Как держать форму. Массаж. Здоровье. Уход за волосами

Модуль Юнга (упругости).

0. ВВЕДЕНИЕ

В методических указаниях к лабораторной работе N 3 "Оп-ределение модуля упругости и коэффициента Пуассона" указывает-ся цель работы, приводится характеристика испытуемого образца и даётся методика проведения испытаний.

Для лучшего усвоения материала по темам: "Растяжение и сжатие" и "Упруго – механические свойства материалов" приво-дятся основные теоретические положения, позволяющие квали-фицированно провести испытания, экспериментально определить по одному испытанию образца величины упругих постоянных (Е и μ) и проанализировать полученные результаты.

Завершаются методические указания перечнем возможных вопросов при защите отчета по этой лабораторной работе.

2. ЦЕЛЬ РАБОТЫ

Определить опытным путем величину модуля упругости Ε и коэффициент Пуассона μ и сравнить полученные результаты со справочными данными.

3. ОБОРУДОВАНИЕ, ПРИБОРЫ И ИНСТРУМЕНТЫ

Испытательная машина – МР-0,5. Тензометрическая станция – ЦТМ-5. Штангенциркуль.

4. ХАРАКТЕРИСТИКА ОБРАЗЦОВ

Вид образца, имеющего прямоугольное поперечное сечение, представлен на рис.1. На больших сторонах поперечного сечения образца наклеены по одному тензодатчику в продольном направлении и по одному в поперечном. Каждый тензодатчик под-ключен к отдельному каналу тензометрической станции ЦТМ-5.

Рис. 1. Вид обра о тензо датчиками

5. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

При деформациях подавляющего большинства материалов в упругой стадии справедлив закон Гука, который устанавливает прямую пропорциональную зависимость между напряжениями и деформациями:

Величина Ε представляет собой коэффициент пропорцио-нальности и называется модулем упругости первого рода. Так как относительное удлинение – величина безразмерная, модуль упруго-сти Ε имеет размерность напряжения. Закон Гука справедлив при напряжениях, не превышающих предел пропорциональности апц.

На диаграмме растяжения (сжатия) (рис.2) модуль упруго-сти Ε представлен тангенсом угла наклона прямой О А к оси (tg α).

Рис.2. Диаграмма растяжения (сжатия) образца из малоуглеродистой стали:

  1. растяжения,
  2. сжатия

При растяжении стержня, его удлинение в продольном на-правлении сопровождается пропорциональным сужением в попе-речном направлении, что показано на рис.3.

Рис.3. Изменение формы образца при испытаниях на растяжение

Продольную деформацию принято обозначать: абсолютную – Δi (Δ^ = i\- l),

относительную -ε (ε = Δ -£ / ^). Поперечную деформацию обозначим:

абсолютную – ДЬ (Ab = bi – b),

относительную – ε1 (ε1 = Ab / b). Как показывает опыт ε’= – μ · ε,

где μ – безразмерный коэффициент пропорциональности, называе-мый коэффициентом Пуассона, величина которого зависит только от материала и характеризует его свойства. Знак " – " указывает, что продольная и поперечная деформации всегда противоположны по знаку. Коэффициент Пуассона принято считать положительной величиной, поэтому относительные линейные деформации берутся по абсолютной величине (μ= ε11 /1 ε |).

6. ПОРЯДОК ПРОВЕДЕНИЯ ИСПЫТАНИЙ

1.- Перед испытанием студентам необходимо ознакомиться с устройством машины МР-0,5 (первое занятие) и правилами поведения в лаборатории при проведении испытаний (вводный инструктаж).

2. Измеряют штангенциркулем характерные линейные размеры испытуемого образца.

3. Убеждаются в подключении тензодатчиков к тензометрической станции ЦТМ-5.

4.- Наблюдают за включением машины, процессом нагружения образца начальной нагрузкой (0 – 100 Η-), которая задается преподавателем.

5.- Путем последовательного переключения соответствующих каналов тензометрической станции снимают показания каждого из тензометров. Эти данные заносятся в журнал наблюдений. В отчете по лабораторной работе в разделе "Результаты испытаний" предварительно готовится таблица..

6. Наблюдают за последующими двумя ступенями нагружения (100 – 200 Η каждая по указанию преподавателя) образца, снимают показания тензодатчиков и заносят их в таблицу.

7. В процессе проведения испытаний внимательно следят за ком-ментариями преподавателя и при завершении испытаний по его указанию приступают к обработке результатов испытания.

7. ОБРАБОТКА РЕЗУЛЬТАТОВ ИСПЫТАНИЯ

В журнале наблюдений (табл.) подсчитываются прираще-ния соответствующих отсчетов и определяются их средние значе-ния (АсрР, АсрАь АсрА2, ДсрВь АсрВ2). Затем подсчитываются средние приращения по тензометрам в продольном (АсрА) и попе-речном (АсрВ) направлениях.

По найденным АсрА и АсрВ находятся значения относи-тельной линейной деформации соответственно в продольном и поперечном направлениях:

ε = АсрА · с, ε1 = АсрВ · с,

где с – коэффициент чувствительности тензодатчика, который оп-ределяется тарировкой и сообщается преподавателем.

Определяются значение нормального напряжеия, средин для каждой ступени нагружения образца:

σ = АсрР / F, где F – площадь поперечного сечения образца (F = b · d).

Исходя из закона Гука при растяжении – сжатии (σ= Ε-ε) находится модуль упругости материала образца:

По найденным значениям относительных деформаций в продольном и поперечном направлениях определяется величина коэффициента Пуассона:

Для любого материала величина коэффициента Пуассона должна находиться в пределах от 0 до 0,5.

Найденные значения модуля упругости Ε и коэффициента Пуассона μ следует сравнить с соответствующими величинами, приведенными в справочной литературе и сделать выводы.

На правах рукописи

Министерство образования Российской Федерации

Волгоградская государственная архитектурно-строительная академия

Кафедра физики

ИЗМЕРЕНИЕ МОДУЛЯ ЮНГА

методом изГИБа СТЕРЖНЯ

Методические указания к лабораторной работе № 5

Волгоград 2010

УДК 539.4(076.5)

Измерение модуля юнга методом изгиба стержня: Метод. указания к лабораторной работе / Сост. , ; ВолгГАСА. Волгоград, 2003, 16 с.

Целью работы является изучение упругих деформаций, проверка закона Гука и определение модуля Юнга металлического стержня методом изгиба. Даны определения основных понятий теории упругости, объяснены микроскопические механизмы упругих и пластических деформаций, приводятся табличные данные об упругих и прочностных свойствах твердых тел. Изложена методика измерений, описан порядок выполнения работы и анализа экспериментальных данных. Сформулированы задания к УИРС. Даны правила техники безопасности и приведены контрольные вопросы.

Для студентов всех специальностей по дисциплине «Физика».

Ил. 6. Табл. 3. Библиогр. 8 назв.

© Волгоградская государственная

архитектурно-строительная академия, 2003

© Составление,

Ц ель работы . Изучение упругих деформаций, проверка закона Гука и

определение модуля Юнга металла методом изгиба стержня.

Приборы и принадлежности : установка для измерения прогиба металлических образцов в виде стержней, образцы для исследования, набор грузов, штангенциркуль, микрометр.

1. Теоретическое введение

1.1. Деформации, виды деформаций

В отличие от газов, которые не обладают ни собственной формой, ни собственным объемом, в отличие от жидкостей, которые не имеют собственной формы, но имеют собственный объем, твердые тела обладают и собственным объемом и собственной формой. Под действием внешних механических сил и по другим причинам (например, при нагревании, под воздействием электрических или магнитных полей) твердые тела меняют как свой объем, так и свою форму, т. е. деформируются .

При деформации твердого тела его частицы смещаются из первоначальных положений равновесия в новые. Этому смещению препятствуют силы взаимодействия между частицами: в деформированном теле возникают упругие силы, уравновешивающие внешние силы, вызвавшие деформацию.

По характеру возникающих сил выделяют упругие и пластические деформации. Если действующие на твердое тело силы достаточно малы, так что после устранения этих сил и объем тела, и его форма восстанавливаются (т. е. деформация исчезает), то деформации называют упругими . При этом частицы твердого тела возвращаются в исходные положения равновесия. При достаточно больших внешних силах или их длительном действии возникает необратимая перестройка кристаллической решетки, и деформации после устранения внешних сил полностью не исчезают. Такие деформации называют пластическими .

По характеру геометрических искажений выделяют два основных вида деформаций: деформация растяжения (сжатия ) и деформация сдвига (рис. 1). Всякую иную деформацию, например, изгиб, кручение, можно представить как совокупность этих двух основных видов деформации.

По характеру распределения деформаций в объеме тела выделяют однородные и неоднородные деформации. Деформацию называют однородной , если все элементарные кубики, из которых можно мысленно составить тело, деформируются одинаковым образом. Простейшими элементарными деформациями являются относительное удлинение и сдвиг. Изменение длины тела в результате его растяжения (или сжатия) от первоначального значения l 0 до l , равное , называется абсолютной деформацией растяжения (Dl > 0) или сжатия (Dl < 0). Относительным удлинением называется величина e = Dl /l 0.

При деформации однородного сдвига изменяется только форма, а объем тела остается неизменным (рис.1, б). Каждый горизонтальный слой сдвинут относительно соседних с ним слоев. При сдвиге любая прямая, которая до деформации была перпендикулярна к сдвигаемым слоям, повернется на некоторый угол . Величина называется относительным сдвигом . Угол мал, поэтому полагают .

Мерой внутренних сил, возникающих при деформации материала, является напряжение, равное силе упругости, действующей на единицу площади сечения тела , то есть величина , где – результирующая сил, действующих на элемент поверхности https://pandia.ru/text/78/101/images/image009_97.gif" width="87" height="25">, (1)

где – сила, приложенная по нормали к сечению тела стержня (рис.1, а ).

Тангенциальное напряжение , возникающее при однородном сдвиге, можно вычислить аналогично:

– касательная сила, параллельная плоскости сдвига (рис.1, б ).

Напряжение называется истинным, если учтено изменение площади S при деформации, и условным, если S – площадь недеформированного тела.

1.2. Закон Гука

При малых упругих деформациях выполняется закон Гука : напряжения, возникающие в упруго деформированном теле, прямо пропорциональны величине относительной деформации. Для упругих деформаций растяжения (сжатия) и сдвига закон Гука выражается уравнениями:

где E и G – характеристики упругих свойств вещества. Коэффициент пропорциональности E между нормальным напряжением sn и относительной деформацией растяжения (сжатия) e называется модулем упругости или модулем Юнга. Коэффициент пропорциональности G между тангенциальным напряжением st и относительным сдвигом https://pandia.ru/text/78/101/images/image015_66.gif" width="64" height="19">, (4)

где K – коэффициент всестороннего сжатия (модуль объемной деформации).

Формулы (3) выражают так называемый элементарный закон Гука, определяющий зависимость между напряжением и деформацией в одном и том же направлении (направлении приложенной силы). Однако деформации могут возникать и в направлениях, не совпадающих с направлением силы. Например, при растяжении образца (рис. 1, а ) происходит не только его удлинение, но и сжатие в поперечном направлении. Поперечная деформация при растяжении или сжатии характеризуется коэффициентом Пуассона n, равным отношению поперечной деформации к продольной в области упругости (см. табл. 1). Обобщенный закон Гука, записанный с учетом возможных деформаций по трем направлениям, имеет вид:

https://pandia.ru/text/78/101/images/image017_60.gif" width="173" height="29">, (5)

,

где индексы x , y и z обозначают направления осей координат, вдоль которых вычисляются соответствующие напряжения и относительные деформации растяжения (сжатия). И аналогично обобщенный закон Гука для сдвига:

Https://pandia.ru/text/78/101/images/image022_40.gif" width="193" height="51">. (7)

1.3. Диаграмма растяжения

Типичная зависимость нормального напряжения от относительной деформации при одностороннем растяжении (диаграмма растяжения) показана на рис. 2. Точка B на диаграмме разделяет области упругих и пластических деформаций, точка C соответствует началу разрушения тела.

https://pandia.ru/text/78/101/images/image024_43.gif" width="13" height="16 src="> и сохраняется, но при полной разгрузке у тела сохраняется остаточная деформация O R . В материалах, где пластические деформации сильно развиты, существует область текучести BB ¢ , где увеличение размеров тела происходит при неизменном напряжении. Этот этап нагружения материала может смениться участком B ¢ C нелинейной зависимости между https://pandia.ru/text/78/101/images/image025_39.gif" width="16" height="16">. Тогда точка B ¢ отождествляется с пределом текучести. Обычно четкой границы между участками BB ¢ и B ¢ C нет, и предел текучести определяют условно. Условный предел текучести (s0,2) – это напряжение, после нагружения до которого и последующей разгрузки остаточная деформация составляет 0,2 % первоначальной длины, то есть = 0,002 (для сравнения: условный предел упругости – напряжение, после приложения которого остаточная деформация составляет менее 0,05 % первоначальной длины). Область текучести BB ¢ наблюдается не для всех материалов, а только для пластичных, с вязким характером разрушения. В хрупких материалах предел упругости совпадает с пределом прочности, разрушение таких материалов, происходящее без видимой пластической деформации, называется хрупким.

Предел прочности (временное сопротивление 628 " style="width:471.3pt;border-collapse:collapse">

Материал

E , ГПа

Модуль сдвига

G , ГПа

Коэффициент

Пуассона

предел прочности

предел прочности

на сжатие

Предел прочности

В изг, МПа

(17–17,5)∙103

Алюминий

Древесина

Оргстекло

Титановые сплавы

Высокопрочные стали

При хрупком разрушении https://pandia.ru/text/78/101/images/image025_39.gif" width="16" height="16"> > В деформация сосредотачивается на одном участке образца, где поперечное сечение уменьшается, образуя так называемую шейку. В шейке перпендикулярно оси растяжения возникает трещина, которая разрастается в этом направлении до полного разрушения образца. В этом случае В характеризует сопротивление материала пластической деформации, а не разрушению..gif" width="16 height=16" height="16">0,2), модуль Юнга E являются базовыми параметрами, включаемыми в ГОСТ на поставку конструкционных материалов, в паспорта приемочных испытаний; они входят в расчеты прочности и ресурса.

1.3. Микроскопические механизмы деформации

Упругие свойства тел зависят от их строения, характера взаимного расположения и движения частиц (атомов, молекул), входящих в их состав. Взаимное расположение и движение частиц определяется силами взаимодействия между ними. Атомы и ионы кристалла испытывают со стороны соседних частиц действие как сил притяжения f пр, так и сил отталкивания f от, значения которых зависят от расстояния между частицами. По своему происхождению это силы электростатической природы, направления векторов сил f пр и f от противоположны, потенциальная энергия притяжения отрицательна, а потенциальная энергия отталкивания положительна. При этом силы отталкивания при увеличении расстояния убывают быстрее, чем силы притяжения. Поэтому зависимости суммарной потенциальной энергии W пот и результирующей силы f рез от расстояния r имеют вид, показанный на рис. 3. Для некоторого расстояния между частицами r 0, называемого равновесным, потенциальная энергия минимальна (рис. 3, а ), а результирующая сила обращается в нуль (рис. 3, б ).

При сжатии тела внешними силами расстояние между частицами становится меньше r 0, и в теле возникают силы отталкивания, препятствующие его сжатию. При растяжении тела расстояния между его частицами превышают r 0, в результате чего возникают силы притяжения, препятствующие растяжению. Таким образом, при отклонении частиц от положения равновесия в любую сторону возникают силы, стремящиеся возвратить их в равновесное состояние.

При установившейся упругой деформации результирующая внутренних упругих сил в любом сечении тела уравновешивает внешние силы, действующие на тело. Поэтому при упругой деформации величину внутренних сил можно определить по величине внешних сил, приложенных к телу. После устранения внешних сил внутренние силы вернут частицы в равновесные положения, и деформации исчезнут. Однако это будет иметь место лишь при малых деформациях, когда окружение смещающихся частиц остается неизменным. При этом силы их взаимодействия пропорциональны величине отклонения частицы из положения равновесия (r r 0), что соответствует закону Гука на участке cd кривой f (r ) (рис. 3, б ).

При достаточно больших смещениях частицы деформируемого тела из прежних положений равновесия попадают в соседние, занятые до этого другими частицами, которые тоже переходят в новые положения равновесия. При исчезновении внешних сил новые положения равновесия сохраняются, следовательно, имеют место остаточные деформации. Таков механизм возникновения пластических деформаций, который обычно реализуется при сдвигах атомов – скольжении атомных плоскостей или при их переориентации (двойниковании).

Неверно думать, что пластические деформации сдвига образуются путем смещения одной части кристалла относительно другой. Если бы это было так, то прочность кристаллов на сдвиг была бы в 100–1000 раз больше реальной, имеющей место в действительности. Природа сдвигообразования связана с несовершенством кристаллической структуры твердых тел, с образованием и движением дефектов. Дефекты структуры по геометрическим признакам разделяются на точечные (нульмерные), линейные (одномерные), поверхностные (двумерные) и объемные (трехмерные) дефекты.

К точечным дефектам, локализованным в отдельных точках кристалла, относят вакансии (вакантные узлы кристаллической решетки), атомы в междоузлиях и атомы примеси в узлах или междоузлиях .

Линейные дефекты – такие, при которых нарушение правильности структуры кристаллической решетки сосредоточено вблизи некоторых линий. Линии, отделяющие область сдвиговых деформаций от недеформированной области, называются дислокациями. Различают краевые и винтовые дислокации (рис. 4, а, б ). Краевая дислокация OO " (на рис. 4, а она обозначена значком) возникла при сдвиге части кристалла на одно межатомное расстояние и представляет собой край лишней полуплоскости. Краевая дислокация перпендикулярна вектору сдвига, винтовая дислокация OO " параллельна вектору сдвига (рис. 4, б ).

Дислокация, вызывая упругое искажение решетки, создает вокруг себя силовое поле, характеризующееся в каждой точке определенным касательным (st) и нормальным (sn ) напряжениями. При попадании в это поле другой дислокации возникают силы, стремящиеся сблизить или оттолкнуть дислокации друг от друга. От плотности и подвижности дислокаций зависит прочность материала.

Влажность" href="/text/category/vlazhnostmz/" rel="bookmark">влажности и температуры среды, методов виброуплотнения). Технологии упрочнения разрабатываются в зависимости от типа и назначения бетонов (тяжелые, легкие, гидротехнические, дорожные, жаростойкие и т. п.). Железобетонные конструкции упрочняют предварительным напряжением. Напряженные бетоны создают путем разогрева арматуры, приводящего к ее тепловому расширению, и последующего охлаждения по завершении процесса твердения бетона. Возникшие при этом деформации сжатия арматуры создают напряжения сжатия в бетоне. В процессе эксплуатации конструкции в условиях ее растяжения, имеющиеся внутренние напряжения направлены против внешних сил, что существенно увеличивает предел прочности. Аналогичным образом повышают предел прочности на изгиб, создавая внутри конструкции внутренние моменты сил, противоположные внешним моментам сил, возникающим в рабочем режиме.

2. Методика измерений

Целью работы является определение модуля Юнга на основе исследования упругой деформации изгиба. Деформацию изгиба испытывают детали многих сооружений. Балка или плита, лежащая на опорах, прогибается и под действием собственного веса, и под действием приложенной нагрузки F (рис. 5). Схема испытания на изгиб (рис. 5) предусмотрена ГОСТом для определения пределов прочности на изгиб. Эта же схема в настоящей работе используется для определения модуля Юнга.

https://pandia.ru/text/78/101/images/image030_33.gif" width="56" height="21">. (8)

Измеряя https://pandia.ru/text/78/101/images/image031_31.gif" width="15" height="20 src=">/F и рассчитывают модуль Юнга по формуле

где l – длина, b – ширина, h – толщина стержня, k – коэффициент упругости при изгибе, определяемый из (8).

Для обоснования формулы (9) рассмотрим фрагмент стержня, испытывающего деформации изгиба (рис. 6, а ). При равновесии сила F уравновешивается равнодействующей сил упругости F t, направленных по касательной к деформируемым слоям (рис. 6, а , б ). С другой стороны, равнодействующая сил упругости перпендикулярна к сечению стержня и создает нормальные напряжения.

При изгибе на выпуклой стороне тело испытывает деформацию растяжения, а на вогнутой – деформацию сжатия. Внутри изогнутого стержня имеется нейтральный слой, в котором деформации сжатия или растяжения отсутствуют. Поскольку нейтральный слой не изменяет длины, то длина линии O 1O 2, принадлежащей нейтральному слою, равна dx = r d a, где r – радиус кривизны нейтрального слоя, d a – угол между плоскостями сечения стержня.

Линия AB , лежащая ниже нейтрального слоя на расстоянии z , испытывает деформацию растяжения. Длина ее равна . Соответственно абсолютное и относительное удлинения равны:

https://pandia.ru/text/78/101/images/image037_26.gif" width="136" height="48 src=">.

Из закона Гука для растяжения получаем

https://pandia.ru/text/78/101/images/image039_26.gif" width="85" height="25">, а ее момент равен . Суммарный момент силы найдем интегрированием:

https://pandia.ru/text/78/101/images/image042_21.gif" width="99" height="31 src="> (единица измерения м4) является мерой сопротивления сечения тела деформации изгиба, в отличие от физического понятия момента инерции твердого тела https://pandia.ru/text/78/101/images/image044_20.gif" width="172" height="60 src=">,

откуда следуют формулы (8) и (9).

В стандартных испытаниях на прочность приложенную нагрузку повышают до разрушения тела, фиксируя силу F = Fm , при которой стержень ломается. Предел прочности на изгиб рассчитывают по формуле

https://pandia.ru/text/78/101/images/image046_20.gif" width="65" height="25 src=">.gif" width="168" height="55">, (12)

где DEi = E ср – Ei , коэффициент Стьюдента a найдите по таблице Стьюдента при W = 0,95 и n = 5. В соответствии с погрешностью округлите результат и представьте в виде Е = (Е ср ± DЕ ) Па. Сравните полученные результаты с табличными. Сформулируйте выводы по работе, включая комментарий о выполнимости закона Гука и оценки полученных результатов.

Таблица 2

Размеры исследуемого стержня

Материал (сталь, латунь …)

ширина, мм

толщина, мм

Таблица 3

Результаты измерения модуля Юнга

ni 1, мм

ni 2, мм

ni 3, мм

ni ср, мм

(n 0 ср – ni ср)

E ,

( E )2,

E эксп = (E ср E )·1011 Па

Техника безопасности

· Стальной стержень не закреплен на опорах. Во избежание падения стержня и грузов аккуратно устанавливайте грузы.

· Не оставляйте установку включенной.

Задания для учебно-исследовательской работы

1. Исследование упругих свойств различных строительных материалов .

2. Исследование отклонений от закона Гука для стержней, изготовленных из пластмассы, органического стекла, других пластичных материалов.

3. Оценка микроскопических параметров межатомных взаимодействий.

4. Оценка теоретической прочности твердых тел с идеальной кристаллической решеткой, сравнение с экспериментальными значениями. Современные теории разрушения.

При выполнении заданий использовать и дополнительную литературу.

Контрольные вопросы

1. Виды деформаций. Закон Гука для упругих деформаций: одноосного и всестороннего растяжения (сжатия). Закон Гука для деформаций сдвига.

2. Физический смысл модуля Юнга, модуля сдвига, коэффициента Пуассона, связь между этими величинам. Обобщенный закон Гука.

3. Микроскопический механизм деформации твердых тел. Покажите на графиках зависимости потенциальной энергии и силы взаимодействия от расстояния между атомами область выполнимости закона Гука.

4. Диаграмма растяжения. Пределы упругости, текучести, прочности.

5. Основной механизм разрушения твердых тел. Роль дефектов. Типы дефектов. Методы повышения прочности материалов.

6. Задача . Найти относительное удлинение вертикально подвешенного стального троса под действием собственного веса 100 кГ. Площадь поперечного сечения S = 5 см2.

7. Задача . К двум противоположным граням стального бруска с поперечным сечением S = 10 см2 приложены силы F 1 = F 2 = 10 кГ. Определить величину относительного сдвига.

8. Задача . По полученным в работе значениям модуля Юнга оценить, какой наибольший груз может выдержать проволока диаметром d = 1 мм, не выходя за предел упругости? Оценить также интервал значений приложенных сил, соответствующий области текучести. Для расчетов используйте значение модуля Юнга, полученное в Вашей работе, и данные табл. 1.

9. Задача . Для предварительного напряжения конструкций используют два метода: механическое растяжение и тепловое расширение арматуры, в которой необходимо создать напряжение s0, составляющее 90% от предела текучести. Определить требуемое удлинение стального стержня для необходимого напряжения s0. Рассчитать, какую для этого надо приложить силу к стальному стержню арматуры или на сколько градусов его нагреть? При тепловом расширении относительное удлинение прямо пропорционально приращению температуры e = a DT , где a = 1,2·10–5 град–1. Длина стержня l 0 = 2,5 м, диаметр 10 мм, модуль Юнга стали E = 210 ГПа, предел текучести sт = 260 Мпа.

Библиографический список

1. Курс физики. М.: Высш. шк., 1999.

2. Краткий курс физики: Учеб. пособие для вузов. М.: Высш. шк., 2000.

3. Курс физики / , . М.: Высш. шк., 1999.

4. Яворский Б. М . Справочник по физике для студентов втузов и инженеров. – 2-е изд. испр. и доп. / , . М.: Высш. шк., 1999.

5. Физика твердого тела / , М.: Высш. шк., 2000. Гл. 2–4.

6. Физика твердого тела. М.: Высш. шк., 1975. С. 56–88.

7. Строительные материалы и изделия. М.: Высш. шк., 1983. §1.3, § 6, 7.

8. Теплофизические свойства материалов: Учебно-исследовательские работы по курсу физики / Сост. , ; ВолгИСИ. Волгоград. 1983. С. 6–8.

9. Горчаков материалы: Учеб. Для вузов./ , . М.: Стройиздат, 1986.– 688 с.

10. Физические величины: Справочник/ , и др.; Под ред. , . М.: Энергоиздат, 1991.1232 с.

Модуль Юнга называют также константой упругой жесткости или просто жесткостью.

* Приведено для тяжелых, высокопрочных бетонов (для легких бетонов sв = 5–15 МПа).

** Приведено для дорожных бетонов.

ЛАБОРАТОРНАЯ РАБОТА №9

Определение модуля упругости (модуля Юнга) по деформации изгиба

Цель работы: определение модуля упругости (модуля Юнга) по деформации изгиба стержней прямоугольного сечения.

КРАТКАЯ ТЕОРИЯ

Деформация изгиба возникает тогда, когда к стержню, один конец которого закреплен (рис.1а ) или к стержню, свободно лежащему на опорах (рис.1б ) приложена сила, перпендикулярная к его оси. И в том и в другом случае стержень изгибается и характеристикой этой деформации может служить стрела прогиба .

Во введении к данному циклу работ было показано, что деформация изгиба представляет собой неоднородную деформацию растяжения-сжатия. Там же было получены выражения (формулы (12)и (13) введения) для определения стрел прогиба для обеих ситуаций, приведенных на рис.1.

В данной лабораторной работе будет исследоваться изгиб стержня прямоугольного сечения, свободно лежащего на опорах (рис.1б ). В этом случае стрела прогиба определяется соотношением

где L - длина стержня, Е – модуль Юнга материала стержня, Р – сила, действующая на середину стержня. Величина I определяется только формой сечения стержня и рассчитывается по формуле

. (2)

Величины, входящие в эту формулу, поясняются на рис.2. Буквой О обозначен центр масс сечения стержня. Через него проходит нейтральный слой, который не испытывает деформации сжатия-растяжения.

В данной работе используется стержень прямоугольного сечения (рис.3) Очевидно, что в этом случае центр масс сечения совпадает с его геометрическим центром и, следовательно, b 1= b 2= b /2 . Здесь b – размер стержня в направлении действия нагрузки, иначе говоря, толщина стержня. Кроме того, очевидно, что величина а не зависит от х (стержень имеет постоянную ширину. Теперь интеграл (2) вычисляется просто:

(3)

Подставляя полученное выражение в (1), получаем

или , где (4)

Выражение (4) подсказывает следующий метод определения модуля Юнга. Надо получить экспериментальную зависимость стрелы прогиба от нагрузки Р и определить тем или иным способом коэффициент пропорциональности А . Далее, проведя измерения геометрических размеров стержня, рассчитать Е.

МЕТОДИКА ЭКСПЕРИМЕНТА

Установка для определения экспериментальной зависимости стрелы прогиба от нагрузки состоит из двух стоек со стальными призмами, на которых располагается стержень прямоугольного сечения из исследуемого материала. Грузы, вес которых определяется на технических весах, подвешиваются к стремени, которое помещают на одинаковом расстоянии от стоек. Стрела прогиба измеряется с помощью микрометра, установленного вертикально над стержнем в месте расположения стремени. Контакт острия на стебле микрометра со стержнем фиксируется световым индикатором.

Предварительно измеряются геометрические параметры установки, т.е. величины L , a и b после чего исследуемый стержень размещается на опорах.

Далее необходимо убедиться, будут ли деформации стержня, возникающие в наших экспериментах, упругими, поскольку только в этом случае для вычисления модуля Юнга справедлива формула (1). Для выяснения этого обстоятельства используется следующая процедура. Микрометрический винт приводится в контакт со стержнем и производится отсчет показаний микрометра. Используя все имеющиеся грузы, создается максимально возможная (для данной работы) нагрузка стержня. Затем грузы снимаются, микровинт вновь приводится в контакт со стержнем и вновь производится отсчет показаний микрометра. Если показания микрометра до и после нагружения стержня совпадают в пределах погрешности измерений, можно говорить, что форма стержня восстановилась и, тем самым, утверждать, что при проведении экспериментов возникающие деформации будут упругими.

Стрела прогиба в данной установке определяется как разность показаний микрометра до нагружения стержня n0 и при нагрузке стержня n , т.е. =n0 –n , а нагрузка рассчитывается по формуле Р=mg . Используя эти соотношения можно несколько изменить формулы (4) так, чтобы в них входили результаты прямых измерений

или = n 0 – n = B m , где . (5)

Определив коэффициент пропорциональности В по экспериментальной зависимости стрелы прогиба от массы груза теперь нетрудно рассчитать значение модуля Юнга.

Экспериментальная зависимость от m при увеличении нагрузки снимается следующим образом. В отсутствие нагрузки отсчитывается показание микрометра n 0 . Подвешивается груз массой m 1 и отсчитывается показание микрометра n 1 . Очевидно, 1 = n 0 – n 1 . Добавляется груз массой m 2 . Суммарная масса нагрузки будет составлять m 1+ m 2 . Отсчитывается показание микрометра n 2 , определяется 2 . Добавляется следующий груз и т.д.

Аналогичным образом определяется экспериментальная зависимость от m при разгрузке. Отсчитывается показание микрометра при максимальной подвешенной массе, убирается один груз, вновь отсчитывается показание микрометра и так до тех пор, пока не будут сняты все грузы. В отсутствии нагрузки определяется новое значение n 0 .

ВЫПОЛНЕНИЕ РАБОТЫ И УСЛОВИЯ ЭКСПЕРИМЕНТА

    в отсутствие нагрузке привести в контакт со стержнем стебель микрометра, произвести отсчет показания микрометра n 0 ;

    взвесить одну из гирь и подвесить ее к стремени. Вращением головки микрометра восстановить контакт острия стебля микрометра со стержнем. Определить новое показание микрометра;

    последовательно добавлять к подвешенным гирям остальные, предварительно взвешивая их. После подвешивания очередной гири восстанавливать контакт острия стебля микрометра со стержнем и отсчитывать показания микрометра;

    результаты измерений занести в таблицу, вид которой приведен ниже, рассчитать погрешность определения стрелы прогиба, построить график экспериментальной зависимости от m при нагружении стержня.

п/п

m, кг

n , мм

, мм

 , мм

1 = n0-n1

2 = n0-n2

k = n0-n2

    Снять зависимость величины прогиба от массы груза при разгрузке стержня. Для этого

    подвесить максимальный груз, произвести отсчет показаний микрометра;

    вывести стебель микрометра из контакта со стержнем, снять одну гирю, вновь привести стебель микрометра в контакт со стержнем, произвести отсчет показания микрометра;

    повторять предыдущий пункт, последовательно снимая гири;

    сняв последнюю гирю, снова определить величину n 0 ;

    результаты измерений занести в таблицу, аналогичную вышеприведенной (ее удобно заполнять снизу вверх), рассчитать погрешность определения стрелы прогиба, построить график экспериментальной зависимости от m при разгрузке стержня.

    По результаты измерений методом наименьших квадратов определить значения коэффициента В и рассчитать величины модуля Юнга при нагружении и разгрузке стержня.

ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТА

Измерения геометрических размеров стержня являются прямыми измерениями, поэтому погрешности величин а ,b и L определяются стандартными методами обработки прямых измерений. Прямыми являются и измерения массы. Однако при этом будем считать, что случайная погрешность определения массы много меньше систематической, так что полная погрешность определения массы равна систематической погрешности, составляющей .

Стрела прогиба определяется косвенным образом по формуле =n0 –n , где n0 и n , прямые измерения, производимые по микрометру с точностью 0,01мм . Погрешность  определяется по формуле . Очевидно, что n 0= n = 0,01мм , так что = 0,014мм . Итак, абсолютная погрешность измерения стрелы прогиба во всех опытах будет одинакова и равна 0,014мм .

Согласно формуле (5) существует линейная связь между стрелой прогиба и массой груза, т.е. m . Коэффициент В по данным эксперимента можно было бы определить так. Каждый опыт дает определенное значение B i :

Вi = i / m i , (7)

где i и mi - значения величин и m , полученные в i -том опыте. Индекс i у величины B показывает, что это значение соответствует i -тому опыту. Из значений B i можно образовать среднее

Здесь следует отметить, что это простой, но не самый лучший способ определения B . В самом деле, m есть величина, характеризующая условия опыта, которую мы знаем практически точно, а есть результат опыта, известный с погрешностью. Погрешность  одинакова во всех измерениях. Тогда ошибка в величине B , равная i /mi , тем больше, чем меньше mi . Иначе можно сказать, что значение B , вычисленное по формуле (8), не является наилучшей оценкой истинного B . Это является следствием того, что величины B i неравноточные.

Строго задача о нахождении наилучшей оценки истинного значения B по данным эксперимента и известной зависимости типа Y=aX (в данном случае =B m ) ставится так. Необходимо найти такое значение B , при котором функция =B m наилучшим образом соответствует опытным данным (смысл нечеткого выражения "наилучшим образом" станет ясным из дальнейшего).

Выберем за меру отклонения функции от экспериментальных данных для i -го опыта величину (i-Bmi)2 . Если бы за меру отклонения была взята просто величина i-Bmi , то сумма отклонений в нескольких опытах могла бы оказаться весьма малой за счет взаимного уничтожения отдельных слагаемых большой величины, но имеющих разные знаки. Это, однако, вовсе не говорило бы о том, что функция =Bm хороша. Очевидно, что такого взаимного уничтожения не будет, если мера отклонения выбрана в виде (i-Bmi)2 .

Итак, в качестве меры общего отклонения S в описании опытных данных функцией =Bm необходимо взять сумму мер отклонений для всех опытов, то есть:

. (9)

Таким образом, наша функция будет наилучшим способом описывать опытные данные, если S , то есть сумма квадратов отдельных отклонений, минимальна. Метод определения констант, входящих в формулу, из требования минимальности S , называется методом наименьших квадратов.

Величина S является функцией B , т.е. S=S(B) . Чтобы найти такое значение B, которое доставляет минимум функции S (наилучшее значение B ), необходимо, как известно, решить уравнение dS/dB=0 . Используя (9), получаем:

что дает . (10)

Итак, подставляя в формулу (10) экспериментальные значения mi и i , рассчитывается значение величина, являющееся наилучшей оценкой истинного B . Среднеквадратичное отклонение определяется по формуле:

. (11)

Для расчета доверительного интервала о B выбирается доверительная вероятность и определяется коэффициент Стьюдента t ,k-1 , т.е. для числа на единицу меньше числа проделанных опытов. Тогда, как обычно, о B=t ,k-1SB .

Методом наименьших квадратов следует обработать экспериментальные точки, полученные как при нагружении стержня, так и при его разгрузке. Следует также на экспериментальных графиках провести "наилучшие" прямые, используя значение рассчитанные значения В .

После расчета коэффициента пропорциональности В можно рассчитать по формуле (6) значение модуля Юнга. Погрешности, входящих в эту формулу величин, известны. Естественно, что значения этих погрешностей определяют и погрешность определения величины E . Величина E является результатом косвенного измерения. Значение E определяется по формуле погрешности косвенных измерений. Предполагая при этом, g =0 , можно записать:

Взяв производные и поделив обе части (12) на величину E= g L3/4ab3 B , получим выражение, которое удобно использовать для расчета погрешности

. (13)

Подставляя в формулу (6) вначале случайные, а затем систематические погрешности, можно определить соответственно случайную и систематическую (С Е ) погрешности измерения модуля Юнга. Полная погрешность единичного измерения модуля Юнга определяется по формуле.Таким образом, будут получены два значения модуля Юнга (из экспериментов при нагружении и разгрузке стержня). Их надо сравнить друг с другом и с табличными значениями.

КОНТРОЛЬНЫЕ ВОПРОСЫ

    Что такое механическое напряжение и относительная деформация? Какова связь между ними (на примере деформации сжатия-растяжения)? Что такое механическое напряжение и относительная деформация с молекулярной точки зрения?

    В чем состоит закон Гука? Каков физический смысл модуля Юнга, модуля сдвига? Что такое коэффициент Пуассона?

    Почему модуль Юнга может быть определен из наблюдений деформаций изгиба?

    Каковы основные этапы вывода формулы (1)? Что такое «момент инерции сечения» I ?

    Определите относительную погрешность величины A , вычисляемой по формуле A=B-C , если B=100, C=99 и относительные погрешности их определения составляют 1%.

ГОСТ 9550-81

Группа Л29

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ПЛАСТМАССЫ

Методы определения модуля упругости при растяжении, сжатии и изгибе

Plastics. Methods for determination of elasticity modulus at strength,
compression and bending

Дата введения 1982-07-01


Постановлением государственного комитета СССР по стандартам от 26 августа 1981 г. N 4058 дата введения установлена 01.07.82

Ограничение срока действия снято по протоколу N 5-94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12-94)

ВЗАМЕН ГОСТ 9550-71

ИЗДАНИЕ (май 2004 г.) с Поправкой (ИУС 11-89).


Настоящий стандарт распространяется на пластмассы и устанавливает методы определения модуля упругости при растяжении, сжатии и изгибе.

Стандарт не распространяется на ячеистые пластмассы и пленки из пластмасс.

Стандарт полностью соответствует СТ СЭВ 2345-80.

Термины, применяемые в настоящем стандарте, и их пояснения приведены в приложении.

1. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ РАСТЯЖЕНИИ

1.1. Сущность метода

Сущность метода заключается в определении модуля упругости при растяжении как отношения приращения напряжения к соответствующему приращению относительного удлинения, установленному настоящим стандартом.

1.2. Отбор образцов

1.2.1. Для испытания применяют образцы по ГОСТ 11262-80 .

1.2.2. Количество образцов, взятых для испытания одной партии материала, а для анизотропных материалов в каждом из выбранных направлений, должно быть не менее 3.

1.3. Аппаратура

ГОСТ 11262-80 , при этом испытательная машина должна обеспечивать скорость раздвижения зажимов (1,0±0,5)% в минуту, а прибор для измерения удлинения должен обеспечивать измерение с погрешностью не более 0,002 мм.

1.4. Подготовка к испытанию

1.4.1. Перед испытанием образцы кондиционируют в стандартной атмосфере по ГОСТ 12423-66

1.4.2. Перед испытанием измеряют толщину и ширину образца по ГОСТ 11262-80 .

1.5. Проведение испытания

1.5.1. Испытание проводят при температуре и относительной влажности, указанных в нормативно-технической документации на конкретную продукцию.

Если в нормативно-технической документации на конкретную продукцию нет других указаний, то испытание проводят в соответствии с ГОСТ 12423-66 при температуре (23±2) °С и относительной влажности (50±5)%.

1.5.2. Образец закрепляют в машину так, чтобы продольные оси зажимов и ось образца совпадали с линией, соединяющей точки крепления зажимов на испытательной машине.

1.5.3. На образце, закрепленном в зажимах, проводят установку и настройку прибора для измерения удлинения.

1.5.4. Образец нагружают при скорости раздвижения зажимов испытательной машины, обеспечивающей скорость деформации образца (1,0±0,5)% в минуту. Нагружение осуществляют до величины относительного удлинения 0,5%.

Если образцы разрушаются до достижения относительного удлинения 0,5%, нагружение проводят до меньшей величины деформации, установленной в нормативно-технической документации на конкретную продукцию.

1.5.5. Графическую запись нагрузки и деформации проводят в следующем масштабе:

100-150 мм на диаграмме должно соответствовать 0,4% относительного удлинения;

не менее 100 мм на диаграмме должно соответствовать приращению нагрузки, соответствующему увеличению относительного удлинения на 0,4%.

1.6. Обработка результатов

1.6.1. По диаграмме определяют значения нагрузки, соответствующие величинам относительного удлинения 0,1 и 0,3%. Допускаются меньшие значения относительного удлинения для образцов, предусмотренных в п.1.5.4.

1.6.2. Модуль упругости при растяжении () в МПа вычисляют по формуле

где - нагрузка, соответствующая относительному удлинению 0,3%, Н;

- нагрузка, соответствующая относительному удлинению 0,1%, Н;

- расчетная длина образца, мм;


- удлинение, соответствующее нагрузке , мм;

- удлинение, соответствующее нагрузке ,

1.6.3. За результат испытания принимают среднеарифметическое значение всех параллельных определений.

1.6.4. Величину стандартного отклонения вычисляют по ГОСТ 14359-69 .

1.6.5. Результаты испытания записывают в протокол, который должен содержать следующие данные:

наименование и марку пластмассы и номер партии;

метод испытания;

наименование испытательной машины;

тип и марку прибора для измерения деформации;

условия проведения испытания (скорость нагружения, температура, графическая запись и т.д.);

тип испытуемого образца (форма, размеры);

условия подготовки испытуемого образца;

количество образцов, взятых для испытания;

среднеарифметическое определяемого показателя и стандартное отклонение;

дату испытания;

обозначение настоящего стандарта.

2. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ СЖАТИИ

2.1. Сущность метода

Сущность метода заключается в определении модуля упругости при сжатии как отношения приращения напряжения к соответствующему приращению относительной деформации сжатия, установленному настоящим стандартом.

2.2. Отбор образцов

2.2.1. Для испытания применяют образцы по ГОСТ 4651-82 . База измерения деформации должна составлять не менее 10 мм и не более высоты образца при измерении деформации прибором, установленным на образце.

При изготовлении образцов из изделий толщиной менее 5 мм используют образцы в форме прямоугольных пластин размерами (80±2)х(10,0±0,5) мм, а толщина образца равна толщине изделия. Для армированных пластмасс ширина образцов равна (15,0±0,5) мм. Для предотвращения потери устойчивости при испытании таких образцов применяют приспособление (черт.1).

Черт.1. Приспособление для испытания на сжатие образцов толщиной менее 5 мм

Приспособление для испытания на сжатие образцов толщиной менее 5 мм

Черт.1

2.2.2. Количество образцов должно соответствовать п.1.2.2.

2.3. Аппаратура

Для проведения испытания применяют аппаратуру по ГОСТ 4651-82 , при этом испытательная машина должна обеспечивать скорость сближения опорных площадок со скоростью деформации образца (1,0±0,5)% в минуту, а прибор для измерения деформации сжатия должен обеспечивать измерение с погрешностью не более 0,002 мм.

2.4. Подготовка к испытанию

2.4.1. Перед испытанием образцы кондиционируют в стандартной атмосфере по ГОСТ 12423-66 не менее 16 ч, если в нормативно-технической документации на конфетную продукцию нет других указаний.

2.4.2. Перед испытанием измеряют размеры образцов по ГОСТ 4651-82 .

2.5. Проведение испытания

2.5.1. Испытания проводят при температуре и относительной влажности, указанных в п.1.5.1.

2.5.2. Образец устанавливают на опорных плитах испытательной машины так, чтобы продольная ось образца совпадала с направлением действия силы.

2.5.3. Устанавливают прибор для измерения деформации. Деформацию при сжатии определяют измерением расстояния между площадками или по изменению базы на образце (см. п.2.2.1).

2.5.4. Образец нагружают при скорости сближения площадок испытательной машины, обеспечивающей скорость деформации образца (1,0±0,5)% в минуту. Нагружение осуществляют до величины деформации 0,5%.

Если образцы разрушаются до достижения относительной деформации 0,5%, нагружение осуществляют до меньшей величины деформации, установленной в нормативно-технической документации на конкретную продукцию.

2.5.5. Графическую запись нагрузки и деформации проводят в соответствии с п.1.5.5 при значениях относительной деформации сжатия, равных значениям относительного удлинения, указанных в п.1.5.5.

2.6. Обработка результатов

2.6.1. По диаграмме определяют значения нагрузки, соответствующие величинам относительной деформации 0,1 и 0,3%.

Допускаются меньшие значения относительной деформации при сжатии для образцов, предусмотренных в п.2.5.4.

2.6.2. Модуль упругости при сжатии () в МПа вычисляют по формуле

где - нагрузка, соответствующая относительной деформации 0,3%, Н;

- нагрузка, соответствующая относительной деформации 0,1%, Н;

- начальная высота образца или базы, мм;

- площадь начального поперечного сечения образца, мм;

- изменение высоты или базы, соответствующее нагрузке , мм;

- изменение высоты или базы, соответствующее нагрузке, ,

2.6.3. За результат испытания принимают среднеарифметическое значение всех параллельных определений.

2.6.4. Величину стандартного отклонения вычисляют, как указано в п.1.6.4.

2.6.5. Результаты испытания оформляют протоколом, как указано в п.1.6.5.

3. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ ИЗГИБЕ

3.1. Сущность метода

Сущность метода заключается в определении модуля упругости при изгибе как отношения приращения напряжения к соответствующему приращению относительной деформации, установленному настоящим стандартом.

3.2. Отбор образцов

3.2.1. Для испытания применяют образцы по ГОСТ 4648-71 .

3.2.2. Количество образцов должно соответствовать п.1.2.2.

3.3. Аппаратура

Для проведения испытания применяют аппаратуру по ГОСТ 4648-71 , при этом испытательная машина должна обеспечивать скорость сближения нагружающего наконечника и опор, соответствующую скорости деформации образца (1,0±0,5)% в минуту, а прибор для измерения деформации образца должен обеспечивать измерение с погрешностью не более 0,01 мм.

3.4. Подготовка к испытанию

3.4.1. Перед испытанием образцы кондиционируют в стандартной атмосфере по ГОСТ 12423-66 не менее 16 ч, если в нормативно-технической документации на конкретную продукцию нет других указаний.

3.4.2. Перед испытанием измеряют размеры образцов по ГОСТ 4648-71 .

3.5. Проведение испытания

3.5.1. Испытания на изгиб проводят двумя методами:

А - при нагружении по трехточечной схеме (черт.2);

Б - при нагружении по четырехточечной схеме (черт.3).

Черт.2. Трехточечная схема нагружения при изгибе

Трехточечная схема нагружения при изгибе

Метод А

Черт.3. Четырехточечная схема нагружения при изгибе

Четырехточечная схема нагружения при изгибе

Метод Б

Нагрузка; - расстояние между опорами; - прогиб; - эпюра момента


При методе А испытуемый образец нагружают наконечником в середине расстояния между опорами.

При методе Б испытуемый образец нагружают парой наконечников, расположенных в средней трети расстояния между опорами.

Выбор метода предусматривается в нормативно-технической документации на конкретную продукцию.

Прогиб измеряют:

в методе А - в середине расстояния между опорами (черт.2). Величину прогиба оценивают по величине перемещения подвижной части нагружающего устройства;

в методе Б - в соответствии с черт.3.

3.5.2. Испытания проводят при температуре и относительной влажности, указанных в п.1.5.1.

3.5.3. Расстояние между опорами () устанавливают в зависимости от толщины образца () от 15 до 17 мм и измеряют с погрешностью не более 0,5%.

3.5.4. На образце, лежащем на опорах, осуществляют установку и настройку прибора для измерения прогиба.

3.5.5. Образцы нагружают при скорости сближения нагружающего наконечника и опор, обеспечивающей скорость деформации образца (1,0±0,5)% в минуту.

Нагружение осуществляют до величины относительной деформации крайних волокон 0,5%.

Относительную деформацию крайних волокон () вычисляют по формуле

для метода А

для метода Б

где - значение прогиба, мм;

- толщина образца, мм;

- расстояние между опорами, мм.

Если образцы разрушаются до достижения относительной деформации крайних волокон 0,5%, нагружение осуществляют до меньшей величины деформации, установленной в нормативно-технической документации на конкретную продукцию.

3.5.6. Графическую запись нагрузки и деформации проводят в соответствии с п.1.5.5 при значениях прогиба, соответствующих значениям относительной деформации крайних волокон, указанных в п.1.5.5.

3.6. Обработка результатов

3.6.1. По диаграмме определяют значения нагрузки и прогиба, соответствующие значениям относительной деформации крайних волокон 0,1 и 0,3%.

Допускаются меньшие значения относительной деформации при изгибе для образцов, предусмотренных в п.3.5.5.

3.6.2. Модуль упругости при изгибе () в МПа вычисляют по формуле

для метода А

для метода Б

где - расстояние между опорами, мм;

- нагрузка при величине относительной деформации крайних волокон 0,3%, Н;

- нагрузка при величине относительной деформации крайних волокон 0,1%, Н;

- ширина образца, мм;

- толщина образца, мм;

- прогиб образца, соответствующий относительной деформации крайних волокон 0,3%, мм;

- прогиб образца, соответствующий относительной деформации крайних волокон 0,1%, мм

3.6.3. За результат испытания принимают среднеарифметическое значение всех параллельных определений.

3.6.4. Величину стандартного отклонения вычисляют, как указано в п.1.6.4.

3.6.5. Результаты испытания оформляют протоколом, как указано в п.1.6.5.

ПРИЛОЖЕНИЕ (справочное). Термины, применяемые в настоящем стандарте, и их пояснения

ПРИЛОЖЕНИЕ
Справочное

Понятие

Обозначение

Единица измерения

Определение

Модуль упругости

Мера жесткости материала, характеризующаяся сопротивлением развитию упругих деформаций.

при растяжении

Модуль упругости определяют как отношение приращения напряжения к соответствующему приращению деформации

при сжатии

при изгибе

2. Скорость деформации

Изменение относительной деформации растяжения или сжатия в единицу времени.

Скорость деформации при растяжении и сжатии определяют как отношение скорости перемещения подвижного элемента испытательной машины () к длине образца между кромками зажимов или сжимающими площадками. При изгибе вычисляют по формуле

для метода А

для метода Б

где - скорость относительной деформации крайних волокон образца, равная 0,01 мин;

Расстояние между опорами, мм;

Толщина образца, мм.


ПРИЛОЖЕНИЕ. (Поправка).

Текст документа сверен по:
официальное издание
М.: ИПК Издательство стандартов, 2004

Цель работы: Получить зависимость между деформацией и напряжением при деформациях растяжения и сжатия. Определить модуль Юнга для стали.

Приборы и материалы: Прибор для изучения, деформации растяжения, состоящий из рамы, линейки, дисков известной массы, микрометр, индикаторы линейных перемещений, установка Ф3ПА, штангенциркуль.

Деформацией твердого тела называется изменение размеров и формы тела или его частей. Деформация может быть следствием теплового расширения, воздействия электрических или магнитных полей, внешних механических сил. Деформация называется упругой, если она исчезает полностью после снятия нагрузки и пластической, если после снятия нагрузки она не исчезает. Строго го­воря, абсолютно упругих тел не существует, но при определенных условиях величиной остаточных деформаций можно пренебречь. Твердые тела с хорошей точностью можно считать упругими, пока деформация не превышает некоторого предела, который называется пределом упругости.

При деформации твердого тела внутри него возникают силы, которые называются силами упругости. Мерой сил упругости слу­жит напряжение

s=dF/dS ,

где dF - результирующая сила упругости, действующая на элементарную площадку dS . Если си­ла dF направлена перпендикулярно к площадке, то напряжение называется нормальным, если сила параллельна площадке, то на­пряжение называется касательным.

Простейшим видом деформации является растяжение или сжатие тела. Рассмотрим деформацию растяжения однородной прово­локи под действием внешней силы, направленной вдоль ее оси. Напряжение, которое возникает при такой деформаций, является нормальным и однородным, т. е. имеет одинаковое значение по все­му сечению проволоки. Поэтому

Величина внутренних сил F при однородной деформации растя­жения (сжатия) равна приложенной внешней силе.

Пусть начальная длина проволоки l о, а длина ее после деформации l, тогда удлинение проволоки Dl = l l 0 . Величина e=Dl/l о называется относительной деформацией растяжения.

Опытным путем установлено, что напряжение, возникающее в упруго деформируемом теле при однородной деформации, прямо пропорционально величине относительной деформации

Записанное соотношение выражает закон Гука.

Закон Гука выполняется только при малых деформациях, когда их величина не превышает предела упругости. При пластической деформации закон Гука не имеет места.

Коэффициент пропорциональности Е называется модулем про­дольной упругости или модулем Юнга.

Модуль Юнга является одной из важнейших механических характеристик твердого тела и определяет его способность сопротив­ляться внешним механическим воздействиям.

Измерение модуля Юнга можно проводить прямым методом, измеряя растяжение или сжатие тела, либо из измерения деформации изгиба.

Установка (рис. 4) состоит из осно­вания 1, двух вертикальных стоек 2, двух перекладин: верхней 3 и нижней 4. Иссле­дуемая проволока крепится к верхней перекладине и проходит через отверстие в нижней перекладине. К проволоке жест­ко прикреплены две горизонтальные площадки А и В. При растяжении проволоки площадки перемещаются вместе с ней. На перекладинах укреплены индикаторы ли­нейных перемещений 6 и 7, стержни ко­торых упираются в площадки А и В. При деформации проволоки индикаторы фик­сируют перемещение площадок А и В, поэтому разность их показаний равна удлинению участка проволоки АВ, который является рабочим участком. Использование двух индикаторов позволяет ис­ключить из результата измерений деформацию проволоки в месте ее закрепления.

Внизу к проволоке прикреплена платформа 8, которая нагружа­ется дисками известной массы. На приборе укреплена миллиметро­вая линейка, с помощью которой определяется длина проволоки.

1. Определение модуля Юнга методом растяжения

1. Микрометром несколько раз измерить диаметр проволоки d в различных местах. Результаты занести в таблицу 1.

Таблица 1

2. Измерить длину рабочего участка проволоки l o . Нагружая плат­форму дисками, снять показания индикаторов a 1 и a 2 и массу дис­ков т , те же измерения провести при разгружении платформы.

Результаты измерений занести в таблицу 2.

Таблица 2

3. Заполнить таблицу 1 в соответствии с правилами обработки результатов прямых измерений. Доверительную вероятность при­нять равной Р =0,67, в этом случае коэффициент Стьюдента t = l. Доверительный интервал Dd рассчитать по формуле

где q d - погрешность микрометра.

По среднему значению диаметра найти площадь сечения про­волоки S.

4. Для каждой строки таблицы 2 рассчитать суммарную массу дисков М, растягивающих проволоку; напряжение s = Mg/S; удли­нение проволоки при нагружении и разгружении Dl =a i -a z ; отно­сительную деформацию e= D1 /1 о .

5. Построить на миллиметровой бумаге график зависимости s от e .

Найти модуль Юнга Е , как тангенс угла наклона графика к оси абсцисс

Е =Ds /De .

6. Определить относительную погрешность измерения модуля Юнга:

где S e - среднее квадратическое отклонение модуля Юнга по случайному разбросу точек; q 1 -погрешность линейки.