Как держать форму. Массаж. Здоровье. Уход за волосами

Комплексная технология переработки сухих зол уноса тэц. Комплексная технология переработки сухих зол уноса тэц Оборудование для производства золы древесной

Как это часто бывает, использовать золу для получения стройматериалов придумали не мы, а практичный запад - там давно широко применяются золошлаковые материалы в строительстве и ЖКХ. Главная ценность нового метода изготовления стройматериалов из золы - охрана природы.

Ликуйте, экологи и «Greenpeace»: опасность экологических катастроф, связанных с опасностью размывания золоотвалов и загрязнения золой окружающей среды, сводится к минимуму. Налицо колоссальная экономия средств - ведь на обслуживание хранилищ золы тратится немало денег. Остальные преимущества переработки золы заключается в экономической выгоде использования этого вторсырья.

Кирпич, созданный из золы, годится для строения и жилого дома, и производственного помещения, и забора. Он даже может быть использован как облицовочный. Рецепт изготовления такого кирпича предельно прост: 5% воды, 10 - извести, остальное - зола (соль и перец по вкусу).

Современная цена такого кирпича, выпускаемого, например, на омском заводе (ООО «СибЭК» - Сибирский эффективный кирпич) - 5–6 рублей, что делает этот «продукт» очень конкурентоспособным.

Испытания кирпича доказывают его высокое качество и широкие возможности в применении. Прочность, водопоглощение, морозоустойчивость не уступают силикатному кирпичу. Показатель теплопроводности близок к показателям дерева. Да и внешний вид радует своей практически совершенной формой - допуски размеров такого кирпича не более 0,5 миллиметра, а это, если подумать, снова экономия - на этот раз на количестве схваточного раствора. К тому же зольный кирпич легче, удобнее в кладке, позволяет делать её безупречно ровной. Для улучшения внешнего вида кирпича в его состав можно добавить красители.

Жизнь подталкивает к поиску новых идей и решений. Использование золы как сырья для кирпича и других стройматериалов поистине удачная и очень своевременная находка. Количество «убитых зайцев» в этом случае намного больше двух пресловутых. И в который раз подтверждается поговорка, что все ценное - у нас под ногами.

Всем известно, что одним из наиболее универсальных и древних удобрений является древесная зола. Она не только удобряет и ощелачивает почву, но создает благоприятные условия для жизнедеятельности почвенных микроорганизмов особенно азотфиксирующих бактерий. А также повышает жизнестойкость растений. Она наиболее благоприятно влияет на урожай и его качество, чем промышленные калийные удобрения, поскольку почти не содержит хлора.

Компания «Техносервис» смогла организовать производство глубокой утилизации кородревесных отходов, и, как результат, получила экологически чистое комплексное удобрение пролонгированного действия - древесную золу гранулированную (ДЗГ).

Основные преимущества ДЗГ:

  • Привлекательной особенностью данного продукта является его новый гранулированный формат. Размер гранул составляет от 2 до 4 мм, удобный при фасовке и транспортировке, его легко перевозить любым видом транспорта в контейнерах или мешках, удобно вносить в почву любым видом техники. Гранулированный формат способствует более благоприятным условиям труда персонала.
  • Обработка и нанесение пылящей золы - очень сложный процесс. Для снижения уровня пыления при нанесении сельскохозяйственных удобрений эффективнее использовать гранулированную золу. Гранулирование облегчает процесс внесения золы, а также замедляет процесс растворения золы в почве. Медленная растворимость - это преимущество, так как сельскохозяйственным угодьям не причиняется шокового воздействия, связанного с изменением кислотности и питательной среды.
  • Внесение древесной золы гранулированной - максимально действенный способ борьбы с процессом закисления почвы. Помимо этого, восстанавливается структура почвы - она становится рыхлой.
  • Древесная зола гранулированная содержит все, за исключением азота, необходимые для растений элементы питания. ДЗГ практически не содержит хлора, поэтому ее хорошо применять под растения, негативно реагирующие на этот химический элемент.
  • Древесная зола гранулированная складируется и бессрочно хранится на типовых сухих складах хранения минеральных удобрений при естественной влажности и вентиляции воздуха.

Инвестиция в землю

Зольные удобрения компании «Техносервис» - это лучшая инвестиция в вашу землю. Древесная зола гранулированная - эффективный, экологичный и приносящий доход элемент ответственного фермера.

Внося ДЗГ, вы гарантируете увеличение ценности ваших угодий и их сохранность для будущих поколений. Таким образом, вы сможете выгодно использовать свою почву как объект долгосрочных инвестиций. Благодаря удачному выбору объекта, даже недоходная земля превратится в полностью покрытую урожаем часть фермерской собственности. Естественные пропорции питательных веществ, длительная продолжительность воздействия, медленная растворимость и равномерное распределение делают ДЗГ ООО «Техносервис» превосходным решением как для сельского хозяйства, так и с точки зрения экологии!

ДЗГ - на прирост урожайности!

В ходе полевых исследований, в соответствии с разработанной в Ленинградской области программой, проводившихся в 2008-2011 гг. на кислой дерново-подзолистой почве, выведенной из сельскохозяйственного оборота около 5 лет ранее, удалось сделать следующие выводы:

  • Древесная зола с котельных пригодна для повышения плодородия и устранения повышенной кислотности дерново-подзолистых почв.
  • Получен суммарный за 3 года севооборота прирост урожайности сельскохозяйственных культур 25-64% за счет одного только мероприятия: известкования слабокислой дерново-подзолистой почвы древесной золой с котельных.
  • При комплексной обработке почвы совместно с минеральными и органическими удобрениями можно достигнуть значительно больших урожаев.
  • Рекомендуется древесную золу с котельных использовать в качестве химического мелиоранта при проведении периодического и поддерживающего известкования кислых дерново-подзолистых почв.

По данным Всероссийского научно-исследовательского института агрохимии Д. Н. Прянишникова ДЗГ можно применять в качестве минерального удобрения со свойствами мелиоранта для основного внесения под сельскохозяйственные культуры и декоративные насаждения на кислых и слабокислых почвах в открытом и защищенном грунте.

Ориентировочные нормы и сроки внесения в сельскохозяйственном производстве:

  • все культуры - основное или предпосевное внесение из расчета 1,0-2,0 т/га;
  • все культуры - основное внесение (в качестве мелиоранта с целью снижения кислотности почв) из расчета 7,0-15,0 т/га с периодичностью 1 раз в 5 лет.

Ориентировочные дозы, сроки и способы внесения агрохимиката в личных подсобных хозяйствах:

  • овощные, цветочно-декоративные, плодово-ягодные культуры - внесение при обработке почвы осенью или весной или при посеве (посадке) из расчета 100-200 г/м2;
  • овощные, цветочно-декоративные, плодово-ягодные культуры - внесение при обработке почвы осенью или весной (в качестве мелиоранта с целью снижения кислотности почв) из расчета 0,7-1,5 кг/м2 с периодичностью 1 раз в 5 лет.

Г.Хабаровск



В процессе деятельности предприятий электроэнергетики образуется много золошлаковых отходов . Годовое поступление золы в золоотвалы составляет по Приморскому краю от 2,5 до 3,0 млн. т в год, Хабаровскому – до 1,0 млн. т (рис.1). Только в пределах г. Хабаровска в золоотвалах хранится более 16 млн. т золы.

Золошлаковые отходы (ЗШО) можно использовать в производстве различных бетонов, строительных растворов . Керамики, теплогидроизоляционных материалов, дорожном строительстве, где они могут быть использованы взамен песка и цемента. Большее применение находит сухая зола уноса с электрофильтров ТЭЦ-3. Но использование таких отходов в хозяйственных целях пока ограничено, в том числе и в связи с их токсичностью. В них накапливается значительное количество опасных элементов. Отвалы постоянно пылят, подвижные формы элементов активно вымываются осадками, загрязняя воздух, воды и почвы. Использование таких отходов – одна из наиболее актуальных проблем. Это возможно путем удаления или извлечения из золы вредных и ценных компонентов и использование оставшейся массы золы в строительной индустрии и производстве удобрений.

Краткая характеристика золошлаковых отходов

На обследованных ТЭЦ сжигание углей происходит при температуре 1100-1600 С. При сгорании органической части углей образуются летучие соединения в виде дыма и пара, а негорючая минеральная часть топлива выделяется в виде твердых очаговых остатков, образуя пылевидную массу (зола), а также кусковые шлаки. Количество твердых остатков для каменных и бурых углей колеблется от 15 до 40%. Уголь перед сжиганием измельчается и в него, для лучшего сгорания, часто добавляют в небольшом (0,1-2%) количестве мазут.
При сгорании измельченного топлива мелкие и легкие частицы золы уносятся дымовыми газами, и они носят название золы уноса. Размер частиц золы уноса колеблется от 3-5 до 100-150 мкм. Количество более крупных частиц обычно не превышает 10-15%. Улавливается зола уноса золоуловителями. На ТЭЦ-1 г. Хабаровска и Биробиджанской ТЭЦ золоулавливание мокрое на скруберах с трубами Вентури, на ТЭЦ-3 и ТЭЦ-2 г. Владивостока – сухое на электрофильтрах.
Более тяжелые частицы золы оседают на подтопки и сплавляются в кусковые шлаки, представляющие собой агрегированные и сплавившиеся частицы золы размером от 0,15 до 30 мм. Шлаки размельчаются и удаляются водой. Зола уноса и размельченный шлак удаляются вначале раздельно, потом смешиваются, образуя золошлаковую смесь.
В составе золошлаковой смеси кроме золы и шлака постоянно присутствуют частицы несгоревшего топлива (недожог), количество которого составляет 10-25%. Количество золы уноса, в зависимости от типа котлов, вида топлива и режима его сжигания может составлять 70-85% от массы смеси, шлака 10-20%. Золошлаковая пульпа удаляется на золоотвал по трубопроводам.
Зола и шлак при гидротранспорте и на золошлакоотвале взаимодействуют с водой и углекислотой воздуха. В них происходят процессы, сходные с диагенезом и литификацией. Они быстро поддаются выветриванию и при осушении при скорости ветра 3 м/сек начинают пылить. Цвет ЗШО темносерый, в разрезе слоистый, обусловленный чередованием разнозернистых слойков, а также осаждением белой пены, состоящей из алюмосиликатных полых микросфер.
Усредненный химический состав ЗШО обследованных ТЭЦ приведен в нижеследующей таблице 1.

Таблица 1

Пределы среднего содержания основных компонентов ЗШО

Компонент

Компонент

SiO 2

51- 60

54,5

3,0 – 7,3

TiO 2

0,5 – 0,9

0,75

Na 2 O

0,2 – 0,6

0,34

Al 2 O 3

16-22

19,4

K 2 O

0,7 – 2,2

1,56

Fe 2 O 3

5 -8

SO 3

0,09 – 0,2

0,14

0,1 – 0,3

0,14

P 2 O 5

0,1-0,4

0,24

Золы ТЭЦ, использующих каменный уголь, по сравнению с золами ТЭЦ, использующих бурые угли, отличаются повышенным содержанием SO3 и п.п.п., пониженным – оксидов кремния, титана, железа, магния, натрия. Шлаки – повышенным содержанием оксидов кремния, железа, магния, натрия и пониженным окислов серы, фосфора, п.п.п. В целом, золы высококремнистые, с достаточно высоким содержанием алюминатов.
Содержание элементов-примесей в ЗШО по данным спектрального полуколичественного анализа рядовых и групповых проб показано в таблице 2. Промышленную ценность, согласно справочника , представляют золото и платина, по максимальным значениям приближаются к этому Yb и Li. Содержание вредных и токсичных элементов не превышает допустимых значений, хотя максимальные содержания Mn, Ni, V, Cr приближаются к «порогу» токсичности.

Таблица 2

Элемент

ТЭЦ-1

ТЭЦ-3

ТЭЦ-1

ТЭЦ-3

Средн.

Max .

Средн.

Средн.

Max .

Средн.

Ni

40-80

60-80

Ba

1000

2000-3000

800-1000

Co

60- 1 00

Be

Ti

3000

6000

3000

6000

Y

10-80

V

60-100

Yb

Cr

300-

2000

40-80

100-600

La

Mo

Sr

600-800

300-1000

W

Ce

Nb

Sc

Zr

100-300

400-600

600-800

Li

Cu

30-80

80-100

B

Pb

10-30

60-100

30-60

K

8000

10000-30000

6000-8000

10000

Zn

80-200

1 00

Sn

3-40

Au

0,07

0,5-25,0

0,07

0,5-6,0

Ga

10-20

Pt

мг/т

10-50

300-500

В составе ЗШО различаются кристаллическая, стекловидная и органическая составляющие.

Кристаллическое вещество представлено как первичными минералами минерального вещества топлива, так и новообразованиями, полученными в процессе сжигания и при гидратации и выветривании в золоотвале. Всего в кристаллической составляющей ЗШО устанавливается до 150 минералов. Преобладающие минералы - это мета- и ортосиликаты, а также алюминаты, ферриты, алюмоферриты, шпинели, дендритовидные глинистые минералы, оксиды: кварц, тридимит, кристобалит, корунд, -глинозем, окиси кальция, магния и другие. Часто отмечаются, но в небольших количествах, рудные минералы - касситерит, вольфрамит, станин и другие; сульфиды – пирит, пирротин, арсенопирит и другие; сульфаты, хлориды, очень редко фториды. В результате гидрохимических процессов и выветривания в золоотвалах появляются вторичные минералы – кальцит, портландит, гидроокислы железа, цеолиты и другие. Большой интерес представляют самородные элементы и интерметаллиды, среди которых установлены: свинец, серебро, золото, платина, алюминий, медь, ртуть, железо, никелистое железо, хромферриды, медистое золото, различные сплавы меди, никеля, хрома с кремнием и другие.

Нахождение капельно-жидкой ртути, несмотря на высокую температуру сгорания угля, довольно частое явление, особенно в составе тяжелой фракии продуктов обогащения. Вероятно этим объясняется ртутное заражение почв при использовании ЗШО в качестве удобрения без специальной очистки.

Стекловидное вещество – продукт незавершенных превращений при горении, составляет существенную часть зол. Представлено разноокрашенным, преимущественно черным стеклом с металлическим блеском, разнообразными шарообразными стекловидными, перламутроподобными микросферами (шариками) и их агрегатами. Они слагают основную массу шлаковой составляющей ЗШО. По составу – это оксиды алюминия, калия, натрия и, меньше, кальция. К ним же относятся некоторые продукты термообработки глинистых минералов. Часто микросферы полые внутри и образуют пенистые образования на поверхности золоотвала и водоотстойных прудов.

Органическое вещество представлено несгоревшими частицами топлива (недо-жог). Преобразованное в топке органическое вещество весьма отлично от исходного и находится в виде кокса и полукокса с очень малой гигроскопичностью и выходом ле-тучих. Количество недожега в исследуемых ЗШО составляло 10-15%.

Ценные и полезные компоненты ЗШО

Из составляющих ЗШО практический интерес представляют в золе железосодержащий магнитный концентрат, вторичный уголь, алюмосиликатные полые микросферы и инертная масса алюмосиликатного состава, тяжелая фракцйия, содержащая примесь благородных металлов, редких и рассеянных элементов.

В результате многолетних исследований получены положительные результаты по извлечению ценных компонентов из золошлаковых отходов (ЗШО) и полной их утилизации (рис.2).

Путем создания последовательной технологической цепочки различных приборов и оборудования из ЗШО можно получить вторичный уголь, железосодержащий маг-нитный концентрат, тяжелую минеральную фракцию и инертную массу.

Вторичный уголь. При технологическом исследовании методом флотации выделен угольный концентрат, названный нами вторичным углем. Он состоит из частиц несго-ревшего угля и продуктов его термической переработки – кокса и полукокса, характе-ризуется повышенной теплотворной способностью (>5600 ккал) и зольностью (до 50-65%). После добавки мазута вторичный уголь можно сжигать на ТЭЦ, либо, делая из него брикеты, продавать населению как топливо. Извлекается он из ЗШО путем флота-ции. Выход до 10-15% от массы перерабатываемых ЗШО. Размеры частиц угля 0-2 мм, реже до 10 мм.

Железосодержащий магнитный концентрат получаемый из золошлаковых отходов, состоит на 70-95% из шарообразных магнитных агрегатов и окалины. Остальные минералы (пирротин, лимонит, гематит, пироксены, хлорит, эпидот) присутствуют в количестве от единичных зерен до 1-5% от веса концентрата. Кроме того, в концентрате спорадически отмечаются редкие зерна платиноидов, а также сплавы железо-хромо-никелевого состава.

Внешне это мелкотонкозернистая порошкообразная масса черного и темно-серого цвета с преобладающим размером частиц 0,1-0.5 мм. Частиц крупнее 1 мм не более 10-15%.

Содержание железа в концентрате колеблется от 50 до 58%. Состав магнитного концентрата из золошлаковых отходов золоотвала ТЭЦ-1: Fe - 53,34%, Mn- 0,96%, Ti – 0,32%, S - 0,23%, P - 0,16%. По данным спектрального анализа в концентрате присутст-вует Mn до 1%, Ni первые десятые доли %, Co до 0,01-0,1%, Ti -0,3-0,4%, V - 0,005-0,01%, Cr – 0,005-0,1 (редко до 1%), W – от сл. до 0,1%. По составу это хорошая железная руда с лигирующими добавками.

Выход магнитной фракции по данным магнитной сепарации в лабораторных условиях колеблется от 0,3 до 2-4% от массы золы. По литературным данным при переработке золошлаковых отходов путем магнитной сепарации в производственных условиях выход магнитного концентрата достигает 10-20% от массы золы, при извлечении 80-88% Fe2O3 и содержании железа 40-46%.

Магнитный концентрат из золошлаковых отходов может быть использован для производства ферросилиция, чугуна и стали. Он также может служить исходным сырьем для порошковой металлургии.

Алюмосиликатные полые микросферы представляют собой дисперсный матери-ал, сложенный полыми микросферами размером от 10 до 500 мкм (рис.3). Насыпная плотность материала 350-500 кг/м3, удельная 500-600 кг/м3 . Основными компонентами фазово-минерального состава микросфер является алюмосиликатная стеклофаза, мул-лит, кварц. В виде примеси присутствует гематит, полевой шпат, магнетит, гидрослю-да, оксид кальция. Преобладающие компоненты их химического состава являются кремний, алюминий, железо (табл. 3). Возможны микропримеси различных компонентов в количествах ниже порога токсичности или промышленной значимости. Содержание естественных радионуклидов не превышает допустимых пределов. Максимальная удельная эффективная активность составляет 350-450 Вк/кг и соответствует строи-тельным материалам второго класса (до 740 Вк/кг).

SiO 2

52-58

Na 2 O

0,1-0,3

TiO 2

0,6-1,0

K 2 O

Al 2 O 3

SO 3

не более 0,3

Fe 2 O 3

3,5-4,5

P 2 O 5

0,2-0,3

Влажность

Не более 10

Плывучесть

Не менее 90

Содержание Ni, Co, V, Cr, Cu, Zn не более 0.05% каждого элемента
Благодаря правильной сферической форме и низкой плотности, микросферы обла-ают свойствами прекрасного наполнителя в самых разнообразных изделиях. Перспективными направлениями промышленного использования алюмосиликатных микрофер являются производство сферопластиков, дорожно-разметочных термопластиков, тампонажных и буровых растворов, теплоизоляционных радиопрозрачных и облегченных строительных керамик, теплоизоляционных безобжиговых материалов и жаро-стойких бетонов .
За рубежом микросферы находят широкое применение в различных отраслях про-мышленности. В нашей стране использование полых микросфер крайне ограничено и они вместе с золой сбрасываются в золоотвалы. Для ТЭЦ микросферы являются «вред-ным материалом», забивающим трубы оборотного водоснабжения. Из-за этого приходится в 3-4 года полностью производить замену труб или проводить сложные и доро-гостоящие работы по их очистке.
Инертная масса алюмосиликатного состава, составляющая 60-70% массы ЗШО, получается после удаления (извлечения) из золы всех выше перечисленных концентратов и полезных компонентов и тяжелой фракции. По составу она близка к общему составу золы, но будет на порядок меньше содержать желез, а так же вредные и токсичные. Состав ее в основном алюмосиликатный. В отличии от золы она будет иметь более мелкий равномерный гранулометрический состав (за счет до измельчения при извлечении тяжелой фракции). По экологическим и физико-химическим свойствам может широко использоваться в производстве строительных материалов, строитель-стве и в качестве удобрения – заменителя известковой муки (мелиорант).
Сжигаемые на ТЭЦ угли, являясь природными сорбентами, содержат примеси многих ценных элементов (табл.2), включая редкие земли и драгметаллы. При сжигании их содержание в золе возрастает в 5-6 раз и может представлять промышленный интерес.
Тяжелая фракция, извлекаемая методом гравитации с помощью усовершенствованных обогатительных установок, содержит тяжелые металлы, включая драгметаллы. Путем доводки из тяжелой фракции извлекаются драгметаллы и, по мере накопления, другие ценные компоненты (Cu, редкие и др.). Выход золота из отдельных изученных золоотвалов составляет 200-600 мг из одной тонны ЗШО. Золото тонкое, обычными методами неизвлекаемое. Используется технология его извлечения типа ноу-хау.
Утилизацией ЗШО занимаются многие. Известно более 300 технологий их переработки и использования, но они в основыной своей массе посвящены использованию золы в строительстве и производстве строительных материалов, не затрагивая при этом извлечения из них как токсичных и вредных компонентов, так и полезных и ценных.
Нами разработана и опробована в лабораторных и полупромышленных условияхпринципиальная схема переработки ЗШО и полной их утилизации (рис.).
При переработке 100 тыс. т ЗШО можно получить:
- вторичный уголь – 10-12 тыс.т;
- железорудный концентрат – 1,5-2 тыс.т;
- золото – 20-60 кг;
- строительный материал (инертная масса) – 60-80 тыс.т.
Во Владивостоке и Новосибирске разработаны близкие по типу технологии пере-работки ЗШО, расчитаны возможные затраты и предусмотрено необходимое оборудо-вание.
Извлечение полезных компонентов и полная утилизация золошлаковых отходов за счет использования их полезных свойств и производства строительных материалов по-зволит высвободить занимаемые площади и снизить негативное воздействие на окру-жающую среду. Прибыль при этом является желательным, но не решающим фактором. Затраты на переработку техногенного сырья с получением продукции и одновременной нейтрализацией отходов могут быть выше стоимости продукции, но убыток в этом случае не должен превышать затраты на снижение негативного воздействия отходов на окружающую среду. А для энергетических предприятий утилизация золошлаковых отходов – снижение технологических расходов на основное производство.

Литература

1. Бакулин Ю.И., Черепанов А.А. Золото и платина в золошлаковых отходах ТЭЦ г. Хабаровска//Руды и металлы, 2002, №3, с.60-67.
2. Борисенко Л.Ф., Делицын Л.М., Власов А.С. Перспективы использования золы угольных тепловых электростанции./ЗАО «Геоинформмарк», М.:2001, 68с.
3. Кизильштейн Л.Я., Дубов И.В., Шпицгауз А.П., Парада С.Г. Компоненты зол и шлаков ТЭС. М.: Энергоатомиздат, 1995, 176 с.
4. Компоненты зол и шлаков ТЭС. М.: Энергоатомиздат, 1995, 249 с.
5. Состав и свойства золы и шлаков ТЭС. Справочное пособие под ред. Мелентьева В.А.,Л.: Энергоатомиздат, 1985, 185 с.
6. Целыковский Ю.К. Некоторые проблемы использования золошлаковых отходов ТЭС в России. Энергетик. 1998, №7,с.29-34.
7. Целыковский Ю.К. Опыт промышленного использования золошлаковых отходов ТЭС// Новое в российской энергетике. Энергоиздат, 2000, № 2, с.22-31.
8. Ценные и токсичные элементы в товарных углях России: Справочник. М.: Недра, 1996, 238 с.
9. Черепанов А.А. Золошлаковые материалы// Основные проблемы изучения и до-бычи минерального сырья Дальневосточного экономического района. Минерально-сырьевой комплекс ДВЭР на рубеже веков. Раздел 2.4.5. Хабаровск: Изд-во ДВИМ-Са, 1999, с.128-120.
10. Черепанов А.А. Благородные металлы в золошлаковых отходах дальневосточных ТЭЦ// Тихоокеанская геология, 2008. Т. 27, №2, с.16-28.

Список рисунков
к статье А.А.Черепанова
Использование золошлаковых отходов ТЭЦ в строительстве

Рис.1. Заполнение золоотвала ТЭЦ-1 г. Хабаровск
Рис.2. Принципиальная схема комплексной переработки золошлаковых отходов ТЭЦ.
Рис.3. Алюмосиликатные полые микросферы ЗШО.

Одна из главных причин этого - неоднородность и нестабильность состава производимой золы, что не обеспечивает надежного полезного эффекта при ее утилизации в строительной отрасли - главном потенциальном потребителе. Переработка гигантских объемов производимой вокруг мегаполисов золы с помощью известной техники - классификаторов и мельниц, учитывая низкую потребительскую стоимость и сильное расхождение в сроках производства и потребления, гарантированно будет убыточным производством.

Зола - дефицитный товар

Неполное потребление производимой золы доставляет энергетикам одни лишь проблемы, т. к. в этом случае необходимо содержать две системы золоудаления. Удаление золы и содержание отвалов составляли раньше примерно 30% себестоимости энергии и тепла ТЭЦ. Однако если учесть рыночную стоимость потерянной земли вблизи мегаполисов, снижение стоимости земли и недвижимости на значительном расстоянии от станций и золоотвалов, прямой ущерб здоровью людей и природе, в частности загрязнение пылью воздушного бассейна и растворимыми солями и щелочью водоемов и подземных вод, то эта доля реально должна быть значительно выше.

Зола уноса в развитых странах является таким же товаром, причем дефицитным, как тепло и электроэнергия. Качественная зола уноса, удовлетворяющая стандартам и пригодная для использования в бетоне в качестве добавки, связывающей избыток извести и снижающей водопотребность, стоит, например, в США наравне с портландцементом ~60$/т.

Идея экспорта в США переработанной каменноугольной золы может оказаться разумной. Некачественная зола уноса, например с низкотемпературных «экологически чистых» котлов с кипящим слоем, в которых сжигается низкокачественный уголь с высоким содержанием серы (станция Жерань в Варшаве), предлагается по отрицательной стоимости порядка -5$ / т, но при условии, что потребитель забирает ее всю. Аналогичная ситуация в Австралии. Таким образом, переработка золы может быть рентабельной только в том случае, если благодаря технологии появится ряд более качественных продуктов, которые найдут потребителей в полном или почти полном объеме на ограниченной территории вблизи места производства. При стандартном использовании золы уноса в качестве добавки в бетон или строительную керамику проблема не может быть решена принципиально из за ограниченной емкости местного рынка. К тому же добавка золы нестабильного состава в бетон возможна без потери качества лишь в очень ограниченном количестве, что делает бессмысленной всю эту затею.

Перспективы переработки

С химической точки зрения не использовать золы уноса - абсурд. Можно выделить как минимум 3 типа перспективных для переработки зол:
1) высокальциевые золы от сжигания бурых углей (БУЗ), например с Канско-Ачинского угольного бассейна, с высоким содержанием оксида и сульфата кальция, т. е. по составу близких к портландцементу и с высоким химическим потенциалом - запасенной энергией;
2) кислые золы от сжигания каменных углей (КУЗ), состоящих в основном из стекла, включая микросферы;
3) золы с высоким содержанием редкоземельных элементов.

Необходимо отметить, что в природе не бывает двух одинаковых углей, поэтому не бывает одинаковых зол. Речь всегда должна идти о локальной технологии переработки золы уноса в конкретном регионе, т. к. основные потребители должны располагаться вблизи источника золы. Любая самая замечательная технология состоится лишь в том случае, если местный рынок будет в состоянии «проглотить» всю или почти всю массу переработанной золы.

Для комплексной переработки золы уноса предлагается использовать возможности нового класса техники - так называемой электро-масс-классификаторов (ЭМК). Эта техника основана на обнаруженном относительно недавно новом явлении - образовании во вращающихся турбулентных газовых потоках плотных заряженных аэрозолей (газо-пылевой плазмы) и их разделении во внутренних электрических полях.

Явление трибозарядки частиц при трении или ударах известна человечеству с незапамятных времен, однако до сих пор наука не может предсказать даже знак заряда.

Преимущества ЭМК

Несмотря на предельную сложность явления, техника ЭМК внешне очень проста и имеет преимущества по всем параметрам относительно обычных воздушных сепараторов или струйных мельниц, дезинтеграторов.

Одно из главных преимуществ - полная экологическая чистота, т. к. процессы осуществляются в закрытом объеме, т. е. ЭМК не нуждается в каких-либо дополнительных устройствах типа компрессоров или систем пылеулавливания - циклонов или фильтров, даже при работе с нанопорошками. Тонкая фракция аэрозоля, заряженная одним знаком, удаляется из аэрозоля кулоновской силой через центр, против действия силы вязкости Стокса и центробежной силы. Частицы разряжаются на стенках в камере улавливания или через заряженные ионы в атмосфере, а заряд возвращается в камеру генерации аэрозоля.

Таким образом, в технике ЭМК осуществляется процесс сепарации порошков на неограниченное количество фракций с круговоротом заряда. При разделении неоднородных систем, включая золы, возможно разделение не только по размерам частиц, но и по другим физическим характеристикам.

Другое важное преимущество ЭМК - возможность реализовать одновременно несколько различных операций за один проход (например, сепарацию с механической активацией или измельчением), как в непрерывном, так и в дискретном исполнении. Огромные массы золы с высоким содержанием тонких частиц невозможно сепарировать на известной технике, т. к. неэффективно пылеулавливание именно тонких частиц, имеющих самую высокую ценность и одновременно представляющих наибольшую опасность для людей и окружающей среды.

Выделение из золы уноса тонкой фракции на ЭМК дает возможность эффективного непрерывного разделения крупной фракции по другим параметрам, например по размерам частиц, по магнитной восприимчивости, плотности, форме частиц, электрическим свойствам. Диапазон производительности техники ЭМК не имеет аналогов: от порции в 1 грамм до 10 тонн/час в непрерывном режиме при диаметре ротора не более 1,5 м. Диапазон дисперсности разделяемых материалов также широк: от сотен мкм до ~0,03 мкм - ЭМК также намного превышает все известные виды техники, приближаясь к мокрой сепарации с использованием центрифуг.

Технологии переработки золы

Возможности ЭМК позволяют реализовать гибкую «умную технологию» переработки золы с ориентацией на рыночный потенциал ее отдельных компонентов. Детальное изучение ряда зол уноса, включая ТЭЦ-3 и ТЭЦ-5 г. Новосибирска, позволило разработать оптимальные схемы их переработки, а также предложить технологии производства строительных материалов с утилизацией основной массы продуктов из золы.

БУЗ, получаемая в частности на ТЭЦ-3, состоит в основном из стеклянных сферических частиц с вариацией содержания кальция и железа. Эти частицы обладают вяжущими свойствами и при реакции с водой, медленнее, чем портландцемент, но образуют цементный камень. Однако наряду с ними есть частицы несгоревшего угля в виде кокса, содержание которого может доходить до 7%, зерна оксида кальция CaO (5 30%) и сульфата кальция CaSO4 (5 15%), покрытые стеклом, неактивные минералы - кварц и магнетит. Кокс оказывает однозначно негативное влияние на прочность камня, подобное макропорам.

Но наиболее негативную роль играют зерна CaO, особенно крупные. Эти зерна реагируют с водой со значительным увеличением объема и заметно медленнее основной массы золы, в т. ч. из за капсулирования стеклом.

Действие крупных частиц CaO можно сравнить с миной замедленного действия. Прочность камня на основе золы обычно невысока и составляет в среднем около 10 МПа (100 кГ/см2), но из за нестабильного состава варьирует от 0 до 30 МПа. Потребительская стоимость определяется нижней границей, т. е. равна нулю. Для отбора золы пригодного состава необходим экспрессный анализ, требующий дорогого спектрометра. Отбор для утилизации лишь части золы не представляет какого либо интереса.

Механическая обработка золы на ЭМК в режиме механической активации поверхности частиц с одновременной сепарацией примерно 50% тонкой фракции меньше 60 мкм решает перечисленные проблемы.

Оптимальный срок хранения активированной тонкой фракции золы с дополнительным ростом прочности камня на ~5 МПа составляет 1 5 суток, после чего трещины закрываются с падением активности ниже исходной.

Эта особенность зольного вяжущего требует переработки золы в основном самими потребителями. Прочность камня при оптимальных условиях активации и хранения уже не опускается ниже 10 МПа, а при малых добавках цемента порядка 10%, и хлорида кальция CaCl2 примерно 1%, (т. н. зимняя добавка, активирующая реакцию с малыми зернами песка) зольное вяжущее становится полноценным, но дешевым материалом для приготовления безусадочного низкомарочного бетона М100-М300.

Марка бетона определяется прочностью после 28 суток выдержки, но бетон с зольным вяжущим набирает прочность и дальше, увеличивая ее в 2 3 раза (в обычном бетоне - лишь на 30%). Крупная фракция может быть легко переработана: разделение по размерам частиц или на трибоэлектрическом сепараторе дает крупную фракцию кокса, которую можно вернуть обратно в котел, на магнитном сепараторе отделяется фракция из сферических частиц магнетита, которую можно использовать, например, в качестве специального пигмента. Остаток после затворения водой на 1 2 недели представляет собой штукатурный или строительный раствор.

Бион из золы

На рисунке показана прочность камня при различном соотношении цемента и зольного вяжущего. Можно выделить 3 области: низкомарочный бетон на основе зольного вяжущего с малыми добавками цемента, обычный бетон с небольшими добавками 10 20% зольного вяжущего, и бетон максимальной прочности с добавкой зольного вяжущего 25 50%. Если использовать зольное вяжущее в качестве добавки, то весь рынок в мегаполисе сможет потребить лишь небольшую часть производимой золы.

Производство бетона с большой добавкой зольного вяжущего до 50%, несмотря на привлекательность, представляет собой зону повышенного риска. Это связано с тем, что доля сульфата кальция CaSO4 в золе варьирует в пределах 5, а его высокое содержание может привести к образованию эттрингита при реакции с глиноземистым компонентом цемента с большим увеличением объема уже после образования прочного камня. В связи с этим образование эттрингита называют чумой для бетона.

Относительно проще найти применение низкомарочному бетону. В этом случае максимальный объем зольного вяжущего, например, из золы ТЭЦ-3 составит 60 тыс. тонн в год, из которого можно приготовить 200 тыс. куб. м бетона. Его будет достаточно для строительства 3000 малоэтажных индивидуальных домов или для покрытия 200 км местных дорог шириной 8 м. Зола может храниться в сухих условиях сколь угодно долго, поэтому рассогласование в сроках производства и потребления никак не скажется на качестве при переработке золы на месте строительства.

Переработка кислых КУЗ, представляющих собой в основном стеклянные сферические частицы, включая полые микросферы, и остатки несгоревшего угля в виде кокса до 5% также легко реализуется с использованием техники ЭМК. У микросфер, составляющих около 5% золы, имеется множество специальных областей применения, вплоть до медицины.

Главными потребителями КУЗ, помимо производителей бетона, являются кирпичные заводы. К сожалению, глины в России, как правило, тощие, а добавки золы не являются необходимыми. Потенциальная емкость регионального рынка на продукты из КУЗ пока в несколько раз ниже объема производимой золы. Вариант экспорта в развитые страны продуктов из золы необходимо просчитывать.

В Великобритании низкокачественные отходы закладывают в основания дорог. До 10 20% вырабатываемой КУЗ можно утилизировать с пользой в качестве флоккулянта в производстве грунтоблоков при организованном строительстве в полуавтономных экопоселках индивидуального малоэтажного жилья. Целостная концепция строительства доступного комфортабельного жилья на основе местных ресурсов и отходов изложена в проекте «Новая малоэтажная Россия» и доступна в Интернете. В целом для КУЗ рынок необходимо формировать в течение нескольких лет при наличии инвестиций.

Для чего нужна утилизация?

К сожалению, как строительство дорог, так и индивидуальное строительство через земельные отношения полностью зависит от чиновников. Эти области традиционно наименее прозрачны, что способствует процветанию коррупции. Инновации в этих областях реально невозможны без политической воли властей.

Безотходное использование ископаемых углей особенно выгодно государству со стратегической точки зрения, поскольку без дополнительных затрат удвоится объем производства вяжущих материалов и кроме этого за счет угля значительно снизится потребление газа внутри страны, что позволит увеличить объемы его продаж за рубеж. Производство альтернативного вяжущего на основе золы обеспечит конкуренцию в секторе низкомарочного бетона региональным монополистам - производителям цемента.

Зырянов Владимир Васильевич,

Энергетика и промышленность России