Как держать форму. Массаж. Здоровье. Уход за волосами

Как устроен гироскоп: суть, принцип работы, где применяется. Основные погрешности гироскопа и методы их компенсации


Рис. 4. Влияние вращения земли и скорости полёта на видимое положение ротора гироскопа: а – ось ротора гироскопа в начальный момент установлена вертикально на экваторе; б – ось гироскопа в начальный момент установлена на широте; в – ось ротора гироскопа в начальный момент установлена горизонтально на полюсе Земли

Из рис. 3, б видно, что только го­ризонтальная составляющая вращения Земли вызывает кажущийся уход оси ротора гироскопа от направления истинной вертикали.

В общем случае ось ротора гироскопа непрерывно изменяет своё положение относительно связанных с Землёй координат. Поэтому при использовании свободного гироскопа для определения угловых положений и курса самолёта необходимо осуществлять непрерывную коррекцию, компенсирующую уход оси ротора гироскопа.

В качестве измерительного устройства, корректирующего кажущийся уход гировертикали, применяется жидкостный маятник.

При отсутствии ускорений с помощью маятника главная ось гироскопа выставляется вертикально. В те моменты, когда на маятник действуют ускорения, его отключают и гироскоп работает в режиме «памяти».

Устройство, с помощью которого маятник действует на гироскоп, называется системой маятниковой коррекции. Гироскоп с такой коррекцией называют гировертикалью.

В авиагоризонтах используется электролитический маятник (рис. 5), представляющий собой плоскую медную чашу 3, заполненную токопроводящей жидкостью 1 с большим удельным электрическим сопротивлением. Жидкости в чаше столько, что остается место для воздушного пузырька 2. Чаша закрыта крышкой из изоляционного материала, в которую вмонтировано четыре контакта 4, 5, 6, 7, пятым контактом является сама чаша.


Рис. 5. Электролитический маятник: 1-токопроводящая жидкость (электролит);

2- воздушный пузырек; 3-медная чаша; 4,5,6,7-контакты; 8 – изоляционная крышка

При отклонении оси ротора от вертикали пузырек воздуха перемещается (например, на угол γ) и электрические сопротивления между корпусом сосуда и противоположными электродами станут различными. Это вызовет появление коррекционного момента, под действием которого гироскоп прецессирует к вертикали.

Связав маятник с внутренней рамой карданова подвеса, и расположив по осям подвеса коррекционные двигатели, получаем гировертикаль с электромеханической маятниковой коррекцией (рис. 7).



Рис. 7. Гировертикаль с маятниковой коррекцией: 1-электролитический маятник;

2, 3-коррекционные двигатели

Чтобы не допустить погрешности в указании вертикали при полете с ускорением, предусмотрены выключатели цепей коррекции:

поперечной коррекции - при развороте самолета, цепи обмоток управления электродвигателей разрываются контактами выключателя коррекции при определенной величине угловой скорости разворота,

продольной коррекции - при линейных ускорениях летательного аппарата.

Арретирование гироскопов

При транспортировке неработающего гироскопического прибора на его детали будут непрерывно действовать значительные динамические усилия, для их уменьшения применяют приспособление, называемое арретиром или защелкой, с помощью которого у гироскопа в нужный момент уничтожаются две степени свободы.

Вывод: таким образом, электролитический (индукционный) маятник 1, действуя на гироскоп через коррекционные двигатели 2 и 3, все время будет приводить главную ось гироскопа к положению вертикали. При отключении коррекции гироскоп будет сохранять свое прежнее положение в пространстве с точностью, определяемой его собственными ошибками, например, за счет прецессии, вызванной моментами трения по осям карданова подвеса.

Гироскопы предназначены для демпфирования угловых перемещений моделей вокруг одной из осей, либо стабилизации их углового перемещения. Применяются в основном на летающих моделях в случаях, когда необходимо повысить стабильность поведения аппарата или создать ее искусственно. Наибольшее применение (около 90%) гироскопы нашли в вертолетах обычной схемы для стабилизации относительно вертикальной оси путем управления шагом рулевого винта. Это обусловлено тем, что вертолет обладает нулевой собственной стабильностью по вертикальной оси. В самолетах гироскоп может стабилизировать крен, курс и тангаж. Курс стабилизируют в основном на турбореактивных моделях для обеспечения безопасного взлета и посадки, - там большие скорости и взлетные дистанции, а ВПП, как правило, узкая. Тангаж стабилизируют на моделях с малой, нулевой, либо отрицательной продольной устойчивостью (с задней центровкой), повышающей их маневренные возможности. Крен полезно стабилизировать даже на учебных моделях.

На самолетах и планерах спортивных классов гироскопы запрещены требованиями FAI.


Гироскоп состоит из датчика угловой скорости и контроллера. Как правило, они конструктивно объединены, хотя на устаревших, а также "крутых" современных гироскопах размешены в разных корпусах.

По конструкции датчиков вращения, гироскопы можно разделить на два основных класса: механические и пьезо. Точнее, сейчас делить особо уже не на что, потому что механические гироскопы полностью сняты с производства как морально устаревшие. Тем не менее, распишем и их принцип работы тоже, хотя бы ради исторической справедливости.

Основу механического гироскопа составляют тяжелые диски, закрепленные на валу электродвигателя. Двигатель в свою очередь имеет одну степень свободы, т.е. может свободно вращаться вокруг оси, перпендикулярной валу двигателя.


Раскрученные двигателем тяжелые диски обладают гироскопическим эффектом. Когда вся система начинает вращаться вокруг оси, перпендикулярной двум другим, двигатель с дисками отклоняется на определенный угол. Величина этого угла пропорциональна скорости поворота (те, кто интересуется силами, возникающими в гироскопах, могут поглубже ознакомиться с кориолисовым ускорением в специальной литературе). Отклонение мотора фиксируется датчиком, сигнал которого поступает на блок электронной обработки данных.

Развитие современных технологий позволило разработать более совершенные датчики угловых скоростей. В результате появились пьезогироскопы, которые к настоящему времени полностью вытеснили механические. Конечно, они по-прежнему используют эффект кориолисова ускорения, но датчики являются твердотельными, то есть вращающиеся части отсутствуют. В наиболее распространенных датчиках используются вибрирующие пластины. Поворачиваясь вокруг оси, такая пластина начинает отклоняться в плоскости, поперечной плоскости вибрации. Это отклонение измеряется и поступает на выход датчика, откуда снимается уже внешней схемой для последующей обработки. Самыми известными производителями подобных датчиков являются фирмы Murata и Tokin .

Пример типичной конструкции пьезоэлектрического датчика угловых скоростей дан на следующем рисунке.


У датчиков подобной конструкции есть недостаток в виде большого температурного дрейфа сигнала (т.е. при изменении температуры на выходе пьезодатчика, находящегося в неподвижном состоянии, может появиться сигнал). Однако достоинства, получаемые взамен, намного перекрывают это неудобство. Пьезогироскопы потребляют намного меньший ток по сравнению с механическими, выдерживают большие перегрузки (менее чувствительны к авариям), позволяют более точно реагировать на повороты моделей. Что касается борьбы с дрейфом, то в дешевых моделях пьезогироскопов есть просто регулировка "нуля", а в более дорогих - автоматическая установка "нуля" микропроцессором при подаче питания и компенсация дрейфа температурными датчиками.

Жизнь, однако, не стоит на месте, и вот уже в новой линейке гироскопов от Futaba (Семейство Gyxxx с системой "AVCS") уже стоят датчики от Silicon Sensing Systems , которые очень выгодно отличаются по характеристикам от продуктов Murata и Tokin. Новые датчики имеют более низкий температурный дрейф, более низкий уровень шумов, очень высокую виброзащищенность и расширенный диапазон рабочих температур. Это достигнуто за счет изменения конструкции чувствительного элемента. Он выполнен в виде кольца, работающего в режиме изгибных колебаний. Кольцо делается методом фотолитографии, как микросхема, поэтому датчик называется SMM (Silicon Micro Machine). Не будем углубляться в технические подробности, любопытные смогут найти все здесь: http://www.spp.co.jp/sssj/comp-e.html . Приведем лишь несколько фотографий самого датчика, датчика без верхней крышки и фрагмента кольцевого пьезоэлемента.


Типичные гироскопы и алгоритмы их работы

Наиболее известными производителями гироскопов на сегодняшний день являются фирмы Futaba , JR-Graupner , Ikarus , CSM , Robbe , Hobbico и т.д.

Теперь рассмотрим режимы работы, которые используются в большинстве выпускаемых гироскопов (всякие необычные случаи рассмотрим потом отдельно).

Гироскопы со стандартным режимом работы

В этом режиме гироскоп демпфирует угловые перемещения модели. Такой режим достался нам в наследство от механических гироскопов. Первые пьезогироскопы отличались от механических в основном датчиком. Алгоритм работы остался неизменным. Суть его сводится к следующему: гироскоп измеряет скорость поворота и выдает коррекцию к сигналу с передатчика, чтобы замедлить вращение, насколько это возможно. Ниже дается пояснительная блок-схема.


Как видно из рисунка, гироскоп пытается подавить любое вращение, в том числе и то, которое вызвано сигналом с передатчика. Чтобы избежать такого побочного эффекта, желательно на передатчике задействовать дополнительные микшеры, чтобы при отклонение ручки управления от центра, чувствительность гироскопа плавно уменьшалась. Такое микширование может быть уже реализовано внутри контроллеров современных гироскопов (чтобы уточнить, есть оно или нет - посмотрите характеристики устройства и руководство по эксплуатации).

Регулировка чувствительности реализуется несколькими способами:

  1. Дистанционная регулировка отсутствует. Чувствительность задается на земле (регулятором на корпусе гироскопа) и не меняется во время полета.
  2. Дискретная регулировка (dual rates gyro). На земле задается два значения чувствительности гироскопа (двумя регуляторами). В воздухе можно выбирать нужное значение чувствительности по каналу регулирования.
  3. Плавная регулировка. Гироскоп выставляет чувствительность пропорционально сигналу в регулирующем канале.

В настоящее время практически все современные пьезогироскопы имеют плавную регулировку чувствительности (а о механических гироскопах можно уже смело забыть). Исключение составляют только базовые модели некоторых производителей, где чувствительность устанавливается регулятором на корпусе гироскопа. Дискретная регулировка необходима только с примитивными передатчиками (где нет дополнительного пропорционального канала или нельзя выставить длительности импульсов в дискретном канале). В этом случае в канал регулирования гироскопа можно включить небольшой дополнительный модуль, который будет выдавать заданные значения чувствительности в зависимости от положения тумблера дискретного канала передатчика.

Если говорить о достоинствах гироскопов, реализующих только "стандартный" режим работы, то можно отметить, что:

  • Такие гироскопы имеют довольно низкую цену (вследствие простоты реализации)
  • При установке на хвостовую балку вертолета, новичкам проще выполнять полеты по кругу, так как за балкой можно особенно не следить (балка сама разворачивается по ходу движения вертолета).

Недостатки:

  • В недорогих гироскопах термокомпенсация сделана недостаточно хорошо. Необходимо вручную выставлять "ноль", который может сместиться при изменении температуры воздуха.
  • Приходится применять дополнительные меры по устранению эффекта подавления гироскопом управляющего сигнала (дополнительное микширование в канале управления чувствительности или увеличение расхода рулевой машинки).

Вот довольно известные примеры описанного типа гироскопов:

При выборе рулевой машинки, которая будет подключаться к гироскопу, следует отдавать предпочтение более быстрым вариантам. Это позволит добиться большей чувствительности, без риска, что в системе возникнут механические автоколебания (когда из-за перерегулирования рули начинают сами двигаться из стороны в сторону).

Гироскопы с режимом удержания направления

В этом режиме стабилизируется угловое положение модели. Для начала маленькая историческая справка. Первой фирмой, которая сделала гироскопы с таким режимом, была CSM. Режим она назвала Heading Hold. Поскольку название было запатентовано, другие фирмы стали придумывать (и патентовать) свои собственные названия. Так возникли марки "3D", "AVSC" (Angular Vector Control System) и другие. Такое многообразие может повергнуть новичка в легкое замешательство, но на самом деле, никаких принципиальных различий в работе таких гироскопов нет.

И еще одно замечание. Все гироскопы, которые имеют режим Heading Hold, поддерживают также и обычный алгоритм работы. В зависимости от выполняемого маневра, можно выбирать тот режим гироскопа, который больше подходит.

Итак, о новом режиме. В нем гироскоп не подавляет вращение, а делает его пропорциональным сигналу с ручки передатчика. Разница очевидна. Модель начинает вращаться именно с той скоростью, с которой нужно, независимо от ветра и других факторов.

Посмотрите блок-схему. По ней видно, что из управляющего канала и сигнала с датчика получается (после сумматора) разностный сигнал ошибки, который подается на интегратор. Интегратор же меняет сигнал на выходе до тех пор, пока сигнал ошибки не будет равен нулю. Через канал чувствительности регулируется постоянная интегрирования, то есть скорость отработки рулевой машинки. Разумеется, вышеприведенные объяснения весьма приблизительны и обладают рядом неточностей, но ведь мы собираемся не делать гироскопы, а применять их. Поэтому нас гораздо больше должны интересовать практические особенности применения подобных устройств.

Достоинства режима Heading Hold очевидны, но хочется особо подчеркнуть плюсы, которые проявляются при установке такого гироскопа на вертолет (для стабилизации хвостовой балки):

  • на вертолете начинающий пилот в режиме висения может практически не управлять хвостовым винтом
  • отпадает необходимость в микшировании шага хвостового винта с газом, что несколько упрощает предполетную подготовку
  • триммирование хвостового винта можно производить без отрыва модели от земли
  • становится возможным выполнение таких маневров, которые раньше были затруднены (например, полет хвостом вперед).

Для самолетов применение данного режима тоже может быть оправдано, особенно на некоторых сложных 3D-фигурах вроде "Torque Roll".

Вместе с тем следует отметить, что каждый режим работы имеет свои особенности, поэтому использование Heading Hold везде подряд не является панацеей. При выполнении обычных полетов на вертолете, особенно новичками, использование функции Heading Hold может привести к потере управления. Например, если не управлять хвостовой балкой при выполнении виражей, то вертолет опрокинется.

В качестве примеров гироскопов, которые поддерживают режим Heading Hold, можно привести следующие модели:

Переключение между стандартным режимом и Heading Hold производится через канал регулировки чувствительности. Если менять длительность управляющего импульса в одну сторону (от средней точки), то гироскоп будет работать в режиме Heading Hold, а если в другую - то гироскоп перейдет в стандартный режим. Средная точка - когда длительность канального импульса равна примерно 1500 мкс; то есть, если бы мы подключили на этот канал рулевую машинку, то она установилась бы в среднее положение.

Отдельно стоит затронуть тему применяемых рулевых машинок. Для того, чтобы добиться максимального эффекта от Heading Hold, нужно ставить рулевые машинки с повышенной скоростью работы и очень высокой надежностью. При повышении чувствительности (если скорость отработки машинки позволяет), гироскоп начинает перекладывать сервомеханизм очень резко, даже со стуком. Поэтому машинка должна иметь серьезный запас прочности, чтобы долго прослужить и не выйти из строя. Предпочтение стоит отдавать так называемым "цифровым" машинкам. Для самых современных гироскопов разрабатывают даже специализированные цифровые сервомашинки (например, Futaba S9251 для гироскопа GY601). Помните, что на земле, из-за отсутствия обратной связи от датчика вражений, если не принять дополнительных мер, то гироскоп обязательно выведет рулевую машинку в крайнее положение, где она станет испытывать максимальную нагрузку. Поэтому если в гироскоп и рулевую машинку не встроены функции ограничения хода, то рулевая машинка должна уметь выдерживать большие нагрузки, чтобы не выйти из строя еще на земле.

Специализированные самолетные гироскопы

Для применения в самолетах с целью стабилизации крена начали выпускать специализированные гироскопы. От обычных они отличаются тем, что имеют еще один канал внешней команды.

При управлении каждого элерона отдельным серво, самолетчики с компьютерной аппаратурой задействуют функцию флаперонов. Микширование происходит на передатчике. Однако контроллер самолетного гироскопа на модели автоматически определяет синфазное отклонение обоих каналов элеронов и не мешает ему. А противофазное отклонение задействуется в петле стабилизации крена - в ней присутствуют два сумматора и один датчик угловой скорости. Других отличий нет. Если элероны управляются от одного серво, то специализированный самолетный гироскоп не нужен, сгодится и обычный. Самолетные гироскопы делают фирмы Hobbico, Futaba и другие.

Касаясь применения гироскопов на самолете, нужно отметить, что нельзя использовать режим Heading Hold на взлете и посадке. Точнее, в тот момент, когда самолет касается земли. Это потому, что когда самолет находится на земле, он не может накрениться или повернуть, поэтому гироскоп выведет рули в какое-нибудь крайнее положение. А при отрыве самолета от земли (или сразу после посадки), когда модель имеет большую скорость, сильное отклонение рулей может сыграть злую шутку. Поэтому настоятельно рекомендуется использовать гироскоп на самолетах в стандартном режиме.

В самолетах эффективность рулей и элеронов пропорциональна квадрату скорости полета самолета. При широком диапазоне скоростей, что характерно для сложного пилотажа, необходимо компенсировать это изменение регулированием чувствительности гироскопа. Иначе при разгоне самолета система перейдет в автоколебательный режим. Если же задать сразу низкий уровень эффективности гироскопа, то на малых скоростях, когда он особенно нужен, от него не будет должного эффекта. На настоящих самолетах такое регулирование делает автоматика. Возможно, скоро так будет и на моделях. В некоторых случаях переход в автоколебательный режим органа управления полезен - при очень низких скоростях полета самолета. Многие наверное видели, как на МАКС-2001 "Беркут" С-37 показывал фигуру "харриер". Переднее горизонтальное оперение при этом работало в автоколебательном режиме. Гироскоп в канале крена позволяет делать самолет "несваливаемым на крыло". Подробнее о работе гироскопа в режиме стабилизации тангажа самолетов можно почитать в известной монографии И.В.Остославского "Аэродинамика самолета".

Заключение

В последние годы появилось много дешевых моделей миниатюрных гироскопов, позволяющих расширить сферу их применения. Простота инсталляции и низкие цены оправдывают использование гироскопов даже на учебных и радиобойцовых моделях. Прочность пьезоэлектрических гироскопов такова, что при аварии скорее испортится приемник или серво, чем гироскоп.

Вопрос о целесообразности насыщения летающих моделей современной авионикой каждый решает сам. На наш взгляд, в спортивных классах самолетов, - по крайней мере, на копиях, гироскопы все-таки со временем разрешат. Иначе невозможно обеспечить реалистичный, похожий на оригинал полет уменьшенной копии из-за разных чисел Рейнольдса. На хоббийных аппаратах применение искусственной стабилизации позволяет расширить диапазон погодных условий полетов, и летать в такой ветер, когда только ручное управление не в состоянии удержать модель.

В 1968 году американский специалист в области космических исследований Питер Е. Глэйзер (Peter E. Glaser) предложил размещать крупные панели солнечных батарей на геостационарной орбите, а вырабатываемую ими энергию (уровня 5-10 ГВт) передавать на поверхность Земли хорошо сфокусированным пучком СВЧ-излучения, преобразовывать её затем в энергию постоянного или переменного тока технической частоты и раздавать потребителям.


Такая схема позволяла использовать интенсивный поток солнечного излучения, существующий на геостационарной орбите (~ 1,4 кВт/кв.м.), и передавать полученную энергию на поверхность Земли непрерывно, вне зависимости от времени суток и погодных условий . За счёт естественного наклона экваториальной плоскости к плоскости эклиптики с углом 23,5 град., спутник, расположенный на геостационарной орбите, освещён потоком солнечной радиации практически непрерывно за исключением небольших отрезков времени вблизи дней весеннего и осеннего равноденствия, когда этот спутник попадает в тень Земли. Эти промежутки времени могут точно предсказываться, а в сумме они не превышают 1% от общей продолжительности года.

Частота электромагнитных колебаний СВЧ-пучка должна соответствовать тем диапазонам, которые выделены для использования в промышленности, научных исследованиях и медицине. Если эта частота выбрана равной 2,45 ГГц, то метеорологические условия, включая густую облачность и интенсивные осадки, практически не влияют на КПД передачи энергии. Диапазон 5,8 ГГц заманчив, поскольку дает возможность уменьшить размеры передающей и приемной антенн. Однако влияние метеорологических условий здесь уже требует дополнительного изучения.

Современный уровень развития СВЧ-электроники позволяет говорить о довольно высоком значении КПД передачи энергии СВЧ пучком с геостационарной орбиты на поверхность Земли - порядка 70-75%. При этом диаметр передающей антенны обычно бывает выбран равным 1 км, а наземная ректенна имеет размеры 10 км х 13 км для широты местности 35 град. СКЭС с уровнем выходной мощности 5 ГВт имеет плотность излучаемой мощности в центре передающей антенны 23 кВт/кв.м., в центре приемной – 230 Вт/кв.м.


Были исследованы различные типы твёрдотельных и вакуумных СВЧ-генераторов для передающей антенны СКЭС. Вильям Браун показал, в частности, что хорошо освоенные промышленностью магнетроны, предназначенные для СВЧ-печей, могут быть использованы также и в передающих антенных решётках СКЭС, если каждый из них снабдить собственной цепью отрицательной обратной связи по фазе по отношению к внешнему синхронизирующему сигналу (так называемый, Magnetron Directional Amplifier - MDA).

Наиболее активно и планомерно исследования в области СКЭС проводила Япония. В 1981 году под руководством профессоров М.Нагатомо (Makoto Nagatomo) и С.Сасаки (Susumu Sasaki) в Институте космических исследований Японии были начаты исследования по разработке прототипа СКЭС с уровнем мощности 10 МВт, который мог бы быть создан с использованием существующих ракетоносителей. Создание такого прототипа позволяет накопить технологический опыт и подготовить основу для формирования коммерческих систем.


Проект был назван СКЭС2000 (SPS2000) и получил признание во многих странах мира.

В 2008 доцент кафедры физики Массачусетского Технологического Института (МИТ) Марин Солджачич (Marin Soljačić) был пробуждён от сладкого сна настойчивым пиканьем мобильного телефона. «Телефон не умолкал, требуя, чтобы я поставил его заряжаться», - рассказывает Солджачич. Уставший и не собиравшийся вставать, он стал мечтать о том, чтобы телефон, оказавшись дома, начинал заряжаться сам по себе .

В 2012-2015 гг. инженеры Вашингтонского университета разработали технологию, позволяющую использовать Wi-Fi в качестве источника энергии для питания портативных устройств и зарядки гаджетов. Технология уже признана журналом Popular Science как одна из лучших инноваций 2015 года. Повсеместное распространение технологии беспроводной передачи данных само по себе произвело настоящую революцию. И вот теперь настала очередь беспроводной передачи энергии по воздуху, которую разработчики из Вашингтонского университета назвали PoWiFi (от Power Over WiFi).


На стадии тестирования исследователи сумели успешно заряжать литий-ионные и никель-металл-гидридные аккумуляторы небольшой емкости. Используя роутер Asus RT-AC68U и несколько сенсоров, расположенных на расстоянии 8,5 метров от него. Эти сенсоры как раз и преобразуют энергию электромагнитной волны в постоянный ток напряжением от 1,8 до 2,4 вольта, необходимых для питания микроконтроллеров и сенсорных систем. Особенность технологии в том, что качество рабочего сигнала при этом не ухудшается. Достаточно лишь перепрошить роутер, и можно будет пользоваться им как обычно, плюс подавать питание к маломощным устройствам. На одной из демонстраций была успешно запитана небольшая камера скрытого наблюдения с низким разрешением, расположенная на расстоянии более 5 метров от роутера. Затем на 41% был заряжен фитнес-трекер Jawbone Up24, на это ушло 2,5 часа.

На каверзные вопросы о том, почему эти процессы не сказываются негативно на качестве работы сетевого канала связи, разработчики ответили, что это становится возможным благодаря тому, что перепрошитый роутер, во время своей работы, по незанятым передачей информации каналам рассылает пакеты энергии. К этому решению пришли когда обнаружили, что в периоды молчания энергия попросту утекает из системы, а ведь ее можно направить для питания маломощных устройств.

Во время исследований систему PoWiFi разместили в шести домах, и предложили жильцам пользоваться интернетом как обычно. Загружать веб-страницы, смотреть потоковое видео, а потом рассказать, что изменилось. В результате оказалось, что производительность сети не изменилась никак. То есть интернет работал как обычно, и присутствие добавленной опции не было заметным. И это были лишь первые тесты, когда по Wi-Fi собиралось относительно небольшое количество энергии .

В перспективе технология PoWiFi вполне сможет послужить для питания датчиков, встроенных в бытовую технику и военную технику, чтобы управлять ими беспроводным способом и осуществлять дистанционную зарядку/подзарядку.

Актуальным является передача энергии для БПЛА (вероятнее всего уже по технологии PoWiMax или от радиолокатора самолёта носителя):


Для БПЛА негатив от закона обратных квадратов (изотропно-излучающая антенна) частично «компенсирует» ширина луча антенны и диаграмма направленности:

Ведь БРЛС ЛА в импульсе может выдавать под 17 кВт энергии ЭМИ.

Это не сотовая связь -где ячейка должна обеспечить связь конечным элементам на 360 градусов.
Допустим такая вариация:
Самолёт носитель (для Perdix) это F-18 обладает (сейчас) БРЛС AN/APG-65:


максимальная средняя излучаемая мощность по 12000 Вт

Или в перспективе будет иметь AN/APG-79 AESA:


в импульсе должен выдавать под 15 кВт энергии ЭМИ

Этого вполне достаточно, что бы продлить активную жизнь Perdix Micro-Drones с нынешних 20 минут до часа, а может и больше.

Скорее всего будет использоваться промежуточный дрон Perdix Middle, которого будет облучать на достаточном расстоянии БРЛС истребителя, а он в свою очередь осуществит «раздачу» энергии для младших братьев Perdix Micro-Drones по PoWiFi/PoWiMax, параллельно обмениваясь с ними информацией (полётно -пилотажной, целевыми задачами, координацией роя).

Возможно вскоре дело дойдет и до зарядки сотовых телефонов, и других мобильных устройств, которые находятся в зоне действия Wi-Fi, Wi-Max или 5G?

Послесловие: 10-20 лет, после широкого внедрения в повседневную жизнь многочисленных электромагнитных излучателей СВЧ (Мобильные телефоны, Микроволновые печи, Компьютеры,WiFi,Blu tools и т.д.) внезапно тараканы в больших городах вдруг превратились в раритет! Теперь таракан- насекомое, которое можно встретить разве что в зоопарке. Они неожиданно исчезли из домов, которые раньше так любили.

ТАРАКАНЫ КАРЛ!
Эти монстры лидеры списка «радиорезистентных организмов» бесстыдно капитулировали!
Справка
LD 50 - средняя летальная доза, то есть доза убивает половину организмов в эксперименте; LD 100 - летальная доза убивает всех организмов в эксперименте.

Кто следующий на очереди?

Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в некоторых странах заметно различаются:
Украина: 2,5 мкВт/см². (самая жесткая санитарная норма в Европе)
Россия, Венгрия: 10 мкВт/см².
Москва: 2,0 мкВт/см². (норма существовала до конца 2009 года)
США, Скандинавские страны: 100 мкВт/см².
Временно допустимый уровень (ВДУ) от мобильных радиотелефонов (МРТ) для пользователей радиотелефонов в РФ определён 10 мкВт/см² (Раздел IV - Гигиенические требования к подвижным станциям сухопутной радиосвязи СанПиН 2.1.8/2.2.4.1190-03 «Гигиенические требования к размещению и эксплуатации средств сухопутной подвижной радиосвязи»).
В США Сертификат выдается Федеральной комиссией по связи (FCC) на сотовые аппараты, максимальный уровень SAR которых не превышает 1,6 Вт/кг (причем поглощенная мощность излучения приводится к 1 грамму ткани органов человека).
В Европе, согласно международной директиве Комиссии по защите от неионизирующего излучения (ICNIRP), значение SAR мобильного телефона не должно превышать 2 Вт/кг (при этом поглощенная мощность излучения приводится к 10 граммам ткани органов человека).
Сравнительно недавно в Великобритании безопасным уровнем SAR считался уровень равный 10 Вт/кг. Такая же примерно картина наблюдалась и в других странах.
Принятую в стандарте максимальную величину SAR (1,6 Вт/кг) даже нельзя с уверенностью отнести к «жестким» или к «мягким» нормам.
Принятые и в США и в Европе стандарты определения величины SAR (все нормирование микроволнового излучения от сотовых телефонов, о котором идет речь базируется только на термическом эффекте, то есть связанном с нагреванием тканей органов человека).

ПОЛНЫЙ ХАОС.
Медицина до сих пор пока не дала внятного ответа на вопрос: вреден ли мобильный/WiFi и насколько?
А как будет с беспроводной передачей электроэнергии СВЧ технологиями?
Тут мощности не ватты и мили ватты, а уже кВт…

Прим: Типичная WiMAX базовая станция излучает мощность на уровне приблизительно +43 дБм (20 Вт), а станция мобильной связи обычно передает на +23 дБм (200 мВт).


Теги:

  • Электроэнергия
  • СВЧ
  • PoWiFi
  • дроны
  • БПЛА
Добавить метки

Гироскоп (от древнегреческих «вращать» и «смотреть») – это в принципе любое вращающееся тело. В современной технике гироскоп представляет собой достаточно массивный ротор с большой скоростью вращения (несколько тысяч оборотов в минуту). Основным физическим свойством любого гироскопа является то, что он стремится сохранять направление оси своего вращения в пространстве. Это является следствием общего свойства инертности материи – ведь каждая точка вращающегося тела стремится сохранять скорость и направление своего движения.

Идея устройства гироскопических компасов проста. Если на борту, несмотря на развороты ВС, все время сохраняется некоторое постоянное направление (направление оси вращения гироскопа), то его можно принять за направление начала отсчета и отсчитывать от него угол до направления продольной оси ВС, то есть курс, и другие пилотажные элементы.

Разумеется, если ось гироскопа жестко закрепить на самолете, то она просто вынуждена будет поворачиваться вместе с ним и тогда никакое направление начала отсчета не сохранится. Поэтому гироскоп помещают в специальное устройство – карданов подвес , который обеспечивает гироскопу три степени свободы, то есть дает ему возможность свободно вращаться вокруг трех перпендикулярных осей. Карданов подвес (назван в честь Д. Кардана, который впервые описал его в своей книге) представляет собой две рамки, одна внутри другой, соединенные между собой в противоположных точках. Если внутри рамок поместить какое-нибудь тело, то оно будет сохранять свое положение, как бы рамки ни вращались вокруг него.

Поскольку курс измеряется в горизонтальной плоскости, ось курсового гироскопа , то есть гироскопа, предназначенного для измерения курса, должна располагаться горизонтально . Если эту ось направить по какому-либо выбранному направлению, например, по северному направлению меридиана данной точки, то она будет сохранять это направление, как бы ни вращалось ВС вместе с кардановым подвесом «вокруг» гироскопа. Остается только каким-либо образом измерить и передать на указатель компаса угол между осью гироскопа и продольной осью самолета и тогда можно отсчитывать курс относительно выбранного направления начала отсчета (в данном случае – от северного направления меридиана).

Выставка ГПК . Как следует из устройства гирополукомпаса, он сам не измеряет курс, то есть не может определить, где север и юг, куда направлена ось самолета относительно сторон света. Этим он отличается от магнитного компаса, чувствительный элемент которого сам определяет направление магнитного меридиана в данной точке. Все что делает ГПК – показывает направление продольной оси ВС относительно оси гироскопа , которая хотя и сохраняет свое направление, но в принципе может быть направлена куда угодно. Поэтому данный прибор и называется полукомпасом . Ведь полноценный компас – это прибор для измерения курса.

Только что включенный ГПК может показать совершенно любое значение гироскопического курса, поскольку ось гироскопа может оказаться в любом положении. Для отсчета курса с помощью гирополукомпаса необходимо сначала установить ось гироскопа с помощью задатчика курса по выбранному направлению начала отсчета.

С помощью задатчика курса необходимо установить такое значение курса, которое соответствует фактическому направлению продольной оси ВС относительно выбранного направления начала отсчета .

Рис. 5.21. Выставка оси курсового гироскопа по направлению начала отсчета

На рисунке (рис. 5.21, а) ось гироскопа стоит в направлении, не совпадающем с желаемым направлением начала отсчета С 0 и гироскопический курс γ г вовсе не совпадает с фактическим курсом γ о относительно направления начала отсчета (оно обозначено С 0).

Но если ось гироскорпа направить в направлении начала отсчета (рис. 5.20, б), то показания компаса будут соответствовать γ о. Следовательно, для того, чтобы с помощью использовать ГПК для определения курса, необходимо:

Выбрать направление начала отсчета курса;

Каким-либо образом определить, каков на самом деле курс самолета (направление его продольной оси) относительно этого направления;

Установить это значение на шкале гирополукомпаса с помощью задатчика курса.

Эта операция называется выставкой ГПК. Она аналогична установке правильного времени на часах, для которой, конечно, необходимо сначала узнать правильное время.

Курс ВС относительно выбранного меридиана можно узнать с помощью другого компаса, например, магнитного, который всегда имеется на самолете. Магнитный компас измеряет курс относительно магнитного меридиана места самолета, поэтому при установке на шкале ГПК значения магнитного курса ось гироскопа и окажется ориентированной по направлению магнитного меридиана в той точке, где эта операция была проделана.

Заметим, что это вовсе не означает, что ГПК будет теперь измерять магнитный курс. Это только в данном месте гироскопический курс совпадет с магнитным. Если же самолет переместится в другое место, то ось гироскопа сохранит прежнее положение, а направление магнитного меридиана в новой точке может быть уже другим из-за схождения меридианов и из-за изменения магнитного склонения.

Другой способ выставки ГПК не требует даже магнитного компаса. Перед взлетом, когда самолет находится на исполнительном старте на взлетно-посадочной полосе (ВПП), его продольная ось с высокой точностью соответствует направлению ВПП, которое, конечно, точно известно на каждом аэродроме. При выставке на шкале ГПК этого направления (магнитного курса взлета) ось гироскопа и будет направлена по северному направлению магнитного меридиана аэродрома вылета.

На практике выставка гирополукомпаса осуществляется по магнитному компасу на стоянке аэродрома перед выруливанием, а на исполнительном старте на ВПП установленный курс при необходимости корректируется задатчиком курса.

Ось гироскопа может быть выставлена по любому направлению, а не обязательно по направлению магнитного меридиана. В любом случае необходимо определить и выставить задатчиком курса фактический курс ВС относительно выбранного меридиана. Например, если за направление начала отсчета выбрано направление истинного меридиана аэродрома вылета, то нужно определить и выставить фактический истинный курс. Его можно определить прибавлением к магнитному курсу магнитного склонения.

Горизонтальная коррекция . При начальной выставке ось курсового гироскопа, конечно, располагается в горизонтальной плоскости. Ведь курс – это угол именно в горизонтальной плоскости, да и направление начала отсчета (меридиана) тоже является горизонтальным. Но что такое горизонтальная плоскость? Если принять Землю за сферу, то это плоскость, касательная к ней в данной точке, то есть перпендикулярная к радиусу Земли. А при вращении Земли эта плоскость меняет свое положение в мировом пространстве относительно звезд. Гироскоп же сохраняет свое направление и, следовательно, со временем выходит из этой горизонтальной плоскости (на самом деле это горизонтальная плоскость отклоняется от оси гироскопа).

Чтобы ось гироскопа (направление начала отсчета курса) оставалась горизонтальной в ГПК-52 и в более современных приборах предусмотрена горизонтальная коррекция . Ее механизм постоянно удерживает ось курсового гироскопа в горизонтальном положении.

В простейшем случае механизм горизонтальной коррекции представляет собой так называемый жидкостной переключатель , который выполняет функцию маятника. Это небольшая емкость с токопроводящей жидкостью, закрепленная на нижней части гироузла. В жидкости имеется пузырек воздуха, а по краям емкости – электрические контакты. Если гироузел с жидкостным маятником и, следовательно, ось гироскопа расположены горизонтально, то пузырек плавает в центре емкости. Если маятник вышел из плоскости горизонта, то пузырек примыкает к краю емкости, касаясь какой-либо пары контактов. Поскольку воздух в пузырьке ток не пропускает, изменяются электрические токи в цепях маятника и разность токов, протекающих через разные пары контактов, заставляет работать специальный электрический двигатель. Этот двигатель разворачивает внутреннюю рамку карданова подвеса и приводит гироузел вместе с осью гироскопа и жидкостным маятником в горизонтальное положение. Пузырек перестает замыкать контакты и двигатель выключается.

Механизм горизонтальной коррекции работает автоматически и не требует от экипажа каких-либо действий. При дальнейшем рассмотрении работы гироскопических приборов будем считать, что благодаря этому механизму ось курсового гироскопа все время находится в горизонтальном положении.

Азимутальная коррекция. За счет вращения Земли ось курсового гироскопа имеет уход и в азимуте, то есть поворачивается и вокруг вертикальной оси, отклоняясь от направления меридиана начальной выставки. Поскольку Земля вращается с запада на восток, нетрудно сообразить, что в северном полушарии Земли ось гироскопа «уходит» к востоку, то есть вращается по часовой стрелке, если смотреть сверху. Скорость этого ухода, то есть поворота оси гироскопа, зависит от широты места расположения гироскопа. На рис. 5.23 изображен гироскоп, а ось Y - направление местной вертикали в точке его расположения.

Вектор угловой скорости вращения Земли ω з направлен по оси вращения планеты, причем, в соответствии с правилом буравчика, в сторону северного полюса. Проекцию этого вектора на направление местной вертикали (ось Y) обозначим ω з. y .Из рис. 5.23 видно, что

ω з. y = ω з sin φ,

где φ - широта точки;

ω з - угловая скорость вращения Земли. Поскольку Земля совершает оборот на 360° за 24 часа, то ω з =15 °/ч.

Рис. 5.23. Азимутальный уход курсового гироскопа

Вектор ω з. y характеризует скорость вращения Земли вокруг вертикальной оси в точке относительно звезд и, следовательно, относительно сохраняющего свое направление гироскопа. Очевидно, что такой же по величине, но противоположной по направлению, будет скорость поворота оси гироскопа относительно Земли, если теперь Землю считать неподвижной.

Таким образом, скорость азимутального ухода гироскопа за счет суточного вращения Земли зависит от широты места самолета . На экваторе (φ =0) гироскоп от начального направления (например, направления истинного меридиана) не уходит. На полюсе (φ =90°) скорость ухода максимальна (15°/ч). На промежуточных широтах скорость ухода пропорциональна синусу широты. Например, на широте 30° она составляет 7,5°/ч (sin30° =0,5; 0,5х15=7,5).

В южном полушарии Земли широта отрицательна, поэтому противоположен и знак (сторона) ухода.

Таким образом, если даже на неподвижном самолете установить ось гироскопа, например, по истинному меридиану и не предпринять никаких мер, то с течением времени ось гироскопа будет уходить от меридиана. На компасе при этом будет меняться гироскопический курс, несмотря на то, что самолет неподвижен.

Для компенсации ухода гироскопа в азимуте ГПК снабжен механизмом азимутальной коррекции . Он представляет собой небольшой электромотор, скорость вращения которого можно регулировать. На пульте управления ГПК имеется кремальера установки широты пролетаемой местности, которая и регулирует скорость электромотора. Если установить с ее помощью некоторую широту φ уст , то двигатель будет поворачивать ось гироскопа с угловой скоростью прецессии (ухода)

ω пр = ω з sin φ уст,

но в сторону, противоположную той, в которую уходит гироскоп из-за вращения Земли.

Очевидно, что если установить φ уст равную фактической широте места самолета, то ось гироскопа будет сохранять свое первоначальное положение. Ведь с какой скоростью она «хочет» уйти за счет вращения Земли, с такой же скоростью, но в обратном направлении, ее будет поворачивать двигатель механизма азимутальной коррекции.

Механизм азимутальной коррекции на практике часто называют «широтным потенциометром», поскольку в первых типах гироскопических приборов (в том числе, ГПК-52) действительно использовался потенциометр для изменения скорости вращения электромотора.

Из изложенного следует, что для сохранения осью курсового гироскопа направления начала отсчета в полете необходимо устанавливать широту пролетаемой местности (на практике – при ее изменении на 1-2°). Если этого не делать или устанавливать широту неточно, ось гироскопа будет уходить со скоростью, соответствующей разности фактической и установленной широт, и, следовательно, будет возрастать погрешность измерения курса.

Конец работы -

Эта тема принадлежит разделу:

Системы координат, применяемые в навигации сферическая, полярная, ортодромическая

Рис Полярная система координат.. Дальность расстояние от начала системы координат до объекта точки..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Системы координат, применяемые в навигации (сферическая, полярная, ортодромическая)
Если очень высокая точность решения навигационных задач не требуется, то Землю можно рассматривать как сферу. В этом случае используется нормальная сферическая система координат, полюсы кото

Навигационные и пилотажные элементы
Пилотажные элементы. Навигация и пилотирование являются процессами управления движением ВС. Чтобы описывать это движение, используются величины, называемые навигационными и пилотаж

Ветер и его характеристики. Эквивалентный ветер
Воздушные массы атмосферы практически всегда находятся в движении, которое вызвано различием температуры и давления в различных районах земной поверхности. Причины и характер такого движения изучае

Навигационный треугольник скоростей. Зависимость путевой скорости и угла сноса от угла ветра
ВС движется относительно воздушной массы с истинной воздушной скоростью V, воздушная масса относительно земли со скоростью U,и скорость перемещения ВС относительно

Принципы измерения курса и виды курсовых приборов
Курс характеризует направление продольной оси ВС в горизонтальной плоскости, то есть показывает, куда направлен «нос» самолета. Он имеет большое значение для навигации, поскольку одновременно являе

Девиация, её виды, учёт в полёте
Очевидно, что в одной и той же точке пространства не могут одновременно существовать два магнитных поля, два вектора напряженности – Земли (H) и самолета (F). Эти

Практические рекомендации по применению магнитных компасов
1. Следует помнить, что в полярных районах, где велико магнитное наклонение и, следовательно, мала горизонтальная составляющая магнитного поля Земли, магнитные компасы работают неустойчиво и могут

Гирополукомпас ГПК-52. Ортодромичность гирополукомпаса
Гирополукомпас ГПК-52. Принцип работы гироскопических курсовых приборов рассмотрим на примере одного из простейших устройств такого рода− гирополукомпаса ГПК-52.

Ортодромичность курсового гироскопа
Теперь после анализа поведения курсового гироскопа на неподвижном самолете рассмотрим, как он будет вести себя в случае, когда ВС перемещается по ортодромической линии пути. Общий случай – п

Опорный меридиан и ортодромический курс. Преобразование курсов
Ось гироскопа в начале полета может быть выставлена по абсолютно любому направлению. Пилоты привыкли, что курс 0° – это на север, 90° – на восток и т.д. Поэтому, чтобы численные значения гир

Основные сведения о курсовых системах. Режим магнитной коррекции
Каждый из двух рассмотренных принципов измерения курса – магнитный и гироскопический – имеет свои достоинства и недостатки. Магнитный компас обладает тем достоинством, что позволяет именно

Режим магнитной коррекции
Как уже отмечалось, в режиме «ГПК» курсовая система работает аналогично обычному гирополукомпасу, поэтому этот режим не требует дополнительного отдельного рассмотрения. Рассмотрим работу к

Понятие о радиовысотомерах
Радиовысотомер (РВ) является автономным радиотехническим устройством. Это означает, что для его работы используются радиоволны и не требуется какого-либо оборудования на земле. Разл

Принцип работы, устройство и погрешности барометрического высотомера
По принципу своего устройства барометрический высотомер по сути представляет собой барометр-анероид с тем лишь отличием, что его шкала отградуирована не в единицах давления, а в единицах выс

Погрешности барометрического высотомера
Барометрический высотомер имеет ряд погрешностей, различающихся по вызывающим их причинам. Погрешности, вызванные разными факторами, складываются, образуя одну общую погрешность – разность между пр

Уровни начала отсчета барометрической высоты
В принципе, путем установки давления на шкале барометрического высотомера пилот может сам выбрать уровень, от которого он желает отсчитывать высоту. Но с точки зрения безопасности полетов необходим

Правила установки давления на шкале барометрического высотомера
Рассмотрим порядок установки давления при полете по ППП. Традиционная технология, принятая в нашей стране, предусматривает, что перед вылетом все члены экипажа на своих высотомерах

Однострелочные указатели скорости
В уравнение Бернулли входят плотности воздуха ρ в обоих сечения струйки. Для небольших скоростей (до 400-450 км/ч) и высот полета (до 4000-5000 м) воздух можно считать несжимаемым

Комбинированные указатели скорости
На больших скоростях и высотах разность истинной и приборной скоростей становится уже значительной. Кроме того, на больших скоростях и высотах начинает заметно сказываться сжимаемость воздуха. Поэт

Погрешности указателей скорости
Инструментальные погрешности ΔVи возникают из-за несовершенства конструкции прибора и неточности его регулировки. Каждый экземпляр прибора имеет свои значения инструментальны

Понятие о счислении
При выполнении любого полета члены летного экипажа должны в любой момент времени знать текущее местонахождение ВС. Определение места самолета – одна из основных задач аэронавигации. В аэронавигации

Графическое счисление пути
Полная прокладка. Целью полной прокладки является определение текущего МС и поэтому она, конечно, выполняется во время полета. Не следует думать, что в каждом полете пилот или штурман выполн

Принцип автоматизированного счисления частноортодромических координат
Счисление – это расчет текущих координат, поэтому основной частью любой автоматизированной системы счисления пути является навигационный вычислитель. Он может быть аналоговым, то есть основа

ДИСС. Курсодоплеровское и курсовоздушное счисление
Доплеровский измеритель скорости и сноса (ДИСС) – бортовое радиотехническое устройство, позволяющее измерять на борту ВС его путевую скорость и угол сноса. ДИСС основан на использов

Основные правила аэронавигации. Контроль пути и его виды
На протяжении всего полета экипаж обязан выполнять следующие основные правила аэронавигации. 1) Контроль выдерживания заданной траектории полета с периодичностью, необходимой для обеспечен

Визуальная ориентировка
Визуальная ориентировка – способ определения МС, основанный на сличении карты с пролетаемой местностью. Для визуальной ориентировки используются ориентиры. Навигационный ориентир

Обобщённый метод линий положения. Навигационный параметр, поверхность и линия положения
Навигационный параметр. Место самолета можно определить с помощью различных технических, в том числе радионавигационных средств и разными методами. Но как показал профессор В.В

Поверхность и линия положения
Если в какой-то точке пространства навигационный параметр имеет какое-то определенное значение, то это не вовсе не значит, что в других точках его значения должны быть обязательно другие. Наверняка

Виды линий положения
В навигации чаще всего используются навигационные параметры, которые являются геометрическими величинами, то есть расстояниями, углами и пр. В этом случае каждому виду навигационного параметра соот

Виды погрешностей. Средняя квадратическая погрешность
Виды погрешностей. Практически всегда погрешность включает в себя две составляющие ее части: систематическую и случайную. Δa= Δaсист + Δaслуч.

Навигационная характеристика радиокомпасной системы
Радиокомпасная система включает в себя наземную радиостанцию и бортовой пеленгатор, называемый автоматическим радиокомпасом (АРК). В качестве радиостанций могут использоваться специально установлен

Принцип работы АРК и порядок его настройки
Принцип работы радиокомпаса основан на направленном приеме радиоволн. АРК включает в себя следующие основные составные части: – поворотную рамочную антенну; – ненаправленную (шлей

Способы полёта на РНТ (пассивный, курсовой, активный)
Способы полета на или от радиостанции. Как показано ранее, КУР не является навигационным параметром, поскольку в одной и той же точке пространства может иметь любое значение в

Контроль пути по направлению с помощью АРК при полёте на и от РНТ
Условие контроля пути по направлению. Существует общий термин «радионавигационная точка» (РНТ), которым можно обозначать любое наземное радионавигационное средство: ОП

Контроль пути по дальности с помощью АРК
Контроль пути по дальности – это определение пройденного или оставшегося расстояния до ППМ. Для его выполнения также можно использовать АРК и ОПРС. Но для этого ОПРС, конечно, должна находиться не

Расчёт ИПС и определение МС по двум радиостанциям
Для решения некоторых навигационных задач, например, для определения МС, необходимо проложить на карте ЛРПС. Для этого необходимо сначала определить пеленг самолета. Поскольку на любой карте нанесе

Определение места самолета по двум радиостанциям
Определение места самолета – это полный контроль пути, поскольку если известно место самолета, то можно определить и уклонение от ЛЗП (контроль пути по направлению), и пройденное или оставшееся рас

Исправление пути с выходом в ППМ и с углом выхода
Исправление пути с выходом в ППМ. Исправление пути это действия по выводу ВС на заданную траекторию после того, как отклонение от нее обнаружено. Один из способов испр

Исправление пути с углом выхода
Ранее в главе 1 уже был рассмотрен один из способов исправления пути – с выходом в ППМ. Но такой способ в гражданской авиации применим главным образом при небольших линейных уклонениях, например, н

Указатели типа РМИ и УГР. Полёт по ЛЗП с их использованием
Наиболее распространены так называемые радиомагнитные индикаторы (РМИ). По-английски они называются точно так же – Radio Magnetic Indicator (RMI). В некоторых типах отечественных навигационных комп

Полет в створе радиостанций
Если полет должен выполняться по ЛЗП, на которой установлены две радиостанции, то говорят о полете в створе радиостанций. Если ВС летит между РНТ (одна впереди, а другая сзади), то створ называется

Минимальная и максимальность действия РНС
Минимальная дальность действия. В вертикальной плоскость диаграмма направленности большинства наземных радионавигационных средств (радиостанций, радиомаяков) выглядит примерно

Навигационная характеристика радиопеленгаторной системы
Характеристика радиопеленгаторной системы. Радиопеленгаторная система является в первую очередь средством управления воздушным движением (УВД). С ее помощью диспетчер УВД на зе

Радиомаячная система VOR и её применение для полёта по ЛЗП, определение МС
Принцип действия VOR. Радиомаячная угломерная система VOR (Very High Frequency Omni-directional Range) включает в себя наземное оборудование – радиомаяк VOR, и бортовое оборудо

Определение места самолета по одной радиостанции
В соответствии с обобщенным методом линий положения для определения МС необходимо два навигационных параметра и две соответствующие им линии положения. Казалось бы, что если радиостанция только одн

Принцип действия дальномерных систем. Наклонная и горизонтальная дальности
Характеристика DME. Дальномерная радионавигационная система (ДРНС) включает в себя наземное оборудование (дальномерный радиомаяк) и бортовое оборудование (самолетный дальномер)

Угломерно-дальномерные системы. Навигационная характеристика РСБН
Угломерно-дальномерными радионавигационными системами (УДРНС) называют такие системы, которые позволяют одновременно измерить два навигационных параметра – пеленг и дальность. С помощью УДРНС можно

Навигационная характеристика наземных РЛС и их применение для контроля и исправления пути
Понятие о радиолокации. Под радиолокацией (от «радио» и location (лат.) – определять местоположение) в широком смысле слова понимают способы определения местоположения и характ

Понятие о зональной навигации
Навигационное наведение. Невозможно понять, что такое зональная навигация, да и современная навигация вообще, если не иметь представления о таком понятии, как навигационное нав

Принцип работы бортовой РЛС. Органы управления БРЛС «Гроза»
Бортовая радиолокационная станция (БРЛС) является автономным радиотехническим средством, позволяющим наблюдать радиолокационное изображение пролетаемой местности и окружающей воздушной обстановки,

Способы определения МС с помощью БРЛС (угломерный, дальномерный, угломерно-дальномерный)
С помощью БРЛС можно определить МС гораздо точнее, чем обзорно-сравнительным способом. Для этого на экране локатора нужно измерить курсовой угол и дальность до ориентира. Курсовой угол ори

Обзорно-сравнительный способ ориентировки по БРЛС и определение с её помощью путевой скорости и угла сноса
Благодаря тому, что на экране БРЛС формируется изображение пролетаемой местности, пилот может вести ориентировку путем сопоставления радиолокационного изображения с полетной картой, наподобие того,

Определение путевой скорости и угла сноса по БРЛС
Определение путевой скорости. Все ориентиры на экране по мере движения ВС перемещаются в сторону, противоположную направлению движения ВС, то есть, на экране примерно вниз. Име

Принцип инерциального счисления пути
Инерциальные навигационные системы (ИНС) основаны на измерении ускорений ВС по осям системы координат. Ускорения измеряются устройствами, называемыми акселерометрами. Принцип действия

Параметры, определяемые с помощь ИНС. Бесплатформенные ИНС
Параметры, определяемые с помощью ИНС.Инерциальные системы предназначены для определения координат места самолета. Но в процессе их определения можно получить значения многих д

Бесплатформенные инерциальные навигационные системы
На протяжении многих десятилетий усилия инженеров, разрабатывавших традиционные ИНС, были направлены на уменьшение собственного ухода гироскопов, удерживающих гироплатформу в заданном положении. Не

Расчёт курса, скорости и времени по известному ветру
Рассмотрим порядок решения задачи на примере со следующими исходными данными: V = 400; ЗМПУ =232; δ =290; U = 70; S = 164; ΔМ= –4.

Определение ветра в полёте
Дано: V=680; W=590; МК=312; УС=+8; ΔМ= –4. Найти: δн, δ, U.

Расчёт истинной скорости по широкой стрелке
Истинная скорость по показанию широкой стрелки КУС рас­считывается по формуле: Vи = Vпр + ΔVи + ΔVa + ΔVсж + ΔV

Гироскоп (от древнегреческих «вращать» и «смотреть») – это в принципе любое вращающееся тело. В современной технике гироскоп представляет собой достаточно массивный ротор с большой скоростью вращения (несколько тысяч оборотов в минуту). Основным физическим свойством любого гироскопа является то, что он стремится сохранять направление оси своего вращения в пространстве. Это является следствием общего свойства инертности материи – ведь каждая точка вращающегося тела стремится сохранять скорость и направление своего движения.

Идея устройства гироскопических компасов проста. Если на борту, несмотря на развороты ВС, все время сохраняется некоторое постоянное направление (направление оси вращения гироскопа), то его можно принять за направление начала отсчета и отсчитывать от него угол до направления продольной оси ВС, то есть курс, и другие пилотажные элементы.

Разумеется, если ось гироскопа жестко закрепить на самолете, то она просто вынуждена будет поворачиваться вместе с ним и тогда никакое направление начала отсчета не сохранится. Поэтому гироскоп помещают в специальное устройство – карданов подвес , который обеспечивает гироскопу три степени свободы, то есть дает ему возможность свободно вращаться вокруг трех перпендикулярных осей. Карданов подвес (назван в честь Д. Кардана, который впервые описал его в своей книге) представляет собой две рамки, одна внутри другой, соединенные между собой в противоположных точках. Если внутри рамок поместить какое-нибудь тело, то оно будет сохранять свое положение, как бы рамки ни вращались вокруг него.

Поскольку курс измеряется в горизонтальной плоскости, ось курсового гироскопа , то есть гироскопа, предназначенного для измерения курса, должна располагаться горизонтально . Если эту ось направить по какому-либо выбранному направлению, например, по северному направлению меридиана данной точки, то она будет сохранять это направление, как бы ни вращалось ВС вместе с кардановым подвесом «вокруг» гироскопа. Остается только каким-либо образом измерить и передать на указатель компаса угол между осью гироскопа и продольной осью самолета и тогда можно отсчитывать курс относительно выбранного направления начала отсчета (в данном случае – от северного направления меридиана).

Выставка ГПК . Как следует из устройства гирополукомпаса, он сам не измеряет курс, то есть не может определить, где север и юг, куда направлена ось самолета относительно сторон света. Этим он отличается от магнитного компаса, чувствительный элемент которого сам определяет направление магнитного меридиана в данной точке. Все что делает ГПК – показывает направление продольной оси ВС относительно оси гироскопа , которая хотя и сохраняет свое направление, но в принципе может быть направлена куда угодно. Поэтому данный прибор и называется полукомпасом . Ведь полноценный компас – это прибор для измерения курса.


Только что включенный ГПК может показать совершенно любое значение гироскопического курса, поскольку ось гироскопа может оказаться в любом положении. Для отсчета курса с помощью гирополукомпаса необходимо сначала установить ось гироскопа с помощью задатчика курса по выбранному направлению начала отсчета.

С помощью задатчика курса необходимо установить такое значение курса, которое соответствует фактическому направлению продольной оси ВС относительно выбранного направления начала отсчета .

Рис. 5.21. Выставка оси курсового гироскопа по направлению начала отсчета

На рисунке (рис. 5.21, а) ось гироскопа стоит в направлении, не совпадающем с желаемым направлением начала отсчета С 0 и гироскопический курс γ г вовсе не совпадает с фактическим курсом γ о относительно направления начала отсчета (оно обозначено С 0).

Но если ось гироскорпа направить в направлении начала отсчета (рис. 5.20, б), то показания компаса будут соответствовать γ о. Следовательно, для того, чтобы с помощью использовать ГПК для определения курса, необходимо:

Выбрать направление начала отсчета курса;

Каким-либо образом определить, каков на самом деле курс самолета (направление его продольной оси) относительно этого направления;

Установить это значение на шкале гирополукомпаса с помощью задатчика курса.

Эта операция называется выставкой ГПК. Она аналогична установке правильного времени на часах, для которой, конечно, необходимо сначала узнать правильное время.

Курс ВС относительно выбранного меридиана можно узнать с помощью другого компаса, например, магнитного, который всегда имеется на самолете. Магнитный компас измеряет курс относительно магнитного меридиана места самолета, поэтому при установке на шкале ГПК значения магнитного курса ось гироскопа и окажется ориентированной по направлению магнитного меридиана в той точке, где эта операция была проделана.

Заметим, что это вовсе не означает, что ГПК будет теперь измерять магнитный курс. Это только в данном месте гироскопический курс совпадет с магнитным. Если же самолет переместится в другое место, то ось гироскопа сохранит прежнее положение, а направление магнитного меридиана в новой точке может быть уже другим из-за схождения меридианов и из-за изменения магнитного склонения.

Другой способ выставки ГПК не требует даже магнитного компаса. Перед взлетом, когда самолет находится на исполнительном старте на взлетно-посадочной полосе (ВПП), его продольная ось с высокой точностью соответствует направлению ВПП, которое, конечно, точно известно на каждом аэродроме. При выставке на шкале ГПК этого направления (магнитного курса взлета) ось гироскопа и будет направлена по северному направлению магнитного меридиана аэродрома вылета.

На практике выставка гирополукомпаса осуществляется по магнитному компасу на стоянке аэродрома перед выруливанием, а на исполнительном старте на ВПП установленный курс при необходимости корректируется задатчиком курса.

Ось гироскопа может быть выставлена по любому направлению, а не обязательно по направлению магнитного меридиана. В любом случае необходимо определить и выставить задатчиком курса фактический курс ВС относительно выбранного меридиана. Например, если за направление начала отсчета выбрано направление истинного меридиана аэродрома вылета, то нужно определить и выставить фактический истинный курс. Его можно определить прибавлением к магнитному курсу магнитного склонения.

Горизонтальная коррекция . При начальной выставке ось курсового гироскопа, конечно, располагается в горизонтальной плоскости. Ведь курс – это угол именно в горизонтальной плоскости, да и направление начала отсчета (меридиана) тоже является горизонтальным. Но что такое горизонтальная плоскость? Если принять Землю за сферу, то это плоскость, касательная к ней в данной точке, то есть перпендикулярная к радиусу Земли. А при вращении Земли эта плоскость меняет свое положение в мировом пространстве относительно звезд. Гироскоп же сохраняет свое направление и, следовательно, со временем выходит из этой горизонтальной плоскости (на самом деле это горизонтальная плоскость отклоняется от оси гироскопа).

Чтобы ось гироскопа (направление начала отсчета курса) оставалась горизонтальной в ГПК-52 и в более современных приборах предусмотрена горизонтальная коррекция . Ее механизм постоянно удерживает ось курсового гироскопа в горизонтальном положении.

В простейшем случае механизм горизонтальной коррекции представляет собой так называемый жидкостной переключатель , который выполняет функцию маятника. Это небольшая емкость с токопроводящей жидкостью, закрепленная на нижней части гироузла. В жидкости имеется пузырек воздуха, а по краям емкости – электрические контакты. Если гироузел с жидкостным маятником и, следовательно, ось гироскопа расположены горизонтально, то пузырек плавает в центре емкости. Если маятник вышел из плоскости горизонта, то пузырек примыкает к краю емкости, касаясь какой-либо пары контактов. Поскольку воздух в пузырьке ток не пропускает, изменяются электрические токи в цепях маятника и разность токов, протекающих через разные пары контактов, заставляет работать специальный электрический двигатель. Этот двигатель разворачивает внутреннюю рамку карданова подвеса и приводит гироузел вместе с осью гироскопа и жидкостным маятником в горизонтальное положение. Пузырек перестает замыкать контакты и двигатель выключается.

Механизм горизонтальной коррекции работает автоматически и не требует от экипажа каких-либо действий. При дальнейшем рассмотрении работы гироскопических приборов будем считать, что благодаря этому механизму ось курсового гироскопа все время находится в горизонтальном положении.

Азимутальная коррекция. За счет вращения Земли ось курсового гироскопа имеет уход и в азимуте, то есть поворачивается и вокруг вертикальной оси, отклоняясь от направления меридиана начальной выставки. Поскольку Земля вращается с запада на восток, нетрудно сообразить, что в северном полушарии Земли ось гироскопа «уходит» к востоку, то есть вращается по часовой стрелке, если смотреть сверху. Скорость этого ухода, то есть поворота оси гироскопа, зависит от широты места расположения гироскопа. На рис. 5.23 изображен гироскоп, а ось Y - направление местной вертикали в точке его расположения.

Вектор угловой скорости вращения Земли ω з направлен по оси вращения планеты, причем, в соответствии с правилом буравчика, в сторону северного полюса. Проекцию этого вектора на направление местной вертикали (ось Y) обозначим ω з. y .Из рис. 5.23 видно, что

ω з. y = ω з sin φ,

где φ - широта точки;

ω з - угловая скорость вращения Земли. Поскольку Земля совершает оборот на 360° за 24 часа, то ω з =15 °/ч.

Рис. 5.23. Азимутальный уход курсового гироскопа

Вектор ω з. y характеризует скорость вращения Земли вокруг вертикальной оси в точке относительно звезд и, следовательно, относительно сохраняющего свое направление гироскопа. Очевидно, что такой же по величине, но противоположной по направлению, будет скорость поворота оси гироскопа относительно Земли, если теперь Землю считать неподвижной.

Таким образом, скорость азимутального ухода гироскопа за счет суточного вращения Земли зависит от широты места самолета . На экваторе (φ =0) гироскоп от начального направления (например, направления истинного меридиана) не уходит. На полюсе (φ =90°) скорость ухода максимальна (15°/ч). На промежуточных широтах скорость ухода пропорциональна синусу широты. Например, на широте 30° она составляет 7,5°/ч (sin30° =0,5; 0,5х15=7,5).

В южном полушарии Земли широта отрицательна, поэтому противоположен и знак (сторона) ухода.

Таким образом, если даже на неподвижном самолете установить ось гироскопа, например, по истинному меридиану и не предпринять никаких мер, то с течением времени ось гироскопа будет уходить от меридиана. На компасе при этом будет меняться гироскопический курс, несмотря на то, что самолет неподвижен.

Для компенсации ухода гироскопа в азимуте ГПК снабжен механизмом азимутальной коррекции . Он представляет собой небольшой электромотор, скорость вращения которого можно регулировать. На пульте управления ГПК имеется кремальера установки широты пролетаемой местности, которая и регулирует скорость электромотора. Если установить с ее помощью некоторую широту φ уст , то двигатель будет поворачивать ось гироскопа с угловой скоростью прецессии (ухода)

ω пр = ω з sin φ уст,

но в сторону, противоположную той, в которую уходит гироскоп из-за вращения Земли.

Очевидно, что если установить φ уст равную фактической широте места самолета, то ось гироскопа будет сохранять свое первоначальное положение. Ведь с какой скоростью она «хочет» уйти за счет вращения Земли, с такой же скоростью, но в обратном направлении, ее будет поворачивать двигатель механизма азимутальной коррекции.

Механизм азимутальной коррекции на практике часто называют «широтным потенциометром», поскольку в первых типах гироскопических приборов (в том числе, ГПК-52) действительно использовался потенциометр для изменения скорости вращения электромотора.

Из изложенного следует, что для сохранения осью курсового гироскопа направления начала отсчета в полете необходимо устанавливать широту пролетаемой местности (на практике – при ее изменении на 1-2°). Если этого не делать или устанавливать широту неточно, ось гироскопа будет уходить со скоростью, соответствующей разности фактической и установленной широт, и, следовательно, будет возрастать погрешность измерения курса.