзя за один раз секвенировать цепочки длиной хотя бы в несколько тысяч оснований. Кроме того, это весьма дорогостоящая, сложная и трудоемкая операция.

Вторая проблема - ошибки в вычислениях. Для биологов точность в 1% при синтезе и секвенировании оснований считается очень хорошей. Для ИТ она неприемлема: решения задачи могут потеряться, когда молекулы просто прилипают к стенкам сосудов; нет гарантий, что не возникнут точечные мутации в ДНК, и т. п. И еще - ДНК с течением времени распадаются, и результаты вычислений исчезают на глазах! А клеточные компьютеры работают медленно, и их легко “сбить с толку”. Со всеми этими проблемами ученые активно борются. Насколько успешно - покажет время.

Биокомпьютеры не рассчитаны на широкие массы пользователей. Но ученыенадеются, что они найдут свое место в медицине и фармации. Глава израильской исследовательской группы профессор Эхуд Шапиро уверен, что в перспективе ДНК-наномашины смогут взаимодействовать с клетками человека, осуществлять наблюдение за потенциальными болезнетворными изменениями и синтезировать лекарства для борьбы с ними.

Наконец, с помощью клеточных компьютеров станет возможным объединение информационных и биотехнологий. Например, они смогут управлять химическим заводом, регулировать биологические процессы внутри человеческого организма, производить гормоны и лекарственные вещества и доставлять к определенному органу необходимую дозу лекарств.

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
ЯДЕРНЫЙ УНИВЕРСИТЕТ
МОСКОВСКИЙ ИНЖИНЕРНО ФИЗИЧЕСКИЙ ИНСТИТУТ
(НИЯУ МИФИ)
Факультет автоматики и электроники, группа А4-11


Биокомпьютеры

Выполнила:
Студент группы А4-11
Потемкина Т.С.
Преподаватель:
Доцент Лапшинский В.А.


Москва 2011

Глава 1. Биоинформатика
Глава 2. Введение в историю биокомпьютеров
2.1. Биокомпьютеры – что это?
2.2. Истоки. Расцвет биотехнологии
2.3. Потенциальные возможности
Глава 3. Строение биокомпьютера

3.3. Живая память
3.4. Начинка
Глава 4. Виды биокомпьютеров
4.1. ДНК-компьютеры
4.2. Клеточные компьютеры
Глава 5. Аргументы за и против введения новой технологии
Заключение
Список литературы

Глава 1
Биоинформатика

История развития биоинформатики как отдельной науки очень интересна. До нее существовали две других науки: геномика и протеомика.
Геномика - отрасль биологии, изучающая гены человека. Десять лет назад никто не мог поверить, что возможно расшифровать гены человека. В наше время геном человека полностью расшифрован, поэтому геномика практически утратила свое значение.
Из геномики плавно вытекает протеомика - наука, которая изучает белки, содержащиеся в живых организмах. Именно протеомика положила начало биоинформатике, так как электронный анализ вещества без “интеллектуального сравнения” занял бы десятки, а то и сотни лет. Наука, надо сказать, не для средних умов.
Итак, биоинформатика. Сама наука появилась недавно, в конце 90-х годов. Изначально она занималась поиском лекарств при помощи изучения белковых ферментов. Если полвека назад ученые тратили всю жизнь, чтобы изучить структуру одного белка, то теперь всего за несколько часов реально оценить 2,5 тысячи ферментов.
Значение этой науки очень велико. К примеру, вакцина от вируса гепатита была найдена благодаря биоинформатике. С помощью быстрого обследования можно практически на 100% быть уверенным в правильности диагноза или за несколько секунд определить отсутствие или наличие в организме заданного гена.
Кстати, белок в качестве живого вещества был выбран не случайно. Выяснилось, что для синтеза аминокислот (а биоинформатика изначально и предназначалась для этих целей) белок лучше всего расшифровывает искомую комбинацию генов. К тому же, некоторые белки совершенно неприхотливы к внешним воздействиям, хотя и реагируют на любое соприкосновение даже с отдельной молекулой инородного вещества.


Рис 1. «Модель биокомпьютера»

Глава 2
Введение в историю биокомпьютеров

2.1. Биокомпьютеры - что это?


Биокомпьютеры представляют собой гибрид информационных технологий и биохимии. Исследователи из различных областей науки (биологии, физики, химии, генетики, информатики) пытаются использовать реальные биологические процессы для создания искусственных вычислительных схем. Существует несколько принципиально различных типов биологических компьютеров, основанных на различных биологических процессах: искусственные нейронные цепи, эволюционное программирование, генные алгоритмы, ДНК-компьютеры и клеточные компьютеры. Первые два стали исследоваться еще в начале 40-х годов, но до сих пор эти исследования, ни к чему реально работающему не привели. Последние три, основанные на методах генной инженерии, имеют гораздо большие перспективы, но работа в этих областях началась только пять лет назад (особенно продвинулись в этом вопросе Массачусетский технологический институт, лаборатории Беркли, лаборатории Рокфеллера, а также Техасский университет).

2.2. Истоки. Расцвет биотехнологии


В конце 90-х годов японцы публикуют сногсшибательную новость: впервые в мире ведутся работы по созданию биокомпьютера, принцип действия которого основан на биологических датчиках. Раньше никто и подумать не мог о такой технологии, так как для нормального функционирования живых организмов требуется постоянное поддержание необходимых условий (температуры, обмена веществ и т.д.). Казалось бы, искусственно создать такой организм невозможно, поэтому новость вызвала большое удивление.
После многочисленных исследований ученые решили использовать в качестве биодатчиков белковые соединения. Несмотря на то, что поддержать их “живучесть” крайне сложно, был найден выход из положения. Как показали эксперименты, сферическая молекула белка способна выдерживать невероятные нагрузки и быть неприхотливой к любым внешним раздражениям (в том числе и химическим). Особенность такого датчика - упругость, которая различна во всех направлениях.


Рис 2. «Белковые соединения»

2.3. Потенциальные возможности


Если сравнивать потенциальные возможности биокомпьютера и обычного компьютера, то первый значительно опережает своего теперешнего собрата. Плотность хранения информации в ДНК составляет 1 бит/нм2 - в триллион раз меньше, чем у видеопленки. ДНК может параллельно выполнять до 1020 операций в секунду - сравнимо с современными терафлоповыми суперкомпьютерами. Кроме ДНК (хотя ДНК-компьютер наиболее популярен среди разработчиков), в качестве компьютерной биопамяти могут выступать другие биологически активные молекулы, например, бактериородопсин, обладающий превосходными голографическими свойствами и способный выдерживать высокие температуры. На его основе уже создан вариант трехмерного запоминающего устройства. Молекулы бактериородопсина фиксируются в гидрогелевой матрице и облучаются двумя лазерами (см. рис 1).


Рис 3. «Устройство компьютерной биопамяти»


Первый лазер (направленный аксиально на гидрогелевый образец) инициирует фотохимические реакции в молекуле и записывает информацию. Второй же, направленный перпендикулярно, считывает информацию, записанную на молекулах бактероиродопсина, находящегося в объеме гидрогеля.
Парадоксально, но по подсчетам, производительность аналогового биопроцессора невелика. Скорость прохождения сигнала по нервному узлу составляет всего 20 м/c, что в пересчете на цифровой эквивалент составляет всего 10² операций в секунду. Супермощные цифровые процессоры способны обработать до 10 в 9 операций. Казалось бы, конкурировать с ними бесполезно.
Но не все так плохо. Когда речь идет, например о фиксации градуса в напитке, цифровой процессор не способен ее быстро выполнить (даже с обычными механическими датчиками). Это связано с тем, что на молекулярном уровне частицы взаимодействуют между собой, порождая новые соединения. Математические расчеты не могут предугадать исход таких реакций, поэтому время, затрачиваемое на изучение вещества, возрастает в геометрической прогрессии. Так что с математической методикой приготовления коктейля с заданным вкусом результат придется ждать неделю,а то и больше.
Вот тут и показывает себя аналоговый камешек. Если на кусочке процессорной пленки размером 1 см² будет содержаться 10 в 12 активных белковых частиц, мы получаем колоссальную производительность, намного превышающую возможности цифрового процессора. Так, например, при пропускании сигнала с датчика даже с минимальной скоростью имеем порядка 10 в 10 переключений, что во много раз превышает возможности электроники. К тому же, никаких проблем с решением задачи у процессора не возникает.
Определив наличие сладкого по вкусу вещества, датчик подает определенный сигнал. Его улавливает процессор, который трансформирует показания биосенсора в цифровой формат. Зная Фон-Неймовскую архитектуру, ты представляешь, что камень может работать напрямую только с ячейками памяти. В биокомпьютере она имеется и носит название оптической или биопамяти.
Долгое время ученые выводили такую белковую структуру, которая была способна выдерживать большие нагрузки (они были необходимы для записи данных). Когда, наконец, подходящие ферменты были найдены, стало вполне реальным создать биопамять, вмещающую в себя гораздо большие объемы информации, чем цифровые мозги.

Глава 3
Строение биокомпьютера

3.1. Архитектура биокомпьютера


Представим архитектуру самого простого биокомпьютера. Это ряд биологических сенсоров (датчиков), которые реагируют на внешнее воздействие. Остановимся на датчиках подробнее. Существует четыре вида датчиков, используемых в биокомпьютерах. Все они необходимы для того, чтобы снабдить компьютер органами чувств:

1. Химический . Аналог вкусовых рецепторов. Сродни языку, химические датчики способны улавливать состав того или иного вещества, пропускаемого через фермент. Таким образом, можно без проблем определить, какой ингредиент будет добавлен в исследуемое вещество: сладкий или горький;
2. Оптический . Подобно глазам, белок может определить вид вещества и даже его форму. Это опять-таки фиксируется дальнейшими составляющими биомашины. Благодаря такой фиксации, компьютер реагирует на раздражение должным образом;
3. Механический датчик служит для осязательных рефлексов. Благодаря такому сенсору машина может двигаться и принимать какие-либо решения после срабатывания других датчиков;
4. Электрический сенсор служит для передачи сигнала с датчика на следующий компонент биокомпьютера.

Этот компонент называется биопроцессор. Его задача обрабатывать сигнал и преобразовывать его в цифровой вид. В обратном процессе он принимает сигнал с ЭВМ и передает его датчику (в аналоговом виде). И, наконец, процессор взаимодействует с особой структурой белка - биопамятью, которая способна накапливать колоссальные объемы информации за предельно короткое время. Цифровая ЭВМ управляет механическими процессами (например, прекращает подачу того или иного ингредиента при его избытке). Правильнее сказать, цифровой компьютер посылает сигнал механическому биодатчику, после которого компьютер должным образом реагирует на раздражение.
Несмотря на всю сложность, биокомпьютеры только начали развиваться, и пик технологии намечается лишь через 30-50 лет. Уже были проведены эксперименты, результаты которых говорят о том, что создать автономный искусственный интеллект (без электроники) вполне реально.
Можно с уверенностью сказать, что в момент расцвета биоинформатики электронные ЭВМ станут вчерашним днем. Почти как ламповые суперкомпьютеры в наше время. Конечно, наряду с биотехнологиями возьмут верх квантовые и нейрокомпьютеры, которые также являются принципиально новыми разработками.

3.2. Архитектура биопроцессора

В устройстве биодатчика нет ничего сложного. Все подчиняется правилам обычного вычислительного процесса. Он состоит из трех шагов: получение входных данных, обработка результатов и исполнение какого-либо решения.
Вводить данные с клавиатуры очень долго, именно поэтому был придуман биодатчик, который занимается приемом входных данных. Как только происходит изменение формы либо цвета белка, это мгновенно фиксирует биопроцессор, который преобразует сигнал из аналогового в цифровой вид. Такой процессор состоит из специального белкового раствора, который способен непрерывно менять свое состояние. Это не что иное, как аналог транзисторного цифрового камня. Частички белка мгновенно изменяют свое состояние (как правило, цвет). Для нормального функционирования требуется быстрый обратимый процесс, то есть способность частицы вернуть свое прежнее состояние. Ученые очень долго искали подобную структуру, проводя множество долгих экспериментов. Процесс обработки информации похож на горение бикфордова шнура - он продолжается, пока вся пороховая начинка не выгорит. Представьте себе, что порох наделен способностью автоматического восстановления, а шнур замкнут в кольцо. При таком раскладе горение будет вечным, что и необходимо. Ученые долго шли к созданию такого процессора - подобрать нужный состав белка было крайне проблематично (поиск нужной реакции начался с 1956 года).


Рис 4. «Модель биопроцессора»


Биопроцессор имеет три преимущества, благодаря которым применяется в архитектуре машины.

1. Быстродействие . Как уже было сказано, аналоговый камешек мгновенно принимает решения, которые не под силу цифровому процессору.
2. Надежность . Если кремниевый процессор мог допускать ошибки при вычислениях, биопроцессор практически не ошибается в своих преобразованиях (максимальная относительная погрешность колеблется от 0,001 до 0,02%).
3. Компактность . Размеры очень малы. Благодаря тому, что производители научились наслаивать белковую структуру, габариты такого камешка могут быть сопоставимы по размеру с каплей воды.


Правда, у биопроцессора есть и недостатки. В первую очередь, это трудоемкое производство, а также высокая цена.

3.3. Живая память


Очень важной составляющей биокомпьютера является машинная память. Она также имеет белковую структуру, но уже более неприхотливую. Микролазер, который прикреплен к пленке с ферментом, прожигает белок, изменяя его свойства (опять же обратимо). Если подсчитать предельный объем такой памяти в цифровом формате, то мы получим цифру 10^64 бит/см^3, что равняется объему нескольких десятков тысяч книг. Единственный недостаток такой памяти - ее цена и трудоемкое производство.

3.4. Начинка


Весьма интересным вопросом является состав белковых соединений. В биодатчиках применяются белки из так называемых архебактерий. Этот вид давно интересовал ученых, так как микроорганизмы довольно активно реагировали на любые внешние изменения, не утрачивая своих жизненных свойств. Единственным недостатком является то, что в последнее время такие бактерии мутируют в непонятные микроорганизмы (видимо, сказывается экология). Лишь благодаря процессу клонирования, ученые добывают необходимое количество “правильного” белка для производства микродатчиков.


Рис 5. «Архебактерии»


Биопамять состоит из мельчайших частиц бактериородопсина. Этот материал не имеет склонности к разрушению при высоких температурах, поэтому без проблем прожигается лазером.

Рис 6. «Структура бактериородопсина»

Глава 4
Виды биокомпьютеров


Идут разработки нескольких типов биокомпьютеров, которые базируются на разных биологических процессах. Это, в первую очередь, находящиеся в стадии разработки ДНК- и клеточные биокомпьютеры.

4.1. ДНК-компьютеры

Как известно, в живых клетках генетическая информация закодирована в молекуле ДНК (дезоксирибонуклеиновой кислоты). ДНК - это полимер, состоящий из субъединиц, называемых нуклеотидами. Нуклеотид представляет собой комбинацию сахара (дезоксирибозы), фосфата и одного из четырех входящих в состав ДНК азотистых оснований: аденина (А), тимина (Т), гуанина (G) и цитозина. Молекула ДНК образует спираль, состоящую из двух цепей, объединенных водородными связями. При этом основание А одной цепи может соединяться водородными связями только с основанием Т другой цепи, а основание G - только с основанием С. То есть, имея одну из цепей ДНК, всегда можно восстановить строение второй. Благодаря этому фундаментальному свойству ДНК, получившему название комплементарности, генетическая информация может точно копироваться и передаваться от материнских клеток к дочерним. Репликация молекулы ДНК происходит за счет работы специального фермента ДНК-полимеразы. Этот фермент скользит вдоль ДНК и синтезирует на ее основе новую молекулу, в которой все основания заменены на соответствующие парные. Причем фермент начинает работать только если к ДНК прикрепился коротенький кусочек-затравка (праймер). В клетках существует также родственная молекуле ДНК молекула матричной рибонуклеиновой кислоты (РНК). Она синтезируется специальным ферментом, использующим в качестве образца одну из цепей ДНК, и комплементарна ей. Именно на молекуле РНК в клетке, как на матрице, с помощью специальных ферментов и вспомогательных факторов происходит синтез белков.


Рис 7. «Молекула ДНК»


Молекула РНК химически устойчивее, чем ДНК, поэтому экспериментаторам с ней работать удобнее. Последовательность нуклеотидов в цепи ДНК/РНК определяет генетический код. Единицей генетического кода - кодоном - является последовательность из трех нуклеотидов. Ученые решили попытаться по примеру природы использовать молекулы ДНК для хранения и обработки данных в биокомпьютерах.


Рис 8. «Схема ДНК-компьютера»


В конце февраля 2002 г. появилось сообщение, что фирма Olympus Optical претендует на первенство в создании коммерческой версии ДНК-компьютера, предназначенного для генетического анализа. Машина была создана в сотрудничестве с доцентом Токийского университета Акирой Тояма. Компьютер, построенный Olympus Optical, имеет молекулярную и электронную составляющие. Первая осуществляет химические реакции между молекулами ДНК, обеспечивает поиск и выделение результата вычислений. Вторая - обрабатывает информацию и анализирует полученные результаты.
Анализ генов обычно выполняется вручную и требует много времени: при этом формируются многочисленные фрагменты ДНК и контролируется ход химических реакций. “Когда ДНК-компьютинг будет использоваться для генетического анализа, задачи, которые ранее выполнялись в течение трех дней, можно будет решать за шесть часов”, - сказал сотрудник Olympus Optical Сатоши Икута. В компании надеются поставить технологию генетического анализа на основе ДНК-компьютера на коммерческую основу. Она найдет применение в медицине и фармации. Ученые планируют внедрять молекулярные наноустройства в тело человека для мониторинга состояния его здоровья и синтеза необходимых лекарств.

4.2. Клеточные компьютеры

Еще одним интересным направлением является создание клеточных компьютеров. Для этой цели идеально подошли бы бактерии, если бы в их геном удалось включить некую логическую схему, которая могла бы активизироваться в присутствии определенного вещества. Такие компьютеры очень дешевы в производстве. Им не нужна столь стерильная атмосфера, как при производстве полупроводников. И единожды запрограммировав клетку, можно легко и быстро вырастить тысячи клеток с такой же программой.
В 2001 г. американские ученые создали трансгенные микроорганизмы (т. е. микроорганизмы с искусственно измененными генами), клетки которых могут выполнять логические операции И/ИЛИ.

Рис 9. «Клетка как компьютер»


Специалисты лаборатории Оук-Ридж, штат Теннесси, использовали способность генов синтезировать тот или иной белок под воздействием определенной группы химических раздражителей. Ученые изменили генетический код бактерий Pseudomonas putida таким образом, что их клетки обрели способность выполнять простые логические операции. Например, при выполнении операции И в клетку подаются два вещества (по сути - входные операнды), под влиянием которых ген вырабатывает определенный белок. Теперь ученые пытаются создать на базе этих клеток более сложные логические элементы, а также подумывают о возможности создания клетки, выполняющей параллельно несколько логических операций.

Глава 5
Аргументы за и против введения новой технологии

Потенциал биокомпьютеров очень велик. По сравнению с обычными вычислительными устройствами они имеют ряд уникальных особенностей. Во-первых, они используют не бинарный, а тернарный код (так как информация в них кодируется тройками нуклеотидов). Во-вторых, поскольку вычисления производятся путем одновременного вступления в реакцию триллионов молекул ДНК, они могут выполнять до 1014 операций в секунду (правда, извлечение результатов вычислений предусматривает несколько этапов очень тщательного биохимического анализа и осуществляется гораздо медленнее). В-третьих, вычислительные устройства на основе ДНК хранят данные с плотностью, в триллионы раз превышающей показатели оптических дисков. И наконец, ДНК-компьютеры имеют исключительно низкое энергопотребление.
Однако в разработке биокомпьютеров ученые столкнулись с целым рядом серьезных проблем. Первая связана со считыванием результата - современные способы секвенирования (определения кодирующей последовательности) не совершенны: нельзя за один раз секвенировать цепочки длиной хотя бы в несколько тысяч оснований. Кроме того, это весьма дорогостоящая, сложная и трудоемкая операция.
Вторая проблема - ошибки в вычислениях. Для биологов точность в 1% при синтезе и секвенировании оснований считается очень хорошей. Для ИТ она неприемлема: решения задачи могут потеряться, когда молекулы просто прилипают к стенкам сосудов; нет гарантий, что не возникнут точечные мутации в ДНК, и т. п. И еще - ДНК с течением времени распадаются, и результаты вычислений исчезают на глазах! А клеточные компьютеры работают медленно, и их легко “сбить с толку”. Со всеми этими проблемами ученые активно борются. Насколько успешно - покажет время.
Биокомпьютеры не рассчитаны на широкие массы пользователей. Но ученые надеются, что они найдут свое место в медицине и фармации. Глава израильской исследовательской группы профессор Эхуд Шапиро уверен, что в перспективе ДНК-наномашины смогут взаимодействовать с клетками человека, осуществлять наблюдение за потенциальными болезнетворными изменениями и синтезировать лекарства для борьбы с ними.
Наконец, с помощью клеточных компьютеров станет возможным объединение информационных и биотехнологий. Например, они смогут управлять химическим заводом, регулировать биологические процессы внутри человеческого организма, производить гормоны и лекарственные вещества и доставлять к определенному органу необходимую дозу лекарств.

Заключение

Использование биокомпьютера уже сегодня возможно, целесообразно и необходимо: в науке, образовании, во всех системах управления, проектирования, в процессах созидания и творения.
С его помощью, например, можно получить полную информацию о состоянии здоровья каждого элемента своего организма, отклонения не от средней нормы, а от нормы данного человека в процентах и узнать причину этих отклонений. Клиент может сделать заказ пользователю биокомпьютера по телефону, факсу из любой точки земного шара и таким же способом получить распечатанный ответ.
В спорте, искусстве, шоу-бизнесе по фамилии, имени и отчеству можно получить полную информацию об успехе, возможностях, совместимости с коллективом приобретаемого кандидата в клуб или коллектив. Фактически уже открыто новое направление – геология интеллектуальных ресурсов стран, и это самое главное их богатство.
Для крупных объединений, корпораций только с помощью биокомпьютерных технологий можно разработать прогнозы их развития, выявить новые направления деятельности с учетом будущих реалий нашего мира. Очень важным обстоятельством при выполнении подобных работ является то, что биокомпьютерные технологии не требуют исходной статистической и тем более коммерчески закрытой информации.
Для решения научных проблем биокомпьютер заменит все технические средства научных проблемных лабораторий, оставив им решать незначительные прикладные задачи.
Биокомпьютерные технологии привлекательны тем, что практически все задачи решаются оперативно.
8. Кузнецов Е. Ю., Осман В. М. Персональные компьютеры и программируемые микрокалькуляторы: Учеб. пособие для ВТУЗов - М.: Высш. шк. -1991