Как держать форму. Массаж. Здоровье. Уход за волосами

Технические противоречия. Об уточнении понятия противоречия в триз

Основные понятия классической ТРИЗ, в том числе, противоречия, были определены еще в книгах Г.С. Альтшуллера и с тех пор не подвергались серьезной ревизии и уточнению.

Сегодня ТРИЗ применяется не только в сфере развития технических систем, но и в других сферах человеческой деятельности, в частности, в сферы развития информационных и бизнес-систем. Для успешного применения ТРИЗ в этих сферах требуется согласование понятий, в том числе, противоречий, с понятиями, которые используются специалистами по информационным и бизнес-системам.

Сегодня уже предпринимаются попытки, например, в , провести такую ревизию понятий. Однако пока не решены некоторые проблемы, в том числе,

  1. Плохо определена связь между административным и техническим противоречием.
  2. Нет единой модели, описывающей разные виды противоречий, в частности, как соотносится противоречие альтернативных систем с техническим и физическим противоречиями.
  3. Наименования и структура видов противоречий плохо подходят для использования в других (не-технических) областях.

В данной статье предлагается общая схема понятия противоречий, в которой устранены указанные недостатки.

Требования и ограничения

Понятие «требование» является одним из ключевых в инженерной деятельности. Пожалуй, наиболее зрелые технологии управления требованиями сегодня используются в таких сферах, как системная инженерия и инженерия программного обеспечения .

В системной инженерии сегодня принято различать 2 уровня требований:

  1. Система рассматривается в виде «чёрного ящика». Требования к системе описывают, что от системы хотят ее стейкхолдеры, а также что необходимо надсистеме, в которую входит рассматриваемая система. Такого рода требования называются требованиями стейкхолдеров .
  2. Система рассматривается в виде «прозрачного ящика» на различных стадиях жизненного цикла. Соответственно, такие требования включают предположения о том, как система должна быть устроена (состав и структура системы), а также как она должна себя вести (функционирование системы). Такого рода требования называются системными требованиями .

Очевидно, что системные требования связаны с требованиями стейкхолдеров. По сути, системные требования описывают способы, посредством которых в системе должны реализовываться требования стейкхолдеров.

Особый вид требований в системной инженерии – это ограничения, которым должна удовлетворять система. Широко применяемое в ТРИЗ понятие «нежелательный эффект» полностью соответствует понятию «ограничение».

Пример. Компания «К» внедрила систему электронного документооборота. Данная система позволила планировать сроки обработки и длительность маршрута каждого документа в подразделениях компании «К». Для этого в компании «К» для каждого вида документа установлены нормативные сроки его обработки в подразделении.
Однако в деятельности компании «К» присутствуют документы, которые поступают от внешних контрагентов «А» (накладные, счета и т.п.), а также документы, маршрут обработки которых предполагает их передачу контрагентам «А» и последующий возврат в компанию «К» (коммерческие предложения, договоры, проектная документация и т.п.).
Одно из возможных решений – это согласование с контрагентами «А» для определенных видов документов нормативных сроков их обработки у контрагента. Но не все контрагенты согласны такие нормативы устанавливать и соблюдать. В некоторых случаях согласование нормативов невозможно из-за сроков или по каким-либо другим причинам.

В приведенном выше примере можно выделить следующие требования стейкхолдеров:

  1. Руководство компании «К» хочет, чтобы в системе документооборота устанавливались сроки и маршруты обработки каждого документа.
  2. Руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов.

Системные требования :
(СТ1) Для каждого вида документа и каждого вида обработки в подразделениях компании «К» должны быть установлены сроки выполнения.

Системное ограничение :
(СО1) Для документов, обрабатываемы контрагентами «А», сроки выполнения обработки документов у контрагента неизвестны.

Общая схема противоречий

Административное противоречие

Известно следующее определение административного противоречия (АП): «нужно что-то сделать, а как сделать – неизвестно…» .

В рамках предлагаемой схемы АП может быть представлено как требование и неизвестный (или не определенный) способ его выполнения. Схема административного противоречия представлена на следующем рисунке.

Из представленной схемы следует, что АП описывает неопределенную изобретательскую ситуацию. Для ее уточнения и выявления противоречия необходимо выбрать известный способ выполнения требования.

Например, в приведенном выше примере требование СТ1 (для каждого вида документа и каждого вида обработки в подразделениях компании «К» должны быть установлены сроки выполнения) не может быть реализовано, для случая, когда документ обрабатывается контрагентом. В этом случае имеет место ограничение СО1 (для документов, обрабатываемы контрагентами «А», сроки выполнения обработки документов у контрагента неизвестны).

В рассматриваемом примере административное противоречие может быть определено следующим образом:

Как реализовать требование СТ2 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»)?

Техническое противоречие

В ТРИЗ техническое противоречие (ТП) определено как …взаимодействия в системе, состоящие, например, в том, что полезное действие вызывает одновременно и вредное. Или – введение (усиление) полезного действия, либо устранение (ослабление) вредного действия вызывает ухудшение (в частности, недопустимое усложнение) одной из частей системы или всей системы в целом .

В рамках предлагаемой схемы ТП может быть представлено следующим образом: известный способ (или его изменение) приводит к возникновению противоречия между 2-мя требованиями. Схема ТП представлена на следующем рисунке.

Из схемы следует, что ТП описывает отношение между способом и противоречивыми требованиями. Соответственно, мы можем использовать для обозначения данной структуры термин «противоречие требований». Данный термин уже используют М. Рубин и В. Кияев в .

Пример. Для реализации требования СТ2 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А») можно использовать следующий известный способ: согласовать с контрагентом «А» нормативный срок обработки документа. Однако использование данного способа нарушит одно из требований стейкхолдеров (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).
В этом случае мы получаем противоречие:
Если
согласовать нормативные сроки обработки документов с контрагентом «А»,
То
(+) мы сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»),
Но
(-) не реализуем требование стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).

Разделение противоречия на ТП1 и ТП2 в АРИЗ в рамках предлагаемой схемы противоречий представляет собой операцию со способом: изменение способа порождает ТП1, не изменение способа – ТП2. В частном случае, это может быть использование и не использование известного способа.

Например, в системе документооборота ТП1 может быть сформулировано так, как указано выше, а ТП2 – следующим образом:
Если
Не согласовать нормативные сроки обработки документов с контрагентом «А»,
То
i>(+) мы обеспечиваем реализацию требования стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).
Но
(-) мы не сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»).

Противоречие альтернативных систем

Понятие альтернативного технического противоречия (АТП) или противоречия альтернативных систем предложено В. Герасимовым и С. Литвиным в методе объединения альтернативных систем в надсистему, описанном в . В соответствии с этим методом пара технических противоречий формулируется в соответствии со следующим шаблоном :

АТП1 : Если система реализована в виде базовой системы, то ее достоинством является (указать), но при этом имеется недостаток (указать).
АТП2 : Если система реализована в виде (указать название альтернативной системы), то ее достоинством является (указать устраненный недостаток базовой системы), но при этом имеется недостаток (указать).

В рамках предлагаемой схемы альтернативное техническое противоречие (АТП) может быть представлено следующим образом.

В ТРИЗ физическое противоречие (ФП) определено следующим образом:
… часть рассматриваемой системы должна находиться в таком-то физическом состоянии, чтобы удовлетворять одному требованию задачи, и должна находиться в противоположном состоянии, чтобы удовлетворять другому требованию задачи .

М. Рубин и В. Кияев в предложили новое наименование для ФП – противоречие свойств (ПС). Их определение выглядит так:
формулировка противоположного состояния того или иного свойства одного элемента системы, необходимое для реализации противоположенных требований к системе.

Другими словами, для определения ФП (ПС) необходимо выделить элемент, который должен обладать противоположными свойствами, чтобы удовлетворить противоречивым требованиям. Очевидно, что объект с противоположными свойствами – это элемент, который входит в состав способа, который был выбран в АП и рассматривался в ТП.

В рамках предлагаемой схемы ФП (ПС) может быть представлено следующим образом:

Например, в противоречии, сформулированном для системы документооборота, мы рассматриваем способ (согласовать нормативные сроки обработки документов с контрагентом «А»). Объект, который лежит в основе противоречия – это срок обработки документа у контрагента «А».

Соответственно, противоречие свойств можно сформулировать следующим образом:
нормативный срок должен быть установлен , чтобы мы сможем реализовать требование СТ1 (в системе документооборота нужно установить в нормативный срок обработки документа у контрагента «А»),

И
нормативный срок не должен быть установлен , чтобы мы смогли реализовать требование стейкхолдера (руководство контрагента «А» хочет, чтобы документы компании «К» обрабатывались без нормативов).

В случае АТП элемент является частью способа, реализованного в базовой системе.

Заключение

Предлагаемая общая схема противоречия отличается от существующих в ТРИЗ определений тем, что для описания противоречия используются понятия «требование» и «способ реализации требований».

Использование в схеме противоречия способа реализации требований позволяет установить связь между административным и техническим противоречием. На уровне административного противоречия нам не известен (либо не выбран) способ реализации требования. Выбирая способ, решатель переходит от административного к техническому противоречию (противоречию требований). Затем, выбирая элемент способа, решатель переходит от ТП (противоречия требований) к ФП (противоречию свойств).

Использование в структуре модели противоречия требований позволяет интегрировать ТРИЗ с достаточно развитыми в различных сферах деятельности технологиями управления требованиями. В перспективе данная схема противоречий и методы работы с ними могут быть интегрированы в системы управления требованиями (RMS) .

Литература

  1. Рубин М.С., Кияев В.И. Основы ТРИЗ и инновации. Применение ТРИЗ в программных и информационных системах: Учебное пособие. 2013.
  2. ISO/IEC 15288:2002. System Engineering. System Life-Cycle Processes.
  3. Software Engineering Body of Knowledge, IEEE, 2004
  4. Альтшуллер Г.С. Найти идею, Введение в теорию решения изобретательских задач, Петрозаводск, Скандинавия, 2003
  5. Альтшуллер Г.С. АРИЗ – значит победа. В сб. Правила игры без правил / Сост.: А.Б. Селюцкий, Петрозаводск, Карелия, 1989.
  6. Альтшуллер Г.С. Алгоритм решения изобретательских задач АРИЗ-85В. 1985.
  7. Герасимов В.М., Литвин С.С. Зачем технике плюрализм? Развитие альтернативных технических систем путем их объединения в надсистему. Ленинград. Журнал ТРИЗ, №1, 1990.
  8. Альтшуллер Г.С., Селюцкий А.Б. Крылья для Икара. Как решать изобретательские задачи. Петрозаводск, Карелия, 1980.

Технические противоречия

Изобретательские задачи часто путают с задачами техническими, инженерными, конструкторскими. Построить обычный дом, имея готовые чертежи и расчеты, - задача техническая. Рассчитать обычный мост, пользуясь готовыми формулами, - задача инженерная. Спроектировать удобный и дешевый автобус, найдя компромисс между "удобно" и "дешево", - задача конструкторская. При решении этих задач не приходится преодолевать противоречия. Задача становится изобретательской только в том случае, если для ее решения необходимо преодолеть противоречие.

Не сталкиваемся мы с противоречиями и при решении задач первого уровня. Строго говоря, это задачи конструкторские, а не изобретательские. Юридическое понимание термина "изобретение" не совпадает с пониманием, так сказать, техническим, творческим. По-видимому, со временем юридический статус изобретения будет несколько изменен, и простые конструкторские решения перестанут считаться изобретениями. Во избежание путаницы будем пока пользоваться словосочетанием "изобретательская задача первого уровня", помня, однако, что подлинные изобретательские задачи второго и более высоких уровней обязательно связаны с преодолением противоречий.

В самом факте возникновения изобретательской задачи уже присутствует противоречие: нужно что-то сделать, а как это сделать - неизвестно. Такие противоречия принято называть административными (АП). Выявлять административные противоречия нет необходимости, они лежат на поверхности задачи. Но и эвристическая, "подсказывательная" сила таких противоречий равна нулю: они не говорят, в каком направлении надо искать решение.

В глубине административных противоречий лежат технические противоречия (ТП): если известными способами улучшить одну часть (или один параметр) технической системы, недопустимо ухудшится другая часть (или другой параметр). Технические противоречия часто указаны в условиях задачи, но столь же часто исходная формулировка ТП требует серьезной корректировки. Зато правильно сформулированное ТП обладает определенной эвристической ценностью. Правда, формулировка ТП не дает указания на конкретный ответ. Но она позволяет сразу отбросить множество "пустых" вариантов: заведомо не годятся все варианты, в которых выигрыш в одном свойстве сопровождается проигрышем в другом.

Дополнение.

Любую задачу можно назвать изобретательской, если для ее решения нужно разрешить противоречие. В ТРИЗ различают три вида противоречий: административное, техническое и физическое . АДМИНИСТРАТИВНОЕ ПРОТИВОРЕЧИЕ возникает, когда необходимо что-то сделать, но неизвестно каким способом.

ПРИМЕР. Необходимо повысить точность обработки какой-либо детали, но как? То ли платить дополнительно рабочему за увеличение точности, то ли использовать более совершенный станок, то ли вообще сменить технологию обработки.

Преодолевая административные противоречия каким-либо способом, сталкиваемся с противоречием техническим .

ПРИМЕР. Допустим, решили увеличить скорость самолета и для этого поставили на него мощные двигатели. Но крылья не могут оторвать от земли потяжелевший самолет. Решили увеличить крылья, но возросшее лобовое сопротивление свело почти на нет мощь новых двигателей.

ТЕХНИЧЕСКОЕ ПРОТИВОРЕЧИЕ - это конфликт внутри технической системы между ее параметрами, узлами, деталями.

При уточнении задачи техническое противоречие заменяется физическим.

ФИЗИЧЕСКОЕ ПРОТИВОРЕЧИЕ возникает между параметрами технической системы в каком-либо одном элементе или даже его части.

ПРИМЕР Для приведенной выше задачи с самолетом физическое противоречие для крыла звучит так:

ДОЛЖНО БЫТЬ маленькое крыло, ЧТОБЫ не создавать лобовое сопротивление и не уменьшать скорости самолета, иДОЛЖНО БЫТЬ большое крыло, ЧТОБЫ оторвать самолет от земли.

Физические противоречия в простейших случаях можно разрешить, разделяя противоречивые требования во времени и в пространстве, иногда используют фазовые переходы и другие физические эффекты.

Например, разрешение противоречия во времени: во время полета крыло маленькое, а во время взлета и посадки - большое (крыло с изменяемой геометрией).

Для закрепления материала рассмотрим еще один пример. На игрушечной фабрике решили освоить новинку - летающую куклу Карлсон. Но как сделать куклу достаточно эстетичной и заставить ее летать - непонятно (это АДМИНИСТРАТИВНОЕ противоречие).

В результате разрешения административного противоречия пришли к ТЕХНИЧЕСКОМУ противоречию: если у куклы винт большой, то она летает, но внешний вид у нее ужасный - не Карлсон, а ветряная мельница. Если винт маленький, то внешний вид прекрасный, но летать кукла отказывается.

Физическое противоречие в данном случае можно сформулировать так: винт должен быть большим, чтобы кукла летала, и винт должен быть маленьким, чтобы она была эстетичной. Это противоречие довольно легко разрешается: в «спокойном» состоянии лопасти винта свернуты в рулон, но при вращении они разворачиваются центробежной силой и становятся большими.

Список приемов устранения технических противоречий

1. Принцип дробления:

а) разделить объект на независимые части;

б) выполнить объект разборным;

в) увеличить степень дробления объекта.

2. Принцип вынесения:

отделить от объекта “мешающую” часть (“мешающее” свойство) или, наоборот, выделить единственно нужную часть (нужное свойство).

3. Принцип местного качества:

а) перейти от однородной структуры объекта (или внешней среды, внешнего воздействия) к неоднородной;

б) разные части объекта должны иметь (выполнять) различные функции;

в) каждая часть объекта должна находиться в условиях, наиболее благоприятных для ее работы.

4. Принцип асимметрии:

а) перейти от симметричной формы объекта к асимметричной;

б) если объект асимметричен, увеличить степень асимметрии.

5. Принцип объединения:

а) соединить однородные или предназначенные для смежных операций объекты;

б) объединить во времени однородные или смежные операции.

6. Принцип универсальности:

объект выполняет несколько разных функций, благодаря чему отпадает необходимость в других объектах.

7. Принцип “матрешки”:

а) один объект размещен внутри другого, который, в свою очередь, находится внутри третьего и т. д.; б) один объект проходит сквозь полости в другом объекте.

8. Принцип антивеса:

а) компенсировать вес объекта соединением с другим, обладающим подъемной силой;

б) компенсировать вес объекта взаимодействием со средой (за счет аэро- и гидродинамических сил).

9. Принцип предварительного антидействия:

а) заранее придать объекту напряжения, противоположные недопустимым или нежелательным рабочим напряжениям;

б) если по условиям задачи необходимо совершить какое-то действие, надо заранее совершить антидействие.

10. Принцип предварительного действия:

а) заранее выполнить требуемое действие (полностью или хотя бы частично);

б) заранее расставить объекты так, чтобы они могли вступить в действие без затраты времени на доставку и с наиболее удобного места.

11. Принцип “заранее подложенной подушки”:

компенсировать относительно невысокую надежность объекта заранее подготовленными аварийными средствами.

12. Принцип эквипотенциальности:

изменить условия работы так, чтобы не приходилось поднимать или опускать объект.

13. Принцип “наоборот”:

а) вместо действия, диктуемого условиями задачи, осуществить обратное действие;

б) сделать движущуюся часть объекта или внешней среды неподвижной, а неподвижную - движущейся; в) перевернуть объект “вверх ногами”, вывернуть его.

14. Принцип сфероидальности:

а) перейти от прямолинейных частей к криволинейным, от плоских поверхностей к сферическим, от частей, выполненных в виде куба и параллелепипеда, к шаровым конструкциям;

б) использовать ролики, шарики, спирали;

в) перейти от прямолинейного движения к вращательному, использовать центробежную силу.

15. Принцип динамичности:

а) характеристики объекта (или внешней среды) должны меняться так, чтобы быть оптимальными на каждом этапе работы;

б) разделить объект на части, способные перемещаться относительно друг друга;

в) если объект в целом неподвижен, сделать его подвижным, перемещающимся.

16. Принцип частичного или избыточного действия:

если трудно получить 100% требуемого эффекта, надо получить “чуть меньше” или “чуть больше” - задача при этом существенно упростится.

17. Принцип перехода в другое измерение:

а) трудности, связанные с движением (или размещением) объекта по линии, устраняются, если объект приобретает возможность перемещаться в двух измерениях (т. е. на плоскости). Соответственно задачи, связанные с движением (или размещением) объектов в одной плоскости, устраняются при переходе к пространству в трех измерениях;

б) использовать многоэтажную компоновку объектов вместо одноэтажной;

в) наклонить объект или положить его “на бок”;

г) использовать обратную сторону данной площади;

д) использовать оптические потоки, падающие на соседнюю площадь или обратную сторону имеющейся площади.

18. Принцип использования механических колебаний:

а) привести объект в колебательное движение;

б) если такое движение уже совершается, увеличить его частоту (вплоть до ультразвуковой);

в) использовать резонансную частоту;

г) применить вместо механических вибраторов пьезовибраторы;

д) использовать ультразвуковые колебания в сочетании с электромагнитными полями.

19. Принцип периодического действия:

а) перейти от непрерывного действия к периодическому (импульсному);

б) если действие уже осуществляется периодически, изменить периодичность;

в) использовать паузы между импульсами для другого действия.

20. Принцип непрерывности полезного действия:

а) вести работу непрерывно (все части объекта должны все время работать с полной нагрузкой);

б) устранить холостые и промежуточные ходы.

21. Принцип проскока:

вести процесс или отдельные его этапы (например, вредные или опасные) на большой скорости.

22. Принцип “обратить вред в пользу”:

а) использовать вредные факторы (в частности, вредное воздействие среды) для получения положительного эффекта;

б) устранить вредный фактор за счет сложения с другими вредными факторами;

в) усилить вредный фактор до такой степени, чтобы он перестал быть вредным.

23. Принцип обратной связи:

а) ввести обратную связь;

б) если обратная связь есть, изменить ее.

24. Принцип “посредника”:

а) использовать промежуточный объект, переносящий или передающий действие;

б) на время присоединить к объекту другой (легкоудаляемый) объект.

25. Принцип самообслуживания:

а) объект должен сам себя обслуживать, выполняя вспомогательные и ремонтные операции;

б) использовать отходы (энергии, вещества).

26. Принцип копирования:

а) вместо недоступного, сложного, дорогостоящего, неудобного или хрупкого объекта использовать его упрощенные и дешевые копии;

б) заменить объект или систему объектов их оптическими копиями (изображениями). Использовать при этом изменение масштаба (увеличить или уменьшить копии);

в) если используются видимые оптические копии, перейти к копиям инфракрасным и ультрафиолетовым.

27. Принцип дешевой недолговечности взамен долговечности:

заменить дорогой объект набором дешевых объектов, поступившись при этом некоторыми качествами (например, долговечностью).

28. Принцип замены механической схемы:

а) заменить механическую схему оптической, акустической или “запаховой”;

б) использовать электрические, магнитные и электромагнитные поля для взаимодействия с объектом; в) перейти от неподвижных полей к движущимся, от фиксированных - к меняющимся во времени, от неструктурных - к имеющим определенную структуру;

г) использовать поля в сочетании с ферромагнитными частицами.

29. Принцип использования пневмо- и гидроконструкций:

вместо твердых частей объекта использовать газообразные и жидкие: надувные и гидронаполняемые, воздушную подушку, гидростатические и гидрореактивные.

30. Принцип использования гибких оболочек и тонких пленок:

а) вместо обычных конструкций использовать гибкие оболочки и тонкие пленки;

б) изолировать объект от внешней среды с помощью гибких оболочек и тонких пленок.

31. Принцип применения пористых материалов:

а) выполнить объект пористым или использовать дополнительные пористые элементы (вставки, покрытия и т. д.);

б) если объект уже выполнен пористым, предварительно заполнить поры каким-то веществом.

32. Принцип изменения окраски:

а) изменить окраску объекта или внешней среды;

б) изменить степень прозрачности объекта или внешний среды.

33. Принцип однородности:

объекты, взаимодействующие с данным объектом, должны быть сделаны из того же материала (или близкого ему по свойствам).

34. Принцип отброса и регенерации частей:

а) выполнившая свое назначение или ставшая ненужной часть объекта должна быть отброшена (растворена, испарена и т. д.) или видоизменена непосредственно в ходе работы;

б) расходуемые части объекта должны быть восстановлены непосредственно в ходе работы.

35. Принцип изменения физико-химических параметров объекта:

а) изменить агрегатное состояние объекта;

б) изменить концентрацию или консистенцию;

в) изменить степень гибкости;

г) изменить температуру.

36. Принцип применения фазовых переходов:

использовать явления, возникающие при фазовых переходах, например, изменение объема, выделение или поглощение тепла и т. д.

37. Принцип применения теплового расширения:

а) использовать тепловое расширение (или сжатие) материалов;

б) использовать несколько материалов с разными коэффициентами теплового расширения.

38. Принцип применения сильных окислителей:

а) заменить обычный воздух обогащенным;

б) заменить обогащенный воздух кислородом;

в) воздействовать на воздух и кислород ионизирующим излучением;

г) использовать озонированный кислород;

д) заменить озонированный кислород (или ионизированный) озоном.

39. Принцип применения инертной среды:

а) заменить обычную среду инертной;

б) вести процесс в вакууме.

40. Принцип применения композиционных материалов:

перейти от однородных материалов к композиционны

В ТРИЗ есть представление, что если в проблемной ситуации удалось сформулировать противоречие (системное или физическое), то оно обязательно может быть разрешено.

К настоящему моменту выявлено 11 способов разрешения противоречий:

1. Во времени - в интервал времени t 1 изменяемый объект (система, действие) обладает свойством А, а в интервал времени t 2 - свойством не А,

2. В пространстве - в месте М 1 изменяемый объект (система, действие) обладает свойством А, а в месте М 2 - свойством - не А,

3. В системе (системный переход 1) - объединение объектов (систем, действий), обладающих свойством А в надсистему, обладающую свойством не А,

4. В системе (системный переход 2) - сочетание изменяемого объекта (системы, действия), обладающего свойством А с объектом (системой, действием), обладающим свойством не А,

5. В системе (системный переход 3) - весь изменяемый объект (система, действие) наделяется свойством А, а его части - свойством не А,

6. В структуре - одна часть изменяемого объекта (системы, действия) обладает свойством А, а другие части - свойством не А,

7. В фазовом состоянии (фазовый переход 1) - замена фазового состояния части изменяемого объекта (системы, действия) или внешней среды (надсистемы),

8. В фазовом состоянии (фазовый переход 2) - “двойственное” фазовое состояние одной части изменяемого объекта (системы, действия) - переход этой части из одного состояния в другое в зависимости от условий работы,

9. В фазовом состоянии (фазовый переход 3) - использование явлений, сопутствующих фазовому переходу,

10. В отношениях - по отношению к эталону Э 1 изменяемый объект (система, действие) обладает свойством А, а по отношению к эталону Э 2 - свойством не А,

11. В воздействиях - при воздействии В 1 изменяемый объект (система, действие) обладает свойством А, а при воздействии В 2 (отсутствии воздействия) - свойством не А.

Административное противоречие

Административное противоречие (АП) звучит так: «надо улучшить систему, но я не знаю как сделать это» . Это противоречие является самым слабым и может быть снято либо изучением дополнительных материалов, либо принятием/снятием административных решений.

В глубине АП лежат технические противоречия (ТП).

Техническое противоречие (ТП): если известными способами улучшить одну часть (или один параметр) технической системы, недопустимо ухудшится другая часть (или другой параметр). Поэтому техническое противоречие звучит так: «улучшение одного параметра системы приводит к ухудшению другого параметра» .

Правильно сформулированное ТП обладает определенной эвристической ценностью. Переход от АП к ТП резко понижает размерность задачи, сужает поле поиска решений и позволяет перейти от метода проб и ошибок к алгоритму (АРИЗ), который либо предлагает применить один или несколько стандартных технических приёмов, либо (в случае сложных задач) указывает на одно или несколько физических противоречий.

Техническое противоречие можно отобразить следующей схемой:

Шаги по формулированию технического противоречия:

Шаг Пример
1. Выбрать техническую систему Окно Акваланг
2. Определить цель развития ТС - улучшить какую-либо характеристику Повысить пропускание света Увеличить срок автономной службы
3. Предположить какой элемент ТС можно изменить и как, чтобы достичь цели Увеличить площадь стекла Увеличить размер воздушных баллонов
4. Выявить, какая полезная характеристика ТС при этом ухудшится Ухудшиться теплозащита Ухудшиться манёвренность аквалангиста
5. На основе шага 3 и 4 сформировать техническое противоречие Увеличивая площадь стекла в окне, мы улучшаем освещённость в комнате, но ухудшаем способность теплозащиты Увеличивая объём баллона, увеличиваем длительность автономного плавания, но при этом акваланг становиться менее удобным для маневра
6. Измените улучшаемое свойство на противоположное и постройте противоречие, обратное сделанному в шаге 5 Уменьшая площадь стекла в окне, мы улучшаем способность теплозащиты, но при этом ухудшаем освещённость в комнате Уменьшая объём баллона, делаем акваланг более удобным для манёвра, но при этом снижается длительность автономного плавания

Для решения задач, связанных с техническими противоречиями используют:

1) Формулировку Идеальной Системы, что приводит в область сильных решений.

Физическое противоречие

В физическом противоречии (ФП) к одной и той же части системы предъявляются взаимопротивоположные требования. Таким образом, при формулировке физического противоречия «для улучшения системы какая-то её часть должна находиться в разных физических состояниях одновременно, что невозможно» .

Техническое противоречие — это ситуация, при которой улучшение одного свойства, одной части системы приводит к недопустимому ухудшению другого свойства, другой части системы, то есть выигрыш в одном приводит к ухудшению в другом.

Решение творческой задачи есть преодоление технического противоречия . Оно заключается в нахождении некоторого способа преобразования технической системы, причем такого, которое при минимальных изменениях в системе приводило бы к искомому результату без ухудшения ее параметров.

Техническое противоречие возникает между параметрами системы, ее узлами или группами деталей.

Основными признаками технического противоречия является ухудшение каких-либо частей системы при улучшении других. Возникновение нескольких новых технических задач на уровне системы.

Причины – исчерпание возможностей технической системы, неверный выбор места изменения системы, борьба со следствием, а не с причиной.

Последствия – усложнение системы и надсистемы, резкое повышение материальных и других затрат.

Условия разрешения – проведение причинно-следственного анализа, выявление первопричины возникновения нежелательного явления и микрозадачи в подсистеме, определение физического противоречия.

Анализ многих тысяч изобретений выявил, что при всем многообразии технических противоречий большинство из них разрешается 40 основными приемами.

Многообразие встречающихся изобретательских задач, даже принадлежащих разным областям техники, решаются при помощи сходных подходов. Это связано с тем, что лежащие в основе таких задач технические противоречия повторяются.

В приложении 1 приведено содержание типовых приемов устранения технических противоречий.

Чтобы определить, какой прием поможет наиболее успешно справиться с решением задачи, можно прибегнуть к помощи табл. 4.2, чтобы не перебирать последовательно все 40 приемов.

Таблица 4.1

Наиболее часто используемые приемы преодоления

технических противоречий

Параметр, который надо изменить (увеличить, уменьшить,

улучшить) по условию задачи

Номера приемов

(приложение 1)

1. Вес подвижного объекта

2. Вес неподвижного объекта

35, 28, 10, 19, 1, 2

3. Длина подвижного объекта

1, 29, 35, 15, 4

4. Длина неподвижного объекта

35, 28, 14, 1, 26, 3,10,15

5. Площадь подвижного объекта

2, 15, 13, 26, 30, 4

6. Площадь неподвижного объекта

18, 2, 35, 10, 16, 30, 40

7. Объем подвижного объекта

1, 35, 2, 10, 29, 4, 15

8. Объем неподвижного объекта

9. Скорость

28, 35, 13, 10, 19, 34, 38

35, 10, 18, 37, 36, 1

35, 10, 36, 37, 2

10, 15, 1, 14, 32, 34, 35

13. Устойчивость состав объекта

35, 2, 39, 27, 40

14. Прочность

3, 35, 40, 10, 15

15 Продолжительность действия подвижного объекта

19, 35, 3, 10, 27

16. Продолжительность действия неподвижного объекта

35, 1, 10, 16, 40


Температура

35, 19, 2, 22, 39

18. Освещенность

19. Энергия, расходуемая подвижным объектом

35, 19, 18, 28, 2, 15

20. Энергия, расходуемая неподвижным объектом

21. Мощность

22. Потери энергии

7, 2, 35, 6, 18, 19, 38

23. Потери вещества

10, 35, 18, 28, 31

24. Потери информации

25. Потери времени

35, 10, 28, 18, 4, 5

26. Количество вещества

35, 3, 29, 18, 10

27. Надежность

35, 11, 10, 3, 28, 40

28. Точность измерения

29. Точность изготовления

32, 28, 10, 18, 2

30. Вредные факторы, действующие на объект извне

22, 35, 2, 1, 33

31. Вредные факторы, генерируемые самим объектом

18, 35, 2, 1, 39

32. Удобство изготовления

1, 35, 13, 27, 28

33. Удобство эксплуатации

1, 13, 2, 28, 32, 34

34. Удобства ремонта

1, 10, 2, 11, 35

35. Адаптация, универсальность

35, 1, 15, 16, 29

36. Сложность устройства

13, 26, 1, 28, 2, 10

37. Сложность контроля и измерения

28, 35, 16, 26, 27

38. Степень автоматизации

35, 13, 28, 26, 1, 2

39. Производительность

Однако для организации планомерного поиска приёма удобно воспользоваться специально разработанной таблицей (приложение 2), в которой по вертикали располагаются характеристики технических систем, которые по условиям задач требуется улучшить, а по горизонтали – характеристики, которые при этом недоступно ухудшаются. На пересечении граф и строк с наименованием улучшаемой и ухудшаемой характеристик находим номера приемов, позволяющих с наибольшей вероятностью устранить возникшее техническое противоречие. Таблица охватывает около полутора тысяч наиболее часто встречающихся в изобретательской практике технических противоречий.

Принципы и методы разрешения технических противоречий в процессе дизайн разработки проектного решения.

_________________________________________________________________________

В процессе формулировки идеального конечного результата некоторые показатели качества могут быть либо противоречивыми по отношению друг к другу, либо один из них может быть противоречив по отношению к целой группе показателей. В этом случае имеет место так называемое техническое противоречие , состоящее в том, что улучшение одного показателя вызывает ухудшение другого показателя.

В процессе выявления и разрешениятехнических противоречий проявляется творчество изобретателей, разработчиков, проектировщиков и конструкторов, создаются продукты интеллектуальной собственности (патенты, ноу-хау, промышленные образцы и др.).

Следует иметь в виду, что в литературе и в конструкторско-изобретательском лексиконе все противоречия называют техническими, хотя по своей природе они могут отражать физические, экономические, информационные, социальные, и дажеадминистративные аспекты решаемой задачи. Таким образом, термин «технические противоречия» отражает не природу (первопричину) их возникновения, а принадлежность к носителям этих противоречий - к техническим объектам.

Технические противоречия условно подразделяются на внешние и внутренние.

Внешние противоречия обусловлены несоответствием свойств и параметров технического объекта, условиям его изготовления и нормального функционирования в процессе взаимодействия с человеком и окружающей средой.

Внутренние противоречия обусловлены несоответствием структуры и состава конструктивного исполнения технического объекта его функциональному значению.

Различают шесть источников возникновения технических противоречий .

1. Противоречия между техническим объектом и человеком , который управляет этим объектом (оператором) или эксплуатирует его (пользователем). В процессе их взаимодействия конфликтные ситуации могут возникнуть из-за изменения условий эксплуатации технического объекта, из-за изменившихся требований к его безопасности, эргономичности, эффективности. Поэтому, при усовершенствовании технического объекта, прежде всего, формулируются новые или уточняются действующие требования по безопасности и эргономичности конструкции, определяются условия его наиболее полной реализации. Анализу подвергаются те свойства объекта, которые должны быть изменены в соответствии с новыми или уточненными требованиями. При этом определяются те компоненты конструкции объекта и их параметры, изменения которых позволяют в конечном счете разрешить возникшее противоречие.



2. Противоречие между техническим объектом и средой его функционирования из-за несоответствия функциональных параметров его конструктивного исполнения с параметрами окружающей среды. Для устранения этих противоречий анализируются состав и структура конструктивного исполнения технического объекта, выявляются источники, пути и методы устранения противоречий, проводится соответствующее обновление конструкции.

3. Противоречие между техническим объектом и его изготовителем из-за конфликта между предметом труда и производственным работником. Такая ситуация может возникнуть, например, при применении каких-то конструкционных материалов или режимов их обработки, которые наносят ущерб здоровью или превышают возможности человеческого организма. В этом случае особое внимание уделяется обеспечению технологичности и безопасности как конструкции технического объекта, так и используемых конструкционных материалов.

4. Противоречие между техническим объектом и производственной средой . Производственная среда является одной из составляющих окружающей среды. Соблюдение норм и требований к обеспечению сохранности окружающей среды приводит к необходимости создания экологически чистых конструкций, технических изделий и технологий их изготовления. Неизменно возникает конфликт в требованиях повышения качества продукции и снижения ресурсоемкости конструкции изделия. Внесение в нее рациональных технических решений позволяет разумно использовать материальные и топливно-энергетические ресурсы, которыми располагает производство, внедрять безотходную и малоотходную технологию, повышать качество продукции и эффективность производства.

Все четыре выше рассмотренных источника технических противоречий являются внешними , отражая функциональные структурные взаимосвязи технических объектов с окружающей (производственной) средой.

Обратимся теперь к источникам внутренних технических противоречий.

5. Противоречие между целым (конструктивным исполнением, системой) и частью (компонентом, элементом, подсистемой) технического объекта. Оно порождается тем, что целое и часть любого технического объекта не тождественны друг другу ни по выполняемым функциям, ни по своему составу, ни по своей структуре, формируются и обновляются по своим законам. В то же время часть по отношению к целому обладает относительной самостоятельностью в своем развитии. Компоненты, входящие в состав конструкции изделия, имеют различную интенсивность обновляемости. Объединяя элементы в единое конструктивное образование, структура целого исполнения обладает большой инерционностью в своем развитии и обновлении по сравнению с входящими в нее компонентами.

6. Противоречие между содержанием и формой компонентов исполнения технического объекта, суть которого заключена в диалектической взаимосвязи отдельных компонентов. Так, найденная форма изделия, обладая относительно большой стабильностью, сохраняется длительное время, пока накопление количественных изменений в содержании изделия не приведет в силу возникших противоречий к очередным качественным изменениям ее формы.

Многовековая общественно-полезная практика человечества накопила бесконечно большое число приемов устранения технических противоречий, познать которые в полном объеме не представляется возможным. Исходя из этого, рассмотрим лишь небольшое количество типовых приемов, которые являются основной информационной и творческой базой для создания новых технических объектов. Образно говоря, типовые приемы - это универсальные коды или ключи, с помощью которых можно раскодировать и открывать сложные и хитроумные замки решений творческих задач.

Типовые приемы - это взятые из технической литературы, из научно-технических журналов и патентных фондов наиболее часто встречающиеся в проектно-конструкторской практике приемы, разработанные учеными, инженерами, изобретателями прошлых и нынешнего поколений. Очевидно, что абсолютное число таких приемов бесконечно велико и поэтому их стараются определенным образом обобщить в крупные типичные группы и даже создать межотраслевые, отраслевые или проблемные фонды типовых приемов.

Во многих книгах типовые приемы (способы, правила) называют методологическим инструментарием решения творческих и изобретательских задач, поскольку они содержат краткое указание или предписание как преобразовывать имеющийся у разработчика прототип технического объекта и в каком направлении надо вести поиск, чтобы получить желаемое решение.

Из всего множества реально существующих и возможных типовых приемов преобразования компонентов субстанции технических объектов можно выделить следующие пять групп:

1) приемы преобразования формы вещества;

2) приемы преобразования содержания вещества;

3) приемы преобразования энергии;

4) приемы преобразования информации;

5) комплексные энерго-информационно-вещественные приемы, базирующиеся на использовании новых технологий и способов изготовления, транспортировки и применения технических объектов.

Существует два подхода к выбору из известного набора (банка) типовых приемов разрешения технических противоречий наиболее целесообразного (эффективного) приема: эвристический и алгоритмический .

Эвристический подход к выбору и переработке наиболее ценной информации базируется на использовании уникальных и специфических свойств нашего головного мозга. В процессе длительной эволюции головной мозг человека приспособился отбирать из большого массива избыточной информации только наиболее ценную и нужную информацию, отбрасывая всю остальную. Некие особые и, к тому же, неосознанные, правила работы мозга по отбору и переработке информации, включающие в себя этапы «осенения», интуиции и творчества, называют эвристическими. В дальнейшем из этих «правил» в мозге составляются также неосознаваемые «программы» выбора решения.

Алгоритмический подход к выбору типовых приемов разрешения технических противоречий предусматривает выполнение ряда поисковых операций по заранее разработанному алгоритму (правилу).

Современные методы поиска новых решений позволяют рационализировать различные стороны поисковой деятельности. Все известные методы решения творческих задач можно условно разделить на две большие группы по признаку доминирования в них эвристических (интуитивных) или логических процедур и соответствующих им правил деятельности.

Первая группа - это эвристические (интуитивные )методы,которые опираются на активизацию творческой деятельности человека и развитие его творческих способностей на основе развития интуитивных процедур деятельности, фантазии, аналогий и др. В эту группу входят: метод проб и ошибок, метод контрольных вопросов, «мозговой штурм», синектика, морфологический анализ, ассоциативные методы и др.

Вторая группа методов основана на использовании оптимальной логики анализа технического или другого совершенствуемого объекта, закономерностей его развития. Здесь предлагают логические правила анализа и синтеза, сравнения, обобщения, классификации, индукции, дедукции и т.д. Это рациональные (логические) методы решения творческих задач. К ним относятся: алгоритм решения изобретательских задач (АРИЗ), функционально-стоимостный анализ, функционально-физический метод конструирования и т.д.

Современная научно-техническая революция, характерной чертой которой является бурное развитие науки, техники и производства, вошла в противоречие со старыми малопроизводительными способами мышления и поиска новых решений, что привело к созданию эвристики.Под термином «эвристика» понимается определенная совокупность логических приемов и методических правил теоретического исследования и отыскивания истины, которые используются в условиях неполноты исходной информации и не требуют четкой программы управления процессом решения задачи.

Методом проб и ошибок (МпиО) изобретатели пользовались и пользуются при решении самых разнообразных технических задач. Суть его заключается в том, что изобретатель при поиске решения задачи перебирает всевозможные варианты и среди них находит тот, который удовлетворяет поставленным требованиям.

Метод контрольных вопросов впервые использовался для поиска новых идей и наилучших решений творческих задач. Суть этого метода состоит в использовании при поиске решений творческих задач списка специально подготовленных вопросов. Изобретатель отвечает на них и в связи с ними анализирует свою задачу. Одним из лучших считают список вопросов для изобретателей и разработчиков новых технических объектов, составленный Т. Эйлоартом, который представляет собой программу его работы.

Список содержит следующие позиции.

1. Перечислить все качества и определения предполагаемого изобретения. Изменить их.

2. Сформулировать задачи ясно. Попробовать новые формулировки. Определить второстепенные задачи и аналогичные задачи. Выделить главные.

3. Перечислить недостатки имеющихся решений, их основные принципы, сформулировать новые предложения по их устранению.

4. Набросать фантастические, биологические, экономические, молекулярные и др. аналогии.

5. Построить математическую, гидравлическую, электронную, механическую и другие модели (они точнее выражают идею, чем аналогии).

Попробовать различные виды материалов и энергии: газ, жидкость, твердое тело, пену, пасту и др.; тепло, магнитную энергию, свет, силу удара и т.п.; различные длины волн, поверхностные свойства и пр., переходные состояния - замерзание, конденсацию и т. п.

7. Установить варианты, зависимости, возможные логические совпадения.

8. Узнать мнение некоторых совершенно неосведомленных в данном деле людей.

9. Устроить групповое обсуждение, выслушивая любые идеи без всякой критики.

10. Попробовать «национальные» решения: хитрое шотландское, всеобъемлющее немецкое, расточительное американское, сложное китайское и др.

11. Спать с проблемой, идти на работу, гулять, ехать, пить, есть, играть в теннис - все с ней.

12. Бродить среди стимулирующей обстановки (свалка лома, технические музеи, магазины дешевых вещей), пробегать журналы, комиксы.

13. Набросать таблицу цен, величин, перемещений, типов материалов и т.п. разных решений проблемы или ее частей, искать проблемы в решениях или новые комбинации.

14. Определить идеальное решение, разрабатывать другие возможные.

15. Видоизменить решение проблемы с точки зрения времени (скорее или медленнее), размеров, вязкости и т. п.

16. В воображении «залезть» внутрь механизма.

17. Выявить и исключить из дальнейшего обсуждения альтернативные варианты решения проблемы, уводящие в сторону от траектории поиска лучшего решения.

18. Кого и почему интересует решаемая проблема?

19. Кто придумал это первый? История вопроса. Какие ложные толкования этой проблемы имели место?

20. Кто еще решал эту проблему? Чего он добился?

21. Определить общепринятые граничные условия и причины их установления.

Метод мозгового штурма (брейнсторминг) появился в Соединенных Штатах Америки в конце 1930-х годов, он представляет собой двухэтапную процедуру решения задачи: на первом этапе выдвигаются идеи, а на втором они конкретизируются, развиваются. Работа в рамках этапов этого метода (этап выдвижения (генерации) идей и этап анализа выдвинутых идей) должна выполняться при соблюдении ряда основных правил . На этапе генерации их три:

3. Поощрение всех выдвигаемых идей, включая нереальные и фантастические.

На этапе анализа основное правило - это выявление рациональной основы в каждой анализируемой идее.

Рассмотрим последовательность организации и проведения мозгового штурма.

1. Оптимальное количество людей, решающих поисковую задачу методом «мозгового штурма», должно составлять 12-25 человек. Половина из них генерирует идеи, а другая их анализирует. В группу «генераторов» включают людей с бурной фантазией, склонных к абстрактному мышлению, но не скептиков; нельзя сюда включать и людей, присутствие которых может в какой-то степени стеснять других (например, руководителей и подчиненных). Желательно, чтобы в состав этой группы вошли и специалисты-смежники, и один-два человека со стороны, не имеющие отношения к решаемой задаче. В группу «экспертов» вводят людей с аналитическим, критическим складом ума. Руководит «сессией» ведущий, наиболее опытный участник «мозгового штурма»,

2. Основная задача «генераторов» должна заключаться в предложении максимального количества идей решения поисковой задачи (в том числе идей фантастических, а иногда и шутливых). Идеи протоколируются или фиксируются с помощью магнитофона. Задача «экспертов» состоит в отборе приемлемых идей. Ведущий, не прибегая к приказаниям и критическим замечаниям, задает вопросы, иногда подсказывает и уточняет высказывания участников обсуждения, следит, чтобы беседа не прерывалась.

3. Продолжительность «сессии» должна зависеть от сложности решаемой задачи, но не превышать 30-50 мин.

4. Между участниками «мозгового штурма» должны быть установлены свободные и доброжелательные отношения. При генерации идей запрещается всякая критика, скептические улыбки, жесты и мимика. Надо, чтобы идеи, выдвинутые одним участником, подхватывались и развивались другими. Анализ идей группой «экспертов» проводится очень внимательно. Без тщательного анализа не должны быть отвергнуты даже самые фантастические или абсурдные идеи. При этом в ходе анализа (идеи оцениваются, например, в десятибалльной системе), учитывается мнение каждого «эксперта». В случаях расхождений в оценке проводят дополнительный анализ.

5. Если «сессия» окончилась безуспешно и задача не решена, повторять ее с предыдущими установками нет смысла. Нужно заменить состав групп или изменить формулировку задачи, оставив конечную цель.

Опыт использования «мозгового штурма» показывает, что генерации идей способствуют такие приемы, как аналогия (сделай так, как это делалось при решении другой задачи), инверсия (сделай наоборот), фантазия (предложи нечто неосуществимое) и пр. Большую роль играют здесь и субъективные качества участников штурма - наличие прошлого опыта, боязнь оказаться бесполезным, отсутствие творческого настроения, усталость и т. д.

Синектика , так же как и мозговой штурм, предполагает коллективный поиск новых решений. В 1961 г. в США вышла книга У. Гордона «Синектика: развитие творческого воображения». Книга открыла новую главу в истории методов поиска новых решений. Описанный в ней подход к организации творчества, правила работы и обучения оказали большое влияние на разработчиков новой техники, методологов.

Идея синектики состоит в объединении отдельных творцов в единую группу для совместной постановки и решения конкретных задач. Метод включает в себя практические подходы к сознательному решению и использованию бессознательных механизмов, проявляющихся у человека в момент творческой активности.

Еще одно отличие синектики от мозгового штурма. Подбор группы генераторов мозгового штурма состоит в выявлении активных творцов, обладающих различными знаниями. Их эмоциональные типы особо не учитываются. В синектике же, наоборот, скорее будут выбраны два человека с одним и тем же багажом знаний, если при этом у них значительны отличия в эмоциональной сфере.

Организация работы в синектике включает следующие основные моменты:

Первоначальная постановка проблемы;

Анализ проблемы и сообщение необходимой вводной информации. Роль эксперта, как правило, выполняет учитель или учащийся, обладающий определённой подготовкой.

Выяснение возможностей решения проблемы;

Переформулирование проблемы каждым учащимся в своём собственном понимании;

Совместный выбор одного из вариантов переформулированной проблемы;

Выдвижение образных аналогий - ключевой этап для синектики;

- «подгонка» намеченных группой подходов к решению или готовых решений к требованиям, заложенным в постановке проблемы.

Важнейшим элементом синектического процесса является практическая реализация полученных в процессе работы идей.

Операторы синектики - конкретные психологические инструменты, которые поддерживают и ведут вперед весь творческий процесс. Их следует отличать от психологических состояний – таких, как эмпатия, вовлеченность, игра и пр. Психологические состояния являются основой творческого процесса, но они не управляемы. Операторы синектики, ее механизмы предназначены для побуждения, активизации этих сложных психологических состояний.

Решая задачу, бессмысленно пытаться убедить себя или группу быть творческим , интуитивным, вовлеченным или же допускать очевидные несоразмерности. Необходимо дать средства, позволяющие человеку делать это. Глобально синектическая работа включает в себя два базовых процесса:

Превращение незнакомого в знакомое;

Превращение знакомого в незнакомое.

Первое, что делает человек, которому предстоит решить проблему - пытается ее понять. Этап превращения незнакомого в знакомое очень важен, он позволяет человеку свести новую ситуацию к уже испытанным, известным. Этот этап ведет за собой огромное разнообразие решений, но требование новизны - это, как правило, требование новой точки зрения, взгляда на проблему. Большинство из проблем не являются новыми. Смысл в том, чтобы сделать их новыми, создав тем самым потенциал для выхода на новые решения.

Превратить знакомое в незнакомое - означает исказить, перевернуть, переменить повседневный взгляд и реакцию на вещи, события. В «известном мире» предметы всегда имеют свое определенное место. В то же время различные люди могут видеть один и тот же объект под различными углами зрения, неожиданными для других. Настаивать на рассмотрении известного как неизвестного - основа творчества.