Как держать форму. Массаж. Здоровье. Уход за волосами

Итэр: как создают первый международный экспериментальный термоядерный реактор. Термоядерная электростанция - ITER проект



С чего все это началось. «Энергетический вызов» возник в результате сочетания трех следующих факторов:


1. Человечество сейчас потребляет огромное количество энергии.


В настоящее время потребление энергии в мире составляет около 15,7 тераватт (ТВт). Разделив эту величину на население планеты, мы получим примерно 2400 ватт на человека, что можно легко оценить и представить. Потребляемая каждым жителем Земли (включая детей) энергия соответствует круглосуточной работе 24 стоваттных электрических ламп. Однако потребление этой энергии по планете является очень неравномерным, так как оно очень велико в нескольких странах и ничтожно в других. Потребление (в пересчете на одного человека) равно 10,3 кВт в США (одно из рекордных значений), 6,3 кВт в Российской Федерации, 5,1 кВт в Великобритании и т. д., но, с другой стороны, оно равно лишь 0,21 кВт в Бангладеше (всего 2% от уровня энергопотребления в США!).


2. Мировое потребление энергии драматически возрастает.


По прогнозу Международного агентства по энергетике (2006 год) мировое потребление энергии к 2030 году должно увеличиться на 50%. Развитые страны, конечно, могли бы прекрасно обойтись без дополнительной энергии, однако этот рост необходим для того, чтобы избавить от нищеты население развивающихся стран, где 1,5 миллиарда человек испытывают острую нехватку электрической энергии.



3. В настоящее время 80% потребляемой миром энергии создается за счет сжигания ископаемых природных топлив (нефть, уголь и газ), использование которых:


а) потенциально несет опасность катастрофических экологических изменений;


б) неизбежно должно когда-нибудь закончиться.


Из сказанного ясно, что уже сейчас мы должны готовиться к окончанию эпохи использования ископаемых типов горючего


В настоящее время на атомных электростанциях в широких масштабах получают энергию, выделяющуюся при реакциях деления атомных ядер. Следует всячески поощрять создание и развитие таких станций, однако при этом необходимо учитывать, что запасы одного из важнейших для их работы материала (дешевого урана) также могут быть полностью израсходованы в течение ближайших 50 лет. Возможности основанной на делении ядер энергетики могут (и должны) быть существенно расширены за счет использования более эффективных энергетических циклов, позволяющих почти вдвое увеличить количество получаемой энергии. Для развития энергетики в этом направлении требуется создавать реакторы на тории (так называемые ториевые бридерные реакторы или реакторы-размножители), в которых при реакции возникает больше тория, чем исходного урана, в результате чего общее количество получаемой энергии при заданном количестве вещества возрастает в 40 раз. Перспективным представляется также создание плутониевых бридеров на быстрых нейтронах, которые значительно эффективнее урановых реакторов и позволяют получать в 60 раз больше энергии. Возможно, для развития этих направлений понадобится разработать новые, нестандартные методы получения урана (например, из морской воды, что представляется наиболее доступным).


Термоядерные электростанции


На рисунке представлена принципиальная схема (без соблюдения масштаба) устройства и принципа работы термоядерной электростанции. В центральной части располагается тороидальная (в форме бублика) камера объемом ~2000 м3, заполненная тритий-дейтериевой (T–D) плазмой, нагретой до температуры выше 100 M°C. Образующиеся при реакции синтеза (1) нейтроны покидают «магнитную бутылку» и попадают в показанную на рисунке оболочку с толщиной около 1 м.



Внутри оболочки нейтроны сталкиваются с атомами лития, в результате чего происходит реакция с образованием трития:


нейтрон + литий → гелий + тритий


Кроме этого в системе происходят и конкурирующие реакции (без образования трития), а также много реакций с выделением дополнительных нейтронов, которые затем также приводят к образованию трития (при этом выделение дополнительных нейтронов может быть существенно усилено, например, за счет введения в оболочку атомов бериллия и свинца). Общий вывод состоит в том, что в этой установке может (по крайней мере, теоретически) происходить реакция ядерного синтеза, при которой будет образовываться тритий. При этом количество образующегося трития должно не только обеспечивать потребности самой установки, но и быть даже несколько большим, что позволит обеспечивать тритием и новые установки. Именно эта концепция работы должна быть проверена и реализована на описываемом ниже реакторе ITER.


Кроме этого нейтроны должны разогревать оболочку в так называемых пилотных установках (в которых будут использоваться относительно «обычные» конструкционные материалы) примерно до температуры 400°C. В дальнейшем предполагается создать усовершенствованные установки с температурой нагрева оболочки выше 1000°C, что может быть достигнуто за счет использования новейших высокопрочных материалов (типа композитов из карбида кремния). Выделяющееся в оболочке тепло, как и в обычных станциях, отбирается первичным охлаждающим контуром с теплоносителем (содержащим, например, воду или гелий) и передается на вторичный контур, где и производится водяной пар, подающийся на турбины.


1985 год – Советский Союз предложил установку «Токамак» следующего поколения, используя опыт четырех ведущих стран по созданию термоядерных реакторов. Соединенные Штаты Америки совместно с Японией и Европейским сообществом выдвинули предложение по осуществлению проекта.



В настоящее время во Франции идет строительство описываемого ниже международного экспериментального термоядерного реактора ITER (International Tokamak Experimental Reactor), который будет первым токамаком, способным «зажечь» плазму.


В наиболее передовых существующих установках типа токамак давно достигнуты температуры порядка 150 M°C, близкие к значениям, требуемым для работы термоядерной станции, однако реактор ITER должен стать первой крупномасштабной энергетической установкой, рассчитанной на длительную эксплуатацию. В дальнейшем необходимо будет существенно улучшить параметры ее работы, что потребует, в первую очередь, повышения давления в плазме, так как скорость слияния ядер при заданной температуре пропорциональна квадрату давления. Основная научная проблема при этом связана с тем, что при повышении давления в плазме возникают очень сложные и опасные неустойчивости, то есть нестабильные режимы работы.



Зачем нам это надо?


Основное преимущество ядерного синтеза состоит в том, что в качестве топлива для него требуется лишь очень небольшое количество весьма распространенных в природе веществ. Реакция ядерного синтеза в описываемых установках может приводить к выделению огромного количества энергии, в десять миллионов раз превышающего стандартное тепловыделение при обычных химических реакциях (типа сжигания ископаемого топлива). Для сравнения укажем, что количество угля, необходимого для обеспечения работы тепловой электростанции мощностью 1 гигаВатт (ГВт) составляет 10 000 тонн в день (десять железнодорожных вагонов), а термоядерная установка такой же мощности будет потреблять в день лишь около 1 килограмма смеси D+T.


Дейтерий является устойчивым изотопом водорода; примерно в одной из каждых 3350 молекул обычной воды один из атомов водорода замещен дейтерием (наследие, доставшееся нам от Большого Взрыва). Этот факт позволяет легко организовать достаточно дешевое получение необходимого количества дейтерия из воды. Более сложным является получение трития, который является нестабильным (период полураспада около 12 лет, вследствие чего его содержание в природе ничтожно), однако, как было показано выше, тритий будет возникать прямо внутри термоядерной установки в процессе работы, за счет реакции нейтронов с литием.



Таким образом, исходным топливом для термоядерного реактора являются литий и вода. Литий представляет собой обычный металл, широко используемый в бытовых приборах (в батарейках для мобильных телефонов и т. п.). Описанная выше установка, даже с учетом неидеальной эффективности, сможет производить 200 000 кВт/час электрической энергии, что эквивалентно энергии, содержащейся в 70 тоннах угля. Требуемое для этого количество лития содержится в одной батарейке для компьютера, а количество дейтерия - в 45 литрах воды. Указанная выше величина соответствует современному потреблению электроэнергии (в пересчете на одного человека) в странах ЕС за 30 лет. Сам факт, что столь ничтожное количество лития может обеспечить выработку такого количества электроэнергии (без выбросов CO2 и без малейшего загрязнения атмосферы), является достаточно серьезным аргументом для быстрейшего и энергичного развития термоядерной энергетики (несмотря на все сложности и проблемы) и даже без стопроцентой уверенности в успехе таких исследований.


Дейтерия должно хватить на миллионы лет, а запасы легко добываемого лития вполне достаточны для обеспечения потребностей в течение сотен лет. Даже если запасы лития в горных породах иссякнут, мы можем добывать его из воды, где он содержится в достаточно высокой концентрации (в 100 раз превосходящей концентрацию урана), чтобы его добыча была экономически целесообразной.



Экспериментальный термоядерный реактор (International thermonuclear experimental reactor) сооружается вблизи города Кадараш во Франции. Главная задача проекта ИТЭР - осуществление управляемой термоядерной реакции синтеза в промышленных масштабах.


На единицу веса термоядерного топлива получается примерно в 10 миллионов раз больше энергии, чем при сгорании такого же количества органического топлива, и примерно в сто раз больше, чем при расщеплении ядер урана в реакторах ныне действующих АЭС. Если расчеты ученых и конструкторов оправдаются, это даст человечеству неисчерпаемый источник энергии.


Поэтому ряд стран (Россия, Индия, Китай, Корея, Казахстан, США, Канада, Япония, страны Евросоюза) объединили свои усилия в создании Международного термоядерного исследовательского реактора – прообраза новых энергетических установок.


ИТЭР представляет из себя установку, создающую условия для синтеза атомов водорода и трития (изотопа водорода), в результате чего образуется новый атом – атом гелия. Этот процесс сопровождается громадным выплеском энергии: температура плазмы, в которой идет термоядерная реакция - около 150 млн градусов по Цельсию (для сравнения – температура ядра Солнца 40 млн градусов). При этом изотопы выгорают, практически не оставляя радиоактивных отходов.


Схема участия в международном проекте предусматривает поставки компонентов реактора и финансирование его строительства. В обмен на это каждая из стран-участниц получает полный доступ ко всем технологиям создания термоядерного реактора и к результатам всех экспериментальных работ на этом реакторе, которые послужат основой для проектирования серийных энергетических термоядерных реакторов.


Реактор, основанный на принципе термоядерного синтеза, не имеет радиоактивного излучения и полностью безопасен для окружающей среды. Он может быть расположен практически в любой точке земного шара, а топливом для него служит обычная вода. Строительство ITER должно продлиться около десяти лет, после чего реактор предполагается использовать в течение 20 лет.


Интересы России в Совете Международной организации по строительству термоядерного реактора ИТЭР в ближайшие годы будет представлять член-корреспондент РАН Михаил Ковальчук - директор РНЦ «Курчатовский институт», Института кристаллографии РАН и ученый секретарь президентского Совета по науке, технологиям и образованию. Ковальчук временно заменит на этом посту академика Евгения Велихова, который избран на ближайшие два года председателем международного совета ИТЭР и не имеет права совмещать эту должность с обязанностями официального представителя страны-участника.


Общая стоимость строительства оценивается в 5 миллиардов евро, еще столько же потребуется для опытной эксплуатации реактора. Доли Индии, Китая, Кореи, России, США и Японии составляют приблизительно по 10 процентов от общей стоимости, 45 процентов приходится на страны Европейского союза. Однако пока европейские государства не договорились, как именно расходы будут распределены между ними. Из-за этого начало строительства перенесено на апрель 2010 года. Несмотря на очередную отсрочку, ученые и чиновники, вовлеченные в создание ИТЭР, утверждают, что смогут завершить проект к 2018 году.


Расчетная термоядерная мощность ИТЭР составляет 500 мегаватт. Отдельные детали магнитов достигают веса от 200 до 450 тонн. Для охлаждения ИТЭР потребуется 33 тысячи кубометров воды в день.



В 1998 году США прекратили финансирование своего участия в проекте. После того, как к власти в стране пришли республиканцы, а в Калифорнии начались веерные отключения электроэнергии, администрация Буша объявила об увеличении вложений в энергетику. Участвовать в международном проекте США не намеревались и занимались собственным термоядерным проектом. В начале 2002 года советник президента Буша по технологиям Джон Марбургер III заявил, что США передумали и намерены вернуться в проект.


Проект по числу участников сравним с другим крупнейшим международным научным проектом – Международной космической станции. Стоимость ИТЭР, прежде достигавшая 8 миллиардов долларов, потом составила менее 4 миллиардов. В результате выхода из числа участников Соединенных Штатов было решено уменьшить мощность реактора с 1,5 ГВт до 500 МВт. Соответственно «похудела» и цена проекта.


В июне 2002 года в российской столице прошел симпозиум «Дни ИТЭР в Москве». На нем обсуждались теоретические, практические и организационные проблемы возрождения проекта, удача которого способна изменить судьбу человечества и дать ему новый вид энергии, по эффективности и экономичности сравнимый только с энергией Солнца.


В июле 2010 года представители стран-участниц проекта международного термоядерного реактора ITER утвердили его бюджет и сроки строительства на внеочередной встрече, прошедшей во французском Кадараше. Отчет о встрече доступен здесь.


На прошедшей внеочередной встрече участники проекта утвердили срок начала первых экспериментов с плазмой - 2019 год. Проведение полноценных опытов запланировано на март 2027 года, хотя руководство проекта попросило технических специалистов попытаться оптимизировать процесс и начать опыты в 2026 году. Участники встречи также определились с затратами на строительство реактора, однако суммы, которые планируется потратить на создание установки, не разглашаются. По информации, полученной редактором портала ScienceNOW из неназванного источника, к моменту начала экспериментов стоимость проекта ITER может составить 16 миллиардов евро.


Прошедшая в Кадараше встреча также стала первым официальным рабочим днем для нового директора проекта, японского физика Осаму Мотодзима (Osamu Motojima). До него проектом с 2005 года руководил японец Канаме Икеда (Kaname Ikeda), который пожелал оставить пост сразу после утверждения бюджета и сроков строительства.


Термоядерный реактор ITER является совместным проектом государств Евросоюза, Швейцарии, Японии, США, России, Южной Кореи, Китая и Индии. Идея создания ITER рассматривается с 80-х годов прошлого века, однако из-за финансовых и технических сложностей стоимость проекта все время растет, а дата начала строительства постоянно откладывается. В 2009 году специалисты рассчитывали, что работы по созданию реактора начнутся в 2010 году. Позже эту дату передвинули, а в качестве времени запуска реактора назывался сначала 2018, а потом 2019 год.


Реакции термоядерного синтеза - это реакции слияния ядер легких изотопов с образованием ядра более тяжелого, которые сопровождаются огромным выбросом энергии. В теории в термоядерных реакторах можно получать много энергии с низкими затратами, но на данный момент ученые тратят намного больше энергии и денег на запуск и поддержание реакции синтеза.



Термоядерный синтез – это дешевый и экологически безопасный способ добычи энергии. На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез – из тяжелого изотопа водорода дейтерия образуется гелий. При этом выделяется колоссальное количество энергии. Однако на Земле люди пока не научились управлять подобными реакциями.


В качестве топлива в реакторе ИТЭР будут использоваться изотопы водорода. В ходе термоядерной реакции энергия выделяется при соединении легких атомов в более тяжелые. Чтобы добиться этого, необходимо разогреть газ до температуры свыше 100 миллионов градусов – намного выше температуры в центре Солнца. Газ при такой температуре превращается в плазму. Атомы изотопов водорода при этом сливаются, превращаясь в атомы гелия с выделением большого количества нейтронов. Электростанция, работающая на этом принципе, будет использовать энергию нейтронов, замедляемых слоем плотного вещества (лития).



Почему создание термоядерных установок столь затянулось?


Почему же столь важные и ценные установки, преимущества которых обсуждаются почти полстолетия, еще не созданы? Существуют три основные причины (рассматриваемые ниже), первую из которых можно назвать внешней или общественной, а две остальные - внутренними, то есть обусловленными законами и условиями развития самой термоядерной энергетики.


1. Долгое время считалось, что проблема практического использования энергии термоядерного синтеза не требует срочных решений и действий, так как еще в 80-х годах прошлого столетия источники ископаемого топлива казались неистощимыми, а проблемы экологии и изменения климата не волновали общественность. В 1976 году Консультативный комитет по термоядерной энергии в Министерстве энергетики США попытался оценить сроки осуществления НИОКР и создания демонстрационной термоядерной энергетической установки при разных вариантах финансирования исследований. При этом обнаружилось, что объемы годичного финансирования исследований в данном направлении совершенно недостаточны, и при сохранении существующего уровня ассигнований создание термоядерных установок никогда не завершится успехом, поскольку выделяемые средства не соответствуют даже минимальному, критическому уровню.


2. Более серьезное препятствие на пути развития исследований в данной области состоит в том, что термоядерную установку обсуждаемого типа нельзя создать и продемонстрировать в малых размерах. Из представленных далее объяснений станет ясно, что для термоядерного синтеза необходимо не только магнитное удержание плазмы, но и достаточный ее нагрев. Отношение затрачиваемой и получаемой энергии возрастает, по меньшей мере, пропорционально квадрату линейных размеров установки, вследствие чего научно-технические возможности и преимущества термоядерных установок могут быть проверены и продемонстрированы лишь на достаточно крупных станциях, типа упоминавшегося реактора ITER. Общество просто не было готово к финансированию столь крупных проектов, пока не было достаточной уверенности в успехе.


3. Развитие термоядерной энергетики носило очень сложный характер, однако (несмотря на недостаточное финансирование и трудности выбора центров для создания установок JET и ITER) в последние годы наблюдается явный прогресс, хотя действующая станция еще не создана.



Современный мир стоит перед очень серьезным энергетическим вызовом, который более точно можно назвать «неопределенным энергетическим кризисом». Проблема связана с тем, что запасы ископаемых горючих веществ могут иссякнуть уже во второй половине текущего столетия. Более того, сжигание ископаемых топлив может привести к необходимости каким-то образом связывать и «сохранять» выпускаемый в атмосферу углекислый газ (упомянутая выше программа CCS) для предотвращения серьезных изменений в климате планеты.


В настоящее время почти вся потребляемая человечеством энергия создается сжиганием ископаемых топлив, а решение проблемы может быть связано с использованием солнечной энергии или ядерной энергетики (созданием реакторов-размножителей на быстрых нейтронах и т. п.). Глобальная проблема, обусловленная ростом населения развивающихся стран и их потребностью в повышении уровня жизни и увеличении объема производимой энергии, не может быть решена только на основе рассматриваемых подходов, хотя, конечно, следует поощрять любые попытки развития альтернативных методов выработки энергии.


Собственно говоря, у нас небольшой выбор стратегий поведения и развитие термоядерной энергетики является исключительно важным, даже несмотря на отсутствие гарантии успеха. Газета Financial Times (от 25.01.2004) писала по этому поводу:



«Даже в том случае, если расходы на проект ITER значительно превысят исходную смету, вряд ли они достигнут уровня 1 миллиарда долларов в год. Такой уровень затрат следует считать весьма скромной платой за вполне разумную возможность создать новый источник энергии для всего человечества, особенно с учетом того, что уже в этом веке нам неизбежно придется расстаться с привычкой расточительно и безрассудно сжигать ископаемые виды топлива».


Будем надеяться на то, что никаких крупных и неожиданных сюрпризов на пути развития термоядерной энергетики не будет. В этом случае примерно через 30 лет мы сумеем впервые подать электрический ток от нее в энергетические сети, а еще через 10 с небольшим лет начнет работать первая коммерческая термоядерная электростанция. Возможно, что во второй половине нашего столетия энергия ядерного синтеза начнет заменять ископаемые топлива и постепенно станет играть всё более важную роль в обеспечении человечества энергией в глобальном масштабе.


Нет абсолютной гарантии, что задача создания термоядерной энергетики (в качестве эффективного и крупномасштабного источника энергии для всего человечества) завершится успешно, но вероятность удачи в этом направлении достаточно высока. Учитывая огромный потенциал термоядерных станций, можно считать оправданными все затраты на проекты их быстрого (и даже ускоренного) развития, тем более, что эти капиталовложения выглядят весьма скромными на фоне чудовищного по объему мирового энергетического рынка (4 триллиона долларов в год8). Обеспечение потребностей человечества в энергии является очень серьезной проблемой. По мере того, как ископаемое топливо становится всё менее доступным (помимо этого, его использование становится нежелательным), ситуация изменяется, и мы просто не можем позволить себе не развивать термоядерную энергетику.


На вопрос «Когда появится термоядерная энергетика?» Лев Арцимович (признанный пионер и лидер исследований в этой области) как-то ответил, что «она будет создана, когда станет действительно необходимой человечеству»



ИТЭР станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем потреблять. Ученые измеряют эту характеристику с помощью простого коэффициента, который они называют «Q». Если ИТЭР позволит достичь всех поставленных научных целей, то он будет производить в 10 раз больше энергии, чем потреблять. Последнее из построенных устройств - «Совместный европейский тор» в Англии - является более мелким прототипом термоядерного реактора, который на окончательном этапе научных исследования достиг значения Q, равного почти 1. Это означает, что он вырабатывал ровно столько же энергии, сколько потреблял. ИТЭР позволит превзойти этот результат, продемонстрировав создание энергии в процессе термоядерного синтеза и достигнув значения Q, равного 10. Идея заключается в том, чтобы при объеме потребления энергии на уровне примерно 50 МВт вырабатывать 500 МВт. Таким образом, одной из научных целей ИТЭР является доказать, что может быть достигнуто значение Q, равное 10.


Другая научная цель заключается в том, что ИТЭР будет иметь весьма продолжительное время «горения» - импульс увеличенной длительности до одного часа. ИТЭР - это научно-исследовательский экспериментальный реактор, который не может производить энергию постоянно. Когда ИТЭР начнет работать, он будет включен в течение одного часа, после чего его необходимо будет отключить. Это важно потому, что до сих пор создаваемые нами типовые устройства были способны иметь время горения длиной в несколько секунд или даже десятых долей секунд - это максимум. «Совместный европейский тор» достиг своего значения Q, равного 1, при времени горения примерно две секунды при длине импульса 20 секунд. Но процесс, который длится несколько секунд, не является по-настоящему постоянным. По аналогии с запуском двигателя автомобиля: кратковременное включение двигателя с последующим выключением - это еще не настоящая эксплуатация автомобиля. Только когда вы проедете на вашем автомобиле в течение получаса, он выйдет на постоянный режим работы и продемонстрирует, что на таком автомобиле действительно можно ехать.


То есть, с технической и научной точек зрения, ИТЭР обеспечит значение Q, равное 10, и увеличенное время горения.



Программа термоядерного синтеза носит поистине международный, широкий характер. Люди уже сейчас рассчитывают на успех ИТЭР и думают о следующем шаге - создании прототипа промышленного термоядерного реактора под названием ДЕМО. Чтобы построить его, необходимо, чтобы ИТЭР работал. Мы должны достичь наших научных целей, потому что это будет означать, что выдвигаемые нами идеи вполне осуществимы. Тем не менее, я согласен с тем, что всегда следует думать о том, что будет дальше. Кроме того, в процессе эксплуатации ИТЭР в течение 25-30 лет наши знания постепенно углубятся и расширятся, и мы сможем более точно наметить наш следующий шаг.



Действительно, споров о том, должен ли ИТЕР быть именно токамаком, не возникает. Некоторые ученые ставят вопрос совсем иначе: должен ли ИТЕР быть? Специалисты в разных странах, развивающие собственные, не столь масштабные термоядерные проекты, утверждают, что такой большой реактор вовсе не нужен.


Впрочем, их мнение вряд ли стоит считать авторитетным. В создании ИТЕР были задействованы физики, работающие с тороидальными ловушками уже несколько десятков лет. В основу устройства экспериментального термоядерного реактора в Карадаше легли все знания, полученные в ходе экспериментов на десятках токамаков-предшественников. И эти результаты говорят о том, что реактор обязательно должен токамаком, причем большим.


JET На данный момент самым успешным токамаком можно считать JET, построенный ЕС в британском городке Эбингдоне. Это самый крупный из созданных на сегодня реакторов типа токамак, большой радиус плазменного тора 2,96 метров. Мощность термоядерной реакции достигает уже более 20 мегаватт при времени удержания до 10 секунд. Реактор возвращает около 40% от вложенной в плазму энергии.



Именно физика плазмы определяет энергобаланс, - рассказал Infox.ru Игорь Семенов. Что такое энергобаланс, доцент МФТИ описал на простом примере: «Все мы видели, как горит костер. На самом деле там не дрова горят, а газ. Энергетическая цепочка там вот какая: горит газ, греет дрова, дрова испаряются, опять горит газ. Поэтому, если мы плеснем в огонь воды, то мы резко заберем из системы энергию на фазовый переход жидкой воды в парообразное состояние. Баланс станет отрицательным, костер погаснет. Есть и другой способ – мы просто можем взять и головешки разнести в пространстве. Костер тоже погаснет. Точно также и в термоядерном реакторе, который мы строим. Размеры выбраны так, чтобы создать для данного реактора соответствующий положительный энергобаланс. Достаточный, чтобы в будущем построить настоящую ТЯЭС, решив на данном, экспериментальном этапе все проблемы, которые на данный момент остаются нерешенными».


Размеры реактора однажды менялись. Это произошло на рубеже XX-XXI века, когда США вышли из проекта, а оставшиеся члены поняли, что бюджет ИТЕР (к тому моменту он оценивался в 10 миллиардов долларов США) слишком велик. От физиков и инженеров потребовали уменьшить стоимость установки. А сделать это можно было только за счет размеров. Руководил «перепроектированием» ИТЕР французский физик Роберт Аймар (Robert Aymar), который прежде работал на французском токамаке Tore Supra в Карадаше. Внешний радиус плазменного тора был сокращен с 8,2 до 6,3 метра. Впрочем, риски, связанные с уменьшением размера, отчасти компенсировали несколько дополнительных сверхпроводящих магнитов, которые позволили реализовать открытый и исследованный на тот момент режим удержания плазмы.



ИТЭР (ITER, International Thermonuclear Experimental Reactor, "Международный экспериментальный термоядерный реактор") - крупномасштабный научно-технический проект, направленный на строительство первого международного экспериментального термоядерного реактора.

Реализуется семью основными партнерами (Европейский Союз, Индия, Китай, Республика Корея, Россия, США, Япония) в Кадараше (регион Прованс-Альпы-Лазурный берег, Франция). В основе ИТЭР - установка токамак (название получила по первым буквам: тороидальная камера с магнитными катушками), которая считается наиболее перспективным устройством для осуществления управляемого термоядерного синтеза. Первый токамак был построен в Советском Союзе в 1954 г.

Задача проекта - продемонстрировать, что термоядерную энергию можно использовать в промышленных масштабах. ИТЭР должен вырабатывать энергию путем реакции синтеза с тяжелыми изотопами водорода при температуре более 100 млн градусов.

Предполагается, что 1 г топлива (смесь дейтерия и трития), которое будет использоваться в установке, даст такое же количество энергии, как 8 т нефти. Расчетная термоядерная мощность ИТЭР - 500 МВт.

Специалисты утверждают, что реактор такого типа намного безопаснее нынешних атомных электростанций (АЭС), а топливо для него практически в неограниченном количестве может давать морская вода. Таким образом, успешная реализация ИТЭР позволит получить неисчерпаемый источник экологически чистой энергии.

История проекта

Концепция реактора разработана в Институте атомной энергии им. И.В.Курчатова. В 1978 г. СССР выдвинул идею осуществления проекта в Международном агентстве по атомной энергии (МАГАТЭ). Договоренность о реализации проекта была достигнута в 1985 г. в Женеве на переговорах между СССР и США.

Позднее программа была утверждена МАГАТЭ. В 1987 г. проект получил нынешнее название, в 1988 г. был создан руководящий орган - Совет ИТЭР. В 1988-1990 гг. силами советских, американских, японских и европейских ученых и инженеров была проведена концептуальная проработка проекта.

21 июля 1992 г. в Вашингтоне ЕС, Россия, США и Япония подписали соглашение о разработке технического проекта ИТЭР, который был завершен в 2001 г. В 2002-2005 гг. к проекту присоединились Южная Корея, Китай и Индия. Соглашение о строительстве первого международного экспериментального термоядерного реактора было подписано в Париже 21 ноября 2006 г.

Спустя год, 7 ноября 2007 г. подписано соглашение о месте строительства ИТЭР, согласно которому реактор будет размещен во Франции, в ядерном центре Кадараш под Марселем. Центр управления и обработки данных разместится в г. Нака (преф. Ибараки, Япония).

Подготовка строительной площадки в Кадараше началась в январе 2007 г., в 2013 г. было развернуто полномасштабное строительство. Комплекс разместится на площади 180 га. Реактор высотой 60 м и массой 23 тыс. т будет расположен на площадке длиной в 1 км и шириной в 400 м. Работы по его строительству координирует Международная организация ИТЭР, созданная в октябре 2007 г.

Стоимость проекта оценивается в 15 млрд евро, из них на ЕС (через Евратом) приходится 45,4%, а шесть других участников (в том числе РФ) вносят по 9,1% каждый. С 1994 г. по квоте России в проекте также участвует Казахстан.

Элементы реактора будут доставляться кораблями к средиземноморскому побережью Франции и оттуда специальными автокараванами перевозиться в район Кадараша. С этой целью в 2013 г. были значительно переоборудованы участки существующих дорог, укреплены мосты, построены новые переправы и пути с особо крепким покрытием. В период с 2014 г. по 2019 г. по укрепленной дороге должно пройти не менее трех десятков сверхтяжелых автопоездов.

Системы диагностики плазмы для ИТЭР будут разработаны в Новосибирске. Соглашение об этом 27 января 2014 г. подписали директор Международной организации ИТЭР Осаму Мотодзима и руководитель национального агентства ИТЭР в РФ Анатолий Красильников.

Разработки диагностического комплекса в рамках нового соглашения ведутся на базе физико-технического института им. А. Ф. Иоффе Российской академии наук.

Ожидается, что реактор войдет в строй в 2020 г., первые реакции по ядерному синтезу будут осуществлены на нем не ранее 2027 г. В 2037 г. планируется закончить экспериментальную часть проекта и к 2040 г. перейти на производство электроэнергии. По предварительным прогнозам специалистов, промышленный вариант реактора будет готов не ранее 2060 г., а серия реакторов данного типа может быть создана лишь к концу XXI века.

Нужна ли термоядерная энергия?

На данном этапе развития цивилизации можно смело заявить, что перед человечеством стоит «энергетический вызов». Он обусловлен сразу несколькими фундаментальными факторами:

— Человечество сейчас потребляет огромное количество энергии .

В настоящее время потребление энергии в мире составляет около 15,7 тераватт (ТВт). Разделив эту величину на население планеты, мы получим примерно 2400 ватт на человека, что можно легко оценить и представить себе. Потребляемая каждым жителем Земли (включая детей) энергия соответствует круглосуточной работе 24-х 100-ваттных электрических ламп.

— Мировое потребление энергии быстро возрастает .

По прогнозу Международного агентства по энергетике (2006 год), мировое потребление энергии к 2030 году должно увеличиться на 50%.

— В настоящее время 80% потребляемой миром энергии создается за счет сжигания ископаемых природных топлив (нефть, уголь и газ ), использование которых потенциально несет опасность катастрофических экологических изменений.

У жителей Саудовской Аравии популярна следующая шутка: «Мой отец ездил на верблюде. Я обзавелся автомобилем, а мой сын уже управляет самолетом. Но вот его сын вновь пересядет на верблюда».

Похоже, что дела обстоят именно так, поскольку, по всем серьезным прогнозам, запасы нефти в мире закончатся в основном примерно через 50 лет.

Даже на основании оценок Геологической службы США (этот прогноз значительно оптимистичнее остальных), рост мировой добычи нефти будет продолжаться не более 20 ближайших лет (другие специалисты предсказывают, что пик добычи будет достигнут уже через 5-10 лет), после чего объем добываемой нефти начнет уменьшаться со скоростью около 3% в год. Перспективы добычи природного газа выглядят ненамного лучше. Обычно говорят, что каменного угля нам хватит еще на 200 лет, но этот прогноз основан на сохранении существующего уровня добычи и расхода. Между тем потребление угля сейчас возрастает на 4,5% в год, что сразу сокращает упомянутый период в 200 лет всего до 50 лет.

Таким образом, уже сейчас следует готовиться к окончанию эпохи использования ископаемых типов горючего.

К сожалению, существующие сейчас альтернативные источники энергии не в состоянии покрыть растущих потребностей человечества. По самым оптимистичным оценкам, максимальное количество энергии (в указанном тепловом эквиваленте), создаваемое перечисленными источниками, составляет всего 3 ТВт (ветер), 1 ТВт (гидростанции), 1 ТВт (биологические источники) и 100 ГВт (геотермальные и морские установки). Суммарное количество дополнительной энергии (даже в этом, самом оптимальном прогнозе) составляет лишь около 6 ТВт. При этом стоит отметить, что разработка новых источников энергии является очень сложной технической задачей, так что стоимость производимой ими энергии будет в любом случае выше, чем при привычном сжигании угля и т. п. Представляется совершенно очевидным, что

человечество должно искать какие-то иные источники энергии, в качестве которых в настоящее время реально можно рассматривать только Солнце и реакции термоядерного синтеза.

Потенциально Солнце представляет собой практически неистощимый источник энергии. Количество энергии, попадающей всего на 0,1% поверхности планеты, эквивалентно 3,8 ТВт (даже при условии его преобразования с эффективностью всего 15%). Проблема заключается в нашем неумении улавливать и преобразовывать эту энергию, что связано как с высокой стоимостью солнечных батарей, так и с проблемами накопления, хранения и дальнейшей передачи получаемой энергии в требуемые регионы.

В настоящее время на атомных электростанциях в широких масштабах получают энергию, выделяющуюся при реакциях деления атомных ядер. Я полагаю, что следует всячески поощрять создание и развитие таких станций, однако при этом необходимо учитывать, что запасы одного из важнейших для их работы материала (дешевого урана) также могут быть полностью израсходованы в течение ближайших 50 лет.

Еще одним важным направлением развития является использование ядерного синтеза (слияния ядер), которое выступает сейчас в качестве основной надежды на спасение, хотя время создания первых термоядерных электростанций пока остается неопределенным. Именно этой теме посвящена данная лекция.

Что такое ядерный синтез?

Ядерный синтез, являющийся основой существования Солнца и звёзд, потенциально представляет собой неистощимый источник энергии для развития Вселенной вообще. Эксперименты, проводимые в России (Россия - родина термоядерной установки Токамак), США, Японии, Германии, а также в Великобритании в рамках программы Joint European Torus (JET), являющейся одной из ведущих исследовательских программ в мире, показывают, что ядерный синтез может обеспечить не только текущие энергетические потребности человечества (16 ТВт), но и гораздо большее количество энергии.

Энергия ядерного синтеза является совершенно реальной, и основной вопрос состоит в том, сможем ли мы создать достаточно надежные и экономически выгодные термоядерные установки.

Процессами ядерного синтеза называют реакции слияния легких атомных ядер в более тяжелые с выделением некоторого количества энергии.

Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространенного на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в следующем виде:

D + T = 4 He + n + энергия (17,6 MэВ).

Выделенная энергия, возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи, переходит в обычную кинетическую энергию, распределяемую между нейтроном и ядром гелия-4 в пропорции 14,1 MэВ/3,5 MэВ.

Для инициирования (зажигания) реакции синтеза необходимо полностью ионизовать и нагреть газ из смеси дейтерия и трития до температуры выше 100 миллионов градусов по Цельсию (будем обозначать ее через M градусов), что примерно в пять раз выше температуры в центре Солнца. Уже при температуре несколько тысяч градусов межатомные столкновения приводят к выбиванию электронов из атомов, в результате чего формируется смесь из разделенных ядер и электронов, известная под названием плазмы, в которой положительно заряженные и высокоэнергичные дейтроны и тритоны (то есть ядра дейтерия и трития) испытывают сильное взаимное отталкивание. Тем не менее высокая температура плазмы (и связанная с этим высокая энергия ионов) позволяют этим ионам дейтерия и трития преодолевать кулоновское отталкивание и сталкиваться друг с другом. При температуре выше 100 M градусов наиболее «энергетические» дейтроны и тритоны сближаются при столкновениях на столь близкие расстояния, что между ними начинают действовать мощные ядерные силы, заставляющие их сливаться друг с другом в единое целое.

Осуществление этого процесса в лаборатории связано с тремя очень сложными проблемами. Прежде всего, газовую смесь ядер D и T следует нагреть до температур выше 100 M градусов, каким-то образом предотвращая его охлаждение и загрязнение (из-за реакций со стенками сосуда).

Для решения этой задачи были придуманы «магнитные ловушки», получившие название Токамак, которые предотвращают взаимодействие плазмы со стенками реактора.

В описываемом методе плазма нагревается электрическим током, протекающим внутри тора, примерно до 3 M градусов, что, однако, оказывается еще недостаточным для инициирования реакции. Для дополнительного нагрева плазмы в неё либо «вкачивают» энергию радиочастотным излучением (как в микроволновой печке), либо инжектируют пучки нейтральных частиц с высокой энергией, которые при столкновениях передают свою энергию плазме. Кроме того, выделение тепла происходит за счет, собственно, термоядерных реакций (как будет рассказано ниже), в результате чего в достаточно большой установке должно происходить «зажигание» плазмы.

В настоящее время во Франции начинается строительство описываемого ниже международного экспериментального термоядерного реактора ITER (International Thermonuclear Experimental Reactor), который будет первым Токамаком, способным «зажечь» плазму.

В наиболее передовых существующих установках типа Токамак давно достигнуты температуры порядка 150 M градусов, близкие к значениям, требуемым для работы термоядерной станции, однако реактор ITER должен стать первой крупномасштабной энергетической установкой, рассчитанной на длительную эксплуатацию. В дальнейшем необходимо будет существенно улучшить параметры её работы, что потребует в первую очередь повышения давления в плазме, так как скорость слияния ядер при заданной температуре пропорциональна квадрату давления.

Основная научная проблема при этом связана с тем, что при повышении давления в плазме возникают очень сложные и опасные неустойчивости, то есть нестабильные режимы работы.

Возникающие при реакции синтеза электрически заряженные ядра гелия удерживаются внутри «магнитной ловушки», где постепенно тормозятся за счет столкновений с другими частицами, причем выделяющаяся при столкновениях энергия помогает поддерживать высокую температуру плазменного шнура. Нейтральные (не имеющие электрического заряда) нейтроны покидают систему и передают свою энергию стенкам реактора, а отбираемое от стен тепло и является источником энергии для работы турбин, вырабатывающих электричество. Проблемы и сложности эксплуатации такой установки связаны, прежде всего, с тем, что мощный поток высокоэнергичных нейтронов и выделяющаяся энергия (в виде электромагнитного излучения и частиц плазмы) серьезно воздействуют на реактор и могут разрушить материалы, из которых он создан.

Из-за этого конструкция термоядерных установок является очень сложной. Перед физиками и инженерами стоит задача обеспечения высокой надежности их работы. Проектирование и строительство термоядерных станций требуют от них решения целого ряда разнообразных и очень сложных технологических задач.

Устройство термоядерной электростанции

На рисунке представлена принципиальная схема (без соблюдения масштаба) устройства и принципа работы термоядерной электростанции. В центральной части располагается тороидальная (в форме бублика) камера объемом ~ 2000 м 3 , заполненная тритий-дейтериевой (T-D) плазмой, нагретой до температуры выше 100 M градусов. Образующиеся при реакции синтеза нейтроны покидают «магнитную ловушку» и попадают в показанную на рисунке оболочку с толщиной около 1 м. 1

Внутри оболочки нейтроны сталкиваются с атомами лития, в результате чего происходит реакция с образованием трития:

нейтрон + литий = гелий + тритий.

Кроме того, в системе происходят и конкурирующие реакции (без образования трития), а также много реакций с выделением дополнительных нейтронов, которые затем также приводят к образованию трития (при этом выделение дополнительных нейтронов может быть существенно усилено, например, за счет введения в оболочку атомов бериллия и свинца). Общий вывод состоит в том, что в этой установке может (по крайней мере, теоретически) происходить реакция ядерного синтеза, при которой будет образовываться тритий. При этом количество образующегося трития должно не только обеспечивать потребности самой установки, но и быть даже несколько большим, что позволит обеспечивать тритием и новые установки.

Именно эта концепция работы должна быть проверена и реализована на описываемом ниже реакторе ITER.

Нейтроны должны разогревать оболочку в так называемых пилотных установках (в которых будут использоваться относительно «обычные» конструкционные материалы) примерно до температуры 400 градусов. В дальнейшем предполагается создать усовершенствованные установки с температурой нагрева оболочки выше 1000 градусов, что может быть достигнуто за счет использования новейших высокопрочных материалов (типа композитов из карбида кремния). Выделяющееся в оболочке тепло, как и в обычных станциях, отбирается первичным охлаждающим контуром с теплоносителем (содержащим, например, воду или гелий) и передается на вторичный контур, где и производится водяной пар, подающийся на турбины.

Основное преимущество ядерного синтеза состоит в том, что в качестве топлива для него требуется лишь очень небольшое количество весьма распространенных в природе веществ.

Реакция ядерного синтеза в описываемых установках может приводить к выделению огромного количества энергии, в десять миллионов раз превышающего стандартное тепловыделение при обычных химических реакциях (типа сжигания ископаемого топлива). Для сравнения укажем, что количество угля, необходимого для обеспечения работы тепловой электростанции мощностью 1 гигаватт (ГВт), составляет 10 000 тонн в день (десять железнодорожных вагонов), а термоядерная установка такой же мощности будет потреблять в день лишь около 1 кг смеси D+T.

Дейтерий является устойчивым изотопом водорода; примерно в одной из каждых 3350 молекул обычной воды один из атомов водорода замещен дейтерием (наследие, доставшееся нам от Большого взрыва Вселенной). Этот факт позволяет легко организовать достаточно дешевое получение необходимого количества дейтерия из воды. Более сложным является получение трития, который является нестабильным (период полураспада около 12 лет, вследствие чего его содержание в природе ничтожно), однако, как было показано выше, тритий будет нарабатываться прямо внутри термоядерной установки в процессе работы за счет реакции нейтронов с литием.

Таким образом, исходным топливом для термоядерного реактора являются литий и вода.

Литий представляет собой обычный металл, широко используемый в бытовых приборах (в батарейках для мобильных телефонов, например). Описанная выше установка, даже с учетом неидеальной эффективности, сможет производить 200 000 кВт/час электрической энергии, что эквивалентно энергии, содержащейся в 70 тоннах угля. Требуемое для этого количество лития содержится в одной батарейке для компьютера, а количество дейтерия — в 45 литрах воды. Указанная выше величина соответствует современному потреблению электроэнергии (в пересчете на одного человека) в странах ЕС за 30 лет. Сам факт, что столь ничтожное количество лития может обеспечить выработку такого количества электроэнергии (без выбросов CO 2 и без малейшего загрязнения атмосферы), является достаточно серьезным аргументом для быстрейшего и энергичного развития исследований по разработке термоядерной энергетики (несмотря на все сложности и проблемы) даже при долгосрочной перспективе создания экономически эффективного термоядерного реактора.

Дейтерия должно хватить на миллионы лет, а запасы легкодобываемого лития вполне достаточны для обеспечения потребностей в течение сотен лет.

Даже если запасы лития в горных породах иссякнут, мы можем добывать его из воды, где он содержится в достаточно высокой концентрации (в 100 раз превосходящей концентрацию урана), чтобы его добыча была экономически целесообразной.

Термоядерная энергетика не только обещает человечеству, в принципе, возможность производства огромного количества энергии в будущем (без выбросов CO 2 и без загрязнения атмосферы), но и обладает рядом других достоинств.

1 ) Высокая внутренняя безопасность.

Используемая в термоядерных установках плазма имеет очень низкую плотность (примерно в миллион раз ниже плотности атмосферы), вследствие чего рабочая среда установок никогда не будет содержать в себе энергии, достаточной для возникновения серьезных происшествий или аварий.

Кроме того, загрузка «топливом» должна производиться непрерывно, что позволяет легко останавливать ее работу, не говоря уже о том, что в случае аварии и резкого изменения условий окружения термоядерное «пламя» должно просто погаснуть.

В чем состоят связанные с термоядерной энергетикой опасности? Во-первых, стоит отметить, что хотя продукты синтеза (гелий и нейтроны) не являются радиоактивными, оболочка реактора при длительном нейтронном облучении может стать радиоактивной.

Во-вторых, тритий является радиоактивным и имеет относительно небольшой период полураспада (12 лет). Но хотя объем используемой плазмы значителен, из-за ее низкой плотности там содержится лишь очень небольшое количество трития (общим весом примерно как десять почтовых марок). Поэтому

даже при самых тяжелых ситуациях и авариях (полное разрушение оболочки и выделение всего содержащегося в ней трития, например, при землетрясении и падении самолета на станцию) в окружающую среду поступит лишь незначительное количество топлива, что не потребует эвакуации населения из близлежащих населенных пунктов.

2 ) Стоимость энергии.

Ожидается, что так называемая «внутренняя» цена получаемой электроэнергии (стоимость самого производства) станет приемлемой, если будет составлять 75% от уже существующей на рынке цены. «Приемлемость» в данном случае означает, что цена будет ниже цены энергии, получаемой с использованием старых углеводородных топлив. «Внешняя» цена (побочные эффекты, воздействие на здоровье населения, климат, экологию и т. п.) будет, по существу, равной нулю.

Международный экспериментальный термоядерный реактор ITER

Основной следующий шаг состоит в построении реактора ITER, спроектированного с целью демонстрации самой возможности зажигания плазмы и получения на этой основе хотя бы десятикратного выигрыша в энергии (по отношению к энергии, затрачиваемой на разогрев плазмы). Реактор ITER будет представлять собой экспериментальное устройство, которое даже не будет снабжено турбинами для производства электроэнергии и устройствами для её использования. Целью его создания является изучение условий, которые должны выполняться при работе таких энергетических установок, а также создание на этой основе настоящих, экономически выгодных электростанций, которые по размерам, по-видимому, должны превосходить ITER. Создание реальных прототипов термоядерных электростанций (то есть станций, полностью оборудованных турбинами и т. д.) требует решения двух следующих задач. Во-первых, необходимо продолжить разработку новых материалов (способных выдерживать очень суровые условия эксплуатации в описанных условиях) и провести их испытания в соответствии со специальными правилами для аппаратуры системы IFMIF (International Fusion Irradiation Facility), описанной ниже. Во-вторых, необходимо решить много чисто технических задач и развить новые технологии, относящиеся к дистанционному управлению, нагреву, конструкции оболочек, топливным циклам и т. д. 2

На рисунке показан реактор ITER, превосходящий крупнейшую на сегодня установку JET не только по всем линейным размерам (примерно вдвое), но и по величине используемых в нем магнитных полей и протекающих через плазму токов.

Целью создания этого реактора является демонстрация возможностей объединенных усилий физиков и инженеров при конструировании крупномасштабной термоядерной электростанции.

Намеченная проектировщиками мощность установки 500 МВт (при затрате энергии на входе системы всего около 50 МВт). 3

Установка ITER создается консорциумом, в который входят ЕC, Китай, Индия, Япония, Южная Корея, Россия и США. Общая численность населения этих стран составляет около половины всего населения Земли, так что проект можно назвать глобальным ответом на глобальный вызов. Основные компоненты и узлы реактора ITER уже созданы и испытаны, а строительство уже начато в местечке Кадараш (Франция). Запуск реактора запланирован на 2020 год, а получение дейтерий-тритиевой плазмы - на 2027 год, так как ввод реактора в действие требует длительных и серьезных испытаний для плазмы из дейтерия и трития.

Магнитные катушки реактора ITER созданы на основе сверхпроводящих материалов (что, в принципе, позволяет работать непрерывно при условии поддержания тока в плазме), так что проектировщики надеются обеспечить гарантированный рабочий цикл длительностью не менее 10 минут. Понятно, что наличие сверхпроводящих магнитных катушек является принципиально важным для непрерывной работы реальной термоядерной электростанции. Сверхпроводящие катушки уже применялись в устройствах типа Токамак, однако ранее они не использовались в столь крупномасштабных установках, рассчитанных на тритиевую плазму. Кроме этого, в установке ITER будут впервые использованы и испытаны разные модули оболочки, предназначенные для работы в реальных станциях, где могут генерироваться или «восстанавливаться» ядра трития.

Основной целью постройки установки является демонстрация успешного управления горением плазмы и возможности реального получения энергии в термоядерных устройствах при существующем уровне развития технологий.

Дальнейшее развитие в этом направлении, конечно, потребует многих усилий для повышения эффективности работы устройств, особенно с точки зрения их экономической целесообразности, что связано с серьезными и длительными исследованиями, как на реакторе ITER, так и на других устройствах. Среди поставленных задач следует особо выделить три следующие:

1) Необходимо показать, что существующий уровень науки и техники уже позволяет получать 10-кратный выигрыш в энергии (по сравнению с затрачиваемой для поддержания процесса) при контролируемом процессе ядерного синтеза. Реакция должна протекать без возникновения опасных неустойчивых режимов, без перегрева и повреждения материалов конструкции и без загрязнения плазмы примесями. При мощностях термоядерной энергии порядка 50 % от мощности нагрева плазмы эти цели уже были достигнуты в экспериментах на небольших установках, однако создание реактора ITER позволит проверить надежность методов управления на гораздо более крупной установке, производящей гораздо больше энергии в течение длительного времени. Реактор ITER проектируется для проверки и согласования требований к будущему термоядерному реактору, и его создание является весьма сложной и интересной задачей.

2) Необходимо изучить методы повышения давления в плазме (напомним, что скорость реакции при заданной температуре пропорциональна квадрату давления) для предотвращения возникновения опасных неустойчивых режимов поведения плазмы. Успех исследований в этом направлении позволит либо обеспечить работу реактора при более высокой плотности плазмы, либо понизить требования к напряженности создаваемых магнитных полей, что существенно уменьшит стоимость производимой реактором электроэнергии.

3) Испытания должны подтвердить, что непрерывная работа реактора в устойчивом режиме может быть обеспечена реально (с экономической и технической точек зрения это требование представляется очень важным, если не основным), а запуск установки можно будет осуществлять без огромных затрат энергии. Исследователи и проектировщики очень надеются, что «непрерывное» течение электромагнитного тока по плазме может быть обеспечено его генерацией в плазме (за счёт высокочастотного излучения и инжекции быстрых атомов).

Современный мир стоит перед очень серьезным энергетическим вызовом, который более точно можно назвать «неопределенным энергетическим кризисом».

В настоящее время почти вся потребляемая человечеством энергия создается сжиганием ископаемых топлив, а решение проблемы может быть связано с использованием солнечной энергии или ядерной энергетики (созданием реакторов на быстрых нейтронах и т. п.). Глобальная проблема, обусловленная ростом населения развивающихся стран и их потребностью в повышении уровня жизни и увеличении объема производимой энергии, не может быть решена только на основе рассматриваемых подходов, хотя, конечно, следует поощрять любые попытки развития альтернативных методов выработки энергии.

Если никаких крупных и неожиданных сюрпризов на пути развития термоядерной энергетики не будет, то при соблюдении выработанной разумной и упорядоченной программы действий, которая (разумеется, при условии хорошей организации работ и достаточного их финансирования) должна привести к созданию прототипа термоядерной электростанции. В этом случае примерно через 30 лет мы сумеем впервые подать электрический ток от неё в энергетические сети, а еще через 10 с небольшим лет начнет работать первая коммерческая термоядерная электростанция. Возможно, что во второй половине нашего столетия энергия ядерного синтеза начнет заменять ископаемые топлива и постепенно станет играть все более важную роль в обеспечении человечества энергией в глобальном масштабе.

С чего все это началось. «Энергетический вызов» возник в результате сочетания трех следующих факторов:

1. Человечество сейчас потребляет огромное количество энергии.

В настоящее время потребление энергии в мире составляет около 15,7 тераватт (ТВт). Разделив эту величину на население планеты, мы получим примерно 2400 ватт на человека, что можно легко оценить и представить. Потребляемая каждым жителем Земли (включая детей) энергия соответствует круглосуточной работе 24 стоваттных электрических ламп. Однако потребление этой энергии по планете является очень неравномерным, так как оно очень велико в нескольких странах и ничтожно в других. Потребление (в пересчете на одного человека) равно 10,3 кВт в США (одно из рекордных значений), 6,3 кВт в Российской Федерации, 5,1 кВт в Великобритании и т. д., но, с другой стороны, оно равно лишь 0,21 кВт в Бангладеше (всего 2% от уровня энергопотребления в США!).

2. Мировое потребление энергии драматически возрастает.

По прогнозу Международного агентства по энергетике (2006 год) мировое потребление энергии к 2030 году должно увеличиться на 50%. Развитые страны, конечно, могли бы прекрасно обойтись без дополнительной энергии, однако этот рост необходим для того, чтобы избавить от нищеты население развивающихся стран, где 1,5 миллиарда человек испытывают острую нехватку электрической энергии.


3. В настоящее время 80% потребляемой миром энергии создается за счет сжигания ископаемых природных топлив (нефть, уголь и газ), использование которых:
а) потенциально несет опасность катастрофических экологических изменений;
б) неизбежно должно когда-нибудь закончиться.

Из сказанного ясно, что уже сейчас мы должны готовиться к окончанию эпохи использования ископаемых типов горючего

В настоящее время на атомных электростанциях в широких масштабах получают энергию, выделяющуюся при реакциях деления атомных ядер. Следует всячески поощрять создание и развитие таких станций, однако при этом необходимо учитывать, что запасы одного из важнейших для их работы материала (дешевого урана) также могут быть полностью израсходованы в течение ближайших 50 лет. Возможности основанной на делении ядер энергетики могут (и должны) быть существенно расширены за счет использования более эффективных энергетических циклов, позволяющих почти вдвое увеличить количество получаемой энергии. Для развития энергетики в этом направлении требуется создавать реакторы на тории (так называемые ториевые бридерные реакторы или реакторы-размножители), в которых при реакции возникает больше тория, чем исходного урана, в результате чего общее количество получаемой энергии при заданном количестве вещества возрастает в 40 раз. Перспективным представляется также создание плутониевых бридеров на быстрых нейтронах, которые значительно эффективнее урановых реакторов и позволяют получать в 60 раз больше энергии. Возможно, для развития этих направлений понадобится разработать новые, нестандартные методы получения урана (например, из морской воды, что представляется наиболее доступным).

Термоядерные электростанции

На рисунке представлена принципиальная схема (без соблюдения масштаба) устройства и принципа работы термоядерной электростанции. В центральной части располагается тороидальная (в форме бублика) камера объемом ~2000 м3, заполненная тритий-дейтериевой (T-D) плазмой, нагретой до температуры выше 100 M°C. Образующиеся при реакции синтеза (1) нейтроны покидают «магнитную бутылку» и попадают в показанную на рисунке оболочку с толщиной около 1 м.

Внутри оболочки нейтроны сталкиваются с атомами лития, в результате чего происходит реакция с образованием трития:

нейтрон + литий → гелий + тритий

Кроме этого в системе происходят и конкурирующие реакции (без образования трития), а также много реакций с выделением дополнительных нейтронов, которые затем также приводят к образованию трития (при этом выделение дополнительных нейтронов может быть существенно усилено, например, за счет введения в оболочку атомов бериллия и свинца). Общий вывод состоит в том, что в этой установке может (по крайней мере, теоретически) происходить реакция ядерного синтеза, при которой будет образовываться тритий. При этом количество образующегося трития должно не только обеспечивать потребности самой установки, но и быть даже несколько большим, что позволит обеспечивать тритием и новые установки. Именно эта концепция работы должна быть проверена и реализована на описываемом ниже реакторе ITER.

Кроме этого нейтроны должны разогревать оболочку в так называемых пилотных установках (в которых будут использоваться относительно «обычные» конструкционные материалы) примерно до температуры 400°C. В дальнейшем предполагается создать усовершенствованные установки с температурой нагрева оболочки выше 1000°C, что может быть достигнуто за счет использования новейших высокопрочных материалов (типа композитов из карбида кремния). Выделяющееся в оболочке тепло, как и в обычных станциях, отбирается первичным охлаждающим контуром с теплоносителем (содержащим, например, воду или гелий) и передается на вторичный контур, где и производится водяной пар, подающийся на турбины.

1985 год - Советский Союз предложил установку «Токамак» следующего поколения, используя опыт четырех ведущих стран по созданию термоядерных реакторов. Соединенные Штаты Америки совместно с Японией и Европейским сообществом выдвинули предложение по осуществлению проекта.

В настоящее время во Франции идет строительство описываемого ниже международного экспериментального термоядерного реактора ITER (International Tokamak Experimental Reactor), который будет первым токамаком, способным «зажечь» плазму.

В наиболее передовых существующих установках типа токамак давно достигнуты температуры порядка 150 M°C, близкие к значениям, требуемым для работы термоядерной станции, однако реактор ITER должен стать первой крупномасштабной энергетической установкой, рассчитанной на длительную эксплуатацию. В дальнейшем необходимо будет существенно улучшить параметры ее работы, что потребует, в первую очередь, повышения давления в плазме, так как скорость слияния ядер при заданной температуре пропорциональна квадрату давления. Основная научная проблема при этом связана с тем, что при повышении давления в плазме возникают очень сложные и опасные неустойчивости, то есть нестабильные режимы работы.

Зачем нам это надо?

Основное преимущество ядерного синтеза состоит в том, что в качестве топлива для него требуется лишь очень небольшое количество весьма распространенных в природе веществ. Реакция ядерного синтеза в описываемых установках может приводить к выделению огромного количества энергии, в десять миллионов раз превышающего стандартное тепловыделение при обычных химических реакциях (типа сжигания ископаемого топлива). Для сравнения укажем, что количество угля, необходимого для обеспечения работы тепловой электростанции мощностью 1 гигаВатт (ГВт) составляет 10 000 тонн в день (десять железнодорожных вагонов), а термоядерная установка такой же мощности будет потреблять в день лишь около 1 килограмма смеси D+T.

Дейтерий является устойчивым изотопом водорода; примерно в одной из каждых 3350 молекул обычной воды один из атомов водорода замещен дейтерием (наследие, доставшееся нам от Большого Взрыва). Этот факт позволяет легко организовать достаточно дешевое получение необходимого количества дейтерия из воды. Более сложным является получение трития, который является нестабильным (период полураспада около 12 лет, вследствие чего его содержание в природе ничтожно), однако, как было показано выше, тритий будет возникать прямо внутри термоядерной установки в процессе работы, за счет реакции нейтронов с литием.

Таким образом, исходным топливом для термоядерного реактора являются литий и вода. Литий представляет собой обычный металл, широко используемый в бытовых приборах (в батарейках для мобильных телефонов и т. п.). Описанная выше установка, даже с учетом неидеальной эффективности, сможет производить 200 000 кВт/час электрической энергии, что эквивалентно энергии, содержащейся в 70 тоннах угля. Требуемое для этого количество лития содержится в одной батарейке для компьютера, а количество дейтерия — в 45 литрах воды. Указанная выше величина соответствует современному потреблению электроэнергии (в пересчете на одного человека) в странах ЕС за 30 лет. Сам факт, что столь ничтожное количество лития может обеспечить выработку такого количества электроэнергии (без выбросов CO2 и без малейшего загрязнения атмосферы), является достаточно серьезным аргументом для быстрейшего и энергичного развития термоядерной энергетики (несмотря на все сложности и проблемы) и даже без стопроцентой уверенности в успехе таких исследований.

Дейтерия должно хватить на миллионы лет, а запасы легко добываемого лития вполне достаточны для обеспечения потребностей в течение сотен лет. Даже если запасы лития в горных породах иссякнут, мы можем добывать его из воды, где он содержится в достаточно высокой концентрации (в 100 раз превосходящей концентрацию урана), чтобы его добыча была экономически целесообразной.

Экспериментальный термоядерный реактор (International thermonuclear experimental reactor) сооружается вблизи города Кадараш во Франции. Главная задача проекта ИТЭР — осуществление управляемой термоядерной реакции синтеза в промышленных масштабах.

На единицу веса термоядерного топлива получается примерно в 10 миллионов раз больше энергии, чем при сгорании такого же количества органического топлива, и примерно в сто раз больше, чем при расщеплении ядер урана в реакторах ныне действующих АЭС. Если расчеты ученых и конструкторов оправдаются, это даст человечеству неисчерпаемый источник энергии.

Поэтому ряд стран (Россия, Индия, Китай, Корея, Казахстан, США, Канада, Япония, страны Евросоюза) объединили свои усилия в создании Международного термоядерного исследовательского реактора - прообраза новых энергетических установок.

ИТЭР представляет из себя установку, создающую условия для синтеза атомов водорода и трития (изотопа водорода), в результате чего образуется новый атом - атом гелия. Этот процесс сопровождается громадным выплеском энергии: температура плазмы, в которой идет термоядерная реакция — около 150 млн градусов по Цельсию (для сравнения - температура ядра Солнца 40 млн градусов). При этом изотопы выгорают, практически не оставляя радиоактивных отходов.
Схема участия в международном проекте предусматривает поставки компонентов реактора и финансирование его строительства. В обмен на это каждая из стран-участниц получает полный доступ ко всем технологиям создания термоядерного реактора и к результатам всех экспериментальных работ на этом реакторе, которые послужат основой для проектирования серийных энергетических термоядерных реакторов.

Реактор, основанный на принципе термоядерного синтеза, не имеет радиоактивного излучения и полностью безопасен для окружающей среды. Он может быть расположен практически в любой точке земного шара, а топливом для него служит обычная вода. Строительство ITER должно продлиться около десяти лет, после чего реактор предполагается использовать в течение 20 лет.


Интересы России в Совете Международной организации по строительству термоядерного реактора ИТЭР в ближайшие годы будет представлять член-корреспондент РАН Михаил Ковальчук — директор РНЦ «Курчатовский институт», Института кристаллографии РАН и ученый секретарь президентского Совета по науке, технологиям и образованию. Ковальчук временно заменит на этом посту академика Евгения Велихова, который избран на ближайшие два года председателем международного совета ИТЭР и не имеет права совмещать эту должность с обязанностями официального представителя страны-участника.

Общая стоимость строительства оценивается в 5 миллиардов евро, еще столько же потребуется для опытной эксплуатации реактора. Доли Индии, Китая, Кореи, России, США и Японии составляют приблизительно по 10 процентов от общей стоимости, 45 процентов приходится на страны Европейского союза. Однако пока европейские государства не договорились, как именно расходы будут распределены между ними. Из-за этого начало строительства перенесено на апрель 2010 года. Несмотря на очередную отсрочку, ученые и чиновники, вовлеченные в создание ИТЭР, утверждают, что смогут завершить проект к 2018 году.

Расчетная термоядерная мощность ИТЭР составляет 500 мегаватт. Отдельные детали магнитов достигают веса от 200 до 450 тонн. Для охлаждения ИТЭР потребуется 33 тысячи кубометров воды в день.

В 1998 году США прекратили финансирование своего участия в проекте. После того, как к власти в стране пришли республиканцы, а в Калифорнии начались веерные отключения электроэнергии, администрация Буша объявила об увеличении вложений в энергетику. Участвовать в международном проекте США не намеревались и занимались собственным термоядерным проектом. В начале 2002 года советник президента Буша по технологиям Джон Марбургер III заявил, что США передумали и намерены вернуться в проект.

Проект по числу участников сравним с другим крупнейшим международным научным проектом - Международной космической станции. Стоимость ИТЭР, прежде достигавшая 8 миллиардов долларов, потом составила менее 4 миллиардов. В результате выхода из числа участников Соединенных Штатов было решено уменьшить мощность реактора с 1,5 ГВт до 500 МВт. Соответственно «похудела» и цена проекта.

В июне 2002 года в российской столице прошел симпозиум «Дни ИТЭР в Москве». На нем обсуждались теоретические, практические и организационные проблемы возрождения проекта, удача которого способна изменить судьбу человечества и дать ему новый вид энергии, по эффективности и экономичности сравнимый только с энергией Солнца.

В июле 2010 года представители стран-участниц проекта международного термоядерного реактора ITER утвердили его бюджет и сроки строительства на внеочередной встрече, прошедшей во французском Кадараше. .

На прошедшей внеочередной встрече участники проекта утвердили срок начала первых экспериментов с плазмой — 2019 год. Проведение полноценных опытов запланировано на март 2027 года, хотя руководство проекта попросило технических специалистов попытаться оптимизировать процесс и начать опыты в 2026 году. Участники встречи также определились с затратами на строительство реактора, однако суммы, которые планируется потратить на создание установки, не разглашаются. По информации, полученной редактором портала ScienceNOW из неназванного источника, к моменту начала экспериментов стоимость проекта ITER может составить 16 миллиардов евро.

Прошедшая в Кадараше встреча также стала первым официальным рабочим днем для нового директора проекта, японского физика Осаму Мотодзима (Osamu Motojima). До него проектом с 2005 года руководил японец Канаме Икеда (Kaname Ikeda), который пожелал оставить пост сразу после утверждения бюджета и сроков строительства.

Термоядерный реактор ITER является совместным проектом государств Евросоюза, Швейцарии, Японии, США, России, Южной Кореи, Китая и Индии. Идея создания ITER рассматривается с 80-х годов прошлого века, однако из-за финансовых и технических сложностей стоимость проекта все время растет, а дата начала строительства постоянно откладывается. В 2009 году специалисты рассчитывали, что работы по созданию реактора начнутся в 2010 году. Позже эту дату передвинули, а в качестве времени запуска реактора назывался сначала 2018, а потом 2019 год.

Реакции термоядерного синтеза — это реакции слияния ядер легких изотопов с образованием ядра более тяжелого, которые сопровождаются огромным выбросом энергии. В теории в термоядерных реакторах можно получать много энергии с низкими затратами, но на данный момент ученые тратят намного больше энергии и денег на запуск и поддержание реакции синтеза.

Термоядерный синтез - это дешевый и экологически безопасный способ добычи энергии. На Солнце уже миллиарды лет происходит неуправляемый термоядерный синтез - из тяжелого изотопа водорода дейтерия образуется гелий. При этом выделяется колоссальное количество энергии. Однако на Земле люди пока не научились управлять подобными реакциями.

В качестве топлива в реакторе ИТЭР будут использоваться изотопы водорода. В ходе термоядерной реакции энергия выделяется при соединении легких атомов в более тяжелые. Чтобы добиться этого, необходимо разогреть газ до температуры свыше 100 миллионов градусов - намного выше температуры в центре Солнца. Газ при такой температуре превращается в плазму. Атомы изотопов водорода при этом сливаются, превращаясь в атомы гелия с выделением большого количества нейтронов. Электростанция, работающая на этом принципе, будет использовать энергию нейтронов, замедляемых слоем плотного вещества (лития).

Почему создание термоядерных установок столь затянулось?

Почему же столь важные и ценные установки, преимущества которых обсуждаются почти полстолетия, еще не созданы? Существуют три основные причины (рассматриваемые ниже), первую из которых можно назвать внешней или общественной, а две остальные — внутренними, то есть обусловленными законами и условиями развития самой термоядерной энергетики.

1. Долгое время считалось, что проблема практического использования энергии термоядерного синтеза не требует срочных решений и действий, так как еще в 80-х годах прошлого столетия источники ископаемого топлива казались неистощимыми, а проблемы экологии и изменения климата не волновали общественность. В 1976 году Консультативный комитет по термоядерной энергии в Министерстве энергетики США попытался оценить сроки осуществления НИОКР и создания демонстрационной термоядерной энергетической установки при разных вариантах финансирования исследований. При этом обнаружилось, что объемы годичного финансирования исследований в данном направлении совершенно недостаточны, и при сохранении существующего уровня ассигнований создание термоядерных установок никогда не завершится успехом, поскольку выделяемые средства не соответствуют даже минимальному, критическому уровню.

2. Более серьезное препятствие на пути развития исследований в данной области состоит в том, что термоядерную установку обсуждаемого типа нельзя создать и продемонстрировать в малых размерах. Из представленных далее объяснений станет ясно, что для термоядерного синтеза необходимо не только магнитное удержание плазмы, но и достаточный ее нагрев. Отношение затрачиваемой и получаемой энергии возрастает, по меньшей мере, пропорционально квадрату линейных размеров установки, вследствие чего научно-технические возможности и преимущества термоядерных установок могут быть проверены и продемонстрированы лишь на достаточно крупных станциях, типа упоминавшегося реактора ITER. Общество просто не было готово к финансированию столь крупных проектов, пока не было достаточной уверенности в успехе.

3. Развитие термоядерной энергетики носило очень сложный характер, однако (несмотря на недостаточное финансирование и трудности выбора центров для создания установок JET и ITER) в последние годы наблюдается явный прогресс, хотя действующая станция еще не создана.

Современный мир стоит перед очень серьезным энергетическим вызовом, который более точно можно назвать «неопределенным энергетическим кризисом». Проблема связана с тем, что запасы ископаемых горючих веществ могут иссякнуть уже во второй половине текущего столетия. Более того, сжигание ископаемых топлив может привести к необходимости каким-то образом связывать и «сохранять» выпускаемый в атмосферу углекислый газ (упомянутая выше программа CCS) для предотвращения серьезных изменений в климате планеты.

В настоящее время почти вся потребляемая человечеством энергия создается сжиганием ископаемых топлив, а решение проблемы может быть связано с использованием солнечной энергии или ядерной энергетики (созданием реакторов-размножителей на быстрых нейтронах и т. п.). Глобальная проблема, обусловленная ростом населения развивающихся стран и их потребностью в повышении уровня жизни и увеличении объема производимой энергии, не может быть решена только на основе рассматриваемых подходов, хотя, конечно, следует поощрять любые попытки развития альтернативных методов выработки энергии.

Собственно говоря, у нас небольшой выбор стратегий поведения и развитие термоядерной энергетики является исключительно важным, даже несмотря на отсутствие гарантии успеха. Газета Financial Times (от 25.01.2004) писала по этому поводу:

Будем надеяться на то, что никаких крупных и неожиданных сюрпризов на пути развития термоядерной энергетики не будет. В этом случае примерно через 30 лет мы сумеем впервые подать электрический ток от нее в энергетические сети, а еще через 10 с небольшим лет начнет работать первая коммерческая термоядерная электростанция. Возможно, что во второй половине нашего столетия энергия ядерного синтеза начнет заменять ископаемые топлива и постепенно станет играть всё более важную роль в обеспечении человечества энергией в глобальном масштабе.

Нет абсолютной гарантии, что задача создания термоядерной энергетики (в качестве эффективного и крупномасштабного источника энергии для всего человечества) завершится успешно, но вероятность удачи в этом направлении достаточно высока. Учитывая огромный потенциал термоядерных станций, можно считать оправданными все затраты на проекты их быстрого (и даже ускоренного) развития, тем более, что эти капиталовложения выглядят весьма скромными на фоне чудовищного по объему мирового энергетического рынка (4 триллиона долларов в год8). Обеспечение потребностей человечества в энергии является очень серьезной проблемой. По мере того, как ископаемое топливо становится всё менее доступным (помимо этого, его использование становится нежелательным), ситуация изменяется, и мы просто не можем позволить себе не развивать термоядерную энергетику.

На вопрос «Когда появится термоядерная энергетика?» Лев Арцимович (признанный пионер и лидер исследований в этой области) как-то ответил, что «она будет создана, когда станет действительно необходимой человечеству»

ИТЭР станет первым термоядерным реактором, который будет вырабатывать больше энергии, чем потреблять. Ученые измеряют эту характеристику с помощью простого коэффициента, который они называют «Q». Если ИТЭР позволит достичь всех поставленных научных целей, то он будет производить в 10 раз больше энергии, чем потреблять. Последнее из построенных устройств — «Совместный европейский тор» в Англии — является более мелким прототипом термоядерного реактора, который на окончательном этапе научных исследования достиг значения Q, равного почти 1. Это означает, что он вырабатывал ровно столько же энергии, сколько потреблял. ИТЭР позволит превзойти этот результат, продемонстрировав создание энергии в процессе термоядерного синтеза и достигнув значения Q, равного 10. Идея заключается в том, чтобы при объеме потребления энергии на уровне примерно 50 МВт вырабатывать 500 МВт. Таким образом, одной из научных целей ИТЭР является доказать, что может быть достигнуто значение Q, равное 10.

Другая научная цель заключается в том, что ИТЭР будет иметь весьма продолжительное время «горения» — импульс увеличенной длительности до одного часа. ИТЭР — это научно-исследовательский экспериментальный реактор, который не может производить энергию постоянно. Когда ИТЭР начнет работать, он будет включен в течение одного часа, после чего его необходимо будет отключить. Это важно потому, что до сих пор создаваемые нами типовые устройства были способны иметь время горения длиной в несколько секунд или даже десятых долей секунд — это максимум. «Совместный европейский тор» достиг своего значения Q, равного 1, при времени горения примерно две секунды при длине импульса 20 секунд. Но процесс, который длится несколько секунд, не является по-настоящему постоянным. По аналогии с запуском двигателя автомобиля: кратковременное включение двигателя с последующим выключением — это еще не настоящая эксплуатация автомобиля. Только когда вы проедете на вашем автомобиле в течение получаса, он выйдет на постоянный режим работы и продемонстрирует, что на таком автомобиле действительно можно ехать.

То есть, с технической и научной точек зрения, ИТЭР обеспечит значение Q, равное 10, и увеличенное время горения.

Программа термоядерного синтеза носит поистине международный, широкий характер. Люди уже сейчас рассчитывают на успех ИТЭР и думают о следующем шаге — создании прототипа промышленного термоядерного реактора под названием ДЕМО. Чтобы построить его, необходимо, чтобы ИТЭР работал. Мы должны достичь наших научных целей, потому что это будет означать, что выдвигаемые нами идеи вполне осуществимы. Тем не менее, я согласен с тем, что всегда следует думать о том, что будет дальше. Кроме того, в процессе эксплуатации ИТЭР в течение 25-30 лет наши знания постепенно углубятся и расширятся, и мы сможем более точно наметить наш следующий шаг.

Действительно, споров о том, должен ли ИТЕР быть именно токамаком, не возникает. Некоторые ученые ставят вопрос совсем иначе: должен ли ИТЕР быть? Специалисты в разных странах, развивающие собственные, не столь масштабные термоядерные проекты, утверждают, что такой большой реактор вовсе не нужен.

Впрочем, их мнение вряд ли стоит считать авторитетным. В создании ИТЕР были задействованы физики, работающие с тороидальными ловушками уже несколько десятков лет. В основу устройства экспериментального термоядерного реактора в Карадаше легли все знания, полученные в ходе экспериментов на десятках токамаков-предшественников. И эти результаты говорят о том, что реактор обязательно должен токамаком, причем большим.

JET На данный момент самым успешным токамаком можно считать JET, построенный ЕС в британском городке Эбингдоне. Это самый крупный из созданных на сегодня реакторов типа токамак, большой радиус плазменного тора 2,96 метров. Мощность термоядерной реакции достигает уже более 20 мегаватт при времени удержания до 10 секунд. Реактор возвращает около 40% от вложенной в плазму энергии.

Именно физика плазмы определяет энергобаланс, — рассказал Infox.ru Игорь Семенов. Что такое энергобаланс, доцент МФТИ описал на простом примере: «Все мы видели, как горит костер. На самом деле там не дрова горят, а газ. Энергетическая цепочка там вот какая: горит газ, греет дрова, дрова испаряются, опять горит газ. Поэтому, если мы плеснем в огонь воды, то мы резко заберем из системы энергию на фазовый переход жидкой воды в парообразное состояние. Баланс станет отрицательным, костер погаснет. Есть и другой способ - мы просто можем взять и головешки разнести в пространстве. Костер тоже погаснет. Точно также и в термоядерном реакторе, который мы строим. Размеры выбраны так, чтобы создать для данного реактора соответствующий положительный энергобаланс. Достаточный, чтобы в будущем построить настоящую ТЯЭС, решив на данном, экспериментальном этапе все проблемы, которые на данный момент остаются нерешенными».

Размеры реактора однажды менялись. Это произошло на рубеже XX-XXI века, когда США вышли из проекта, а оставшиеся члены поняли, что бюджет ИТЕР (к тому моменту он оценивался в 10 миллиардов долларов США) слишком велик. От физиков и инженеров потребовали уменьшить стоимость установки. А сделать это можно было только за счет размеров. Руководил «перепроектированием» ИТЕР французский физик Роберт Аймар (Robert Aymar), который прежде работал на французском токамаке Tore Supra в Карадаше. Внешний радиус плазменного тора был сокращен с 8,2 до 6,3 метра. Впрочем, риски, связанные с уменьшением размера, отчасти компенсировали несколько дополнительных сверхпроводящих магнитов, которые позволили реализовать открытый и исследованный на тот момент режим удержания плазмы.


We say that we will put the sun into a box. The idea is pretty. The problem is we don"t know how to make the box.

Pierre-Gilles de Gennes
Французский нобелевский лауреат

Всем электронным устройствам и машинам нужна энергия и человечество потребляет её очень много. Но ископаемое топливо заканчивается, а альтернативная энергетика пока что недостаточно эффективна.
Есть способ получения энергии, идеально подходящий всем требованиям - Термоядерный синтез. Реакция термоядерного синтеза (превращение водорода в гелий и выделение энергии) постоянно происходит на солнце и этот процесс дает планете энергию в виде солнечных лучей. Нужно только имитировать его на Земле, в меньшем масштабе. Достаточно обеспечить высокое давление и очень высокую температуру (в 10 раз выше, чем на Солнце) и реакция синтеза будет запущена. Чтобы создать такие условия, нужно построить термоядерный реактор. Он будет использовать более распространенные на земле ресурсы, будет безопасным и более мощным чем обычные атомные станции. Уже больше 40 лет предпринимаются попытки его строительства и ведутся эксперименты. В последние годы на одном из прототипов даже удалось получить больше энергии чем было затрачено . Наиболее амбициозные проекты в этой сфере представлены ниже:

Государственные проекты

Наибольшее внимание общественности последнее время достаётся другой конструкции термоядерного реактора - стелларатору Wendelstein 7-X (стелларатор сложнее по внутреннему устройству чем ITER, который является токамаком). Потратив чуть более 1 млрд. долларов немецкие ученые за 9 лет соорудили к 2015 году уменьшенную, демонстрационную модель реактора. Если он будет показывать хорошие результаты будет построена более масштабная версия.

MegaJoule Laser во Франции будет самым мощным в мире лазером и будет пытаться продвинуть метод строительства термоядерного реактора, основанный на использовании лазеров. Ввод французской установки в строй ожидается в 2018 году.

NIF (National ignition facility) было построено в США за 12 лет и 4 млрд. долларов к 2012. Они рассчитывали протестировать технологию и после сразу строить реактор, но оказалось, что, как сообщает википедия - considerable work is required if the system is ever to reach ignition. В результате грандиозные планы были отменены и ученые занялись постепенным совершенствованием лазера. Последняя задача - поднять эффективность передачи энергии с 7% до 15%. Иначе финансирование от конгресса этого метода достижения синтеза может прекратится.

В конце 2015 года в Сарове началось строительство здания для самой мощной в мире лазерной установки. Она будет мощнее текущей американской и будущей французской и позволит провести эксперименты необходимые для строительства «лазерной» версии реактора. Завершение строительства в 2020 году.

Расположенный в США лазер - MagLIF fusion признается темной лошадкой среди методов достижения термоядерного синтеза. Недавно этод метод показал результаты лучше ожидаемых, но мощность всё ещё нужно увеличить в 1000 раз. Сейчас лазер проходит апгрейд, и к 2018 учёные надеются получить столько же энергии, сколько потратили. В случае успеха будет построена увеличенная версия.

В российском ИЯФ упорно проводили эксперименты над методом «открытых ловушек» от которого отказались США в 90е. В результате были получены показатели, считавшиеся невозможными для этого метода. Учёные ИЯФ полагают, что их установка сейчас находится на уровне немецкой Wendelstein 7-X (Q=0.1), но дешевле. Сейчас за 3 млрд. рублей они строят новую установку

Руководитель Курчатовского института постоянно напоминает о планах построить в России небольшой термоядерный реактор - Игнитор. По плану, он должен быть также эффективен как ITER, хоть и меньше. Строительство его должно было начаться ещё 3 года назад, но такая ситуация типична для крупных научных проектов.

Китайский токамак EAST начале 2016 года сумел получить температуру в 50 млн. градусов и продержать её 102 секунды. До начала постройки огромных реакторов и лазеров все новости про термоядерный синтез были такими. Можно было подумать, что это просто соревнование среди ученых - кто дольше удержит всё более высокую температуру. Чем выше температура плазмы и чем дольше её удается удерживать - тем мы ближе к началу реакции синтеза. Таких установок в мире десятки, ещё несколько () () строится так что скоро рекорд EAST будет побит. В сущности, эти небольшие реакторы, это просто тестирование оборудования перед отправкой в ITER.

Lockheed Martin объявил в 2015м о прорыве в термоядерной энергетики, который позволит им построить небольшой и мобильный термоядерный реактор за 10 лет. Учитывая, что даже очень большие и совсем не мобильные коммерческие реакторы ожидались не ранее 2040 года, заявление корпорации было встречено скептически. Но компания располагает большими ресурсами так что кто знает. Прототип ожидается в 2020 году.

Популярный в кремниевой долине стартап Helion Energy имеет свой уникальный план по достижению термоядерного синтеза. Компания привлекла больше 10 млн долларов и рассчитывает создать прототип к 2019.

Держащийся в тени стартап Tri Alpha Energy недавно добился впечатляющих результатов в продвижении своего метода термоядерного синтеза (теоретиками было разработано >100 теоретических способов добиться синтеза, токамак просто самый простой и популярный). Компания также привлекла более 100 млн долларов средств инвесторов.

Проект реактора от Канадского стартапа General Fusion ещё больше не похож на остальные, но разработчики в нем уверены и привлекли за 10 лет больше 100 млн. долларов, чтобы построить реактор к 2020 году.

Стартап из Соединенного королевства - First light имеет самый доступный для понимания сайт, образовался в 2014 году, и объявил о планах использовать последние научные данные для менее затратного получения термоядерного синтеза.

Ученые из MIT написали статью с описанием компактного термоядерного реактора. Они уповают на новые технологии, появившиеся уже после начала строительства гигантских токамаков и обещают осуществить проект за 10 лет. Пока неизвестно будет ли им дан зеленый свет на начало строительства. Даже в случае одобрения, статья в журнале, это ещё более ранняя стадия чем стартап

Термоядерный синтез - это, пожалуй, наименее подходящая для краудфандинга индустрия. Но именно с его помощью и также с финансированием НАСА, компания Lawrenceville Plasma Physics собирается построить прототип своего реактора. Из всех реализуемых проектов, этот больше всего похож на мошенничество, но кто знает, может, что-то полезное они привнесут в эту грандиозную работу.

ITER будет только прототипом для постройки полноценной установки DEMO - первого коммерческого термоядерного реактора. Его запуск сейчас запланирован на 2044 год и это ещё оптимистичный прогноз.

Но есть планы и на следующий этап. Гибридный термоядерный реактор будет получать энергию и от распада атома (как обычная атомная станция) и от синтеза. В такой конфигурации энергии может быть в 10 раз больше, но безопасность ниже. Китай рассчитывает построить прототип к 2030, но эксперты говорят, что это всё равно что пытаться собрать гибридные автомобили до изобретения двигателя внутреннего сгорания.

Итог

Нет недостатка в желающих принести в мир новый источник энергии. Наибольшие шансы есть у проекта ITER, учитывая его масштаб и финансирование, но другие методы, а также частные проекты не стоит сбрасывать со счетов. Ученые десятки лет трудились над запуском реакции синтеза без особых успехов. Но сейчас проектов по достижению термоядерной реакции больше чем когда-либо. Даже если каждый из них провалится, новые попытки будут предприняты. Вряд ли мы успокоимся, пока не зажжем миниатюрную версию Солнца, здесь, на Земле.

Теги: Добавить метки