Как держать форму. Массаж. Здоровье. Уход за волосами

Задачи по комбинаторике. Примеры решений

Тип задания: 8
Тема: Призма

Условие

В правильной треугольной призме ABCA_1B_1C_1 стороны основания равны 4 , а боковые рёбра равны 10 . Найдите площадь сечения призмы плоскостью, проходящей через середины рёбер AB, AC, A_1B_1 и A_1C_1.

Показать решение

Решение

Рассмотрим следующий рисунок.

Отрезок MN является средней линией треугольника A_1B_1C_1, поэтому MN = \frac12 B_1C_1=2. Аналогично, KL=\frac12BC=2. Кроме того, MK = NL = 10. Отсюда следует, что четырёхугольник MNLK является параллелограммом. Так как MK\parallel AA_1, то MK\perp ABC и MK\perp KL. Следовательно, четырёхугольник MNLK является прямоугольником. S_{MNLK} = MK\cdot KL = 10\cdot 2 = 20.

Ответ

Тип задания: 8
Тема: Призма

Условие

Объём правильной четырёхугольной призмы ABCDA_1B_1C_1D_1 равен 24 . Точка K — середина ребра CC_1 . Найдите объём пирамиды KBCD .

Показать решение

Решение

Согласно условию, KC является высотой пирамиды KBCD . CC_1 является высотой призмы ABCDA_1B_1C_1D_1 .

Так как K является серединой CC_1 , то KC=\frac12CC_1. Пусть CC_1=H , тогдаKC=\frac12H . Заметим также, что S_{BCD}=\frac12S_{ABCD}. Тогда, V_{KBCD}= \frac13S_{BCD}\cdot\frac{H}{2}= \frac13\cdot\frac12S_{ABCD}\cdot\frac{H}{2}= \frac{1}{12}\cdot S_{ABCD}\cdot H= \frac{1}{12}V_{ABCDA_1B_1C_1D_1}. Следовательно, V_{KBCD}=\frac{1}{12}\cdot24=2.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

Найдите площадь боковой поверхности правильной шестиугольной призмы, сторона основания которой равна 6 , а высота — 8 .

Показать решение

Решение

Площадь боковой поверхности призмы находим по формуле S бок. = P осн. · h = 6a\cdot h, где P осн. и h — соответственно периметр основания и высота призмы, равная 8 , и a — сторона правильного шестиугольника, равная 6 . Следовательно, S бок. = 6\cdot 6\cdot 8 = 288.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 40 см. На какой высоте будет находиться уровень воды, если её перелить в другой сосуд такой же формы, у которого сторона основания в два раза больше, чем у первого? Ответ выразите в сантиметрах.

Показать решение

Решение

Пусть a — сторона основания первого сосуда, тогда 2 a — сторона основания второго сосуда. По условию объём жидкости V в первом и втором сосуде один и тот же. Обозначим через H уровень, на который поднялась жидкость во втором сосуде. Тогда V= \frac12\cdot a^2\cdot\sin60^{\circ}\cdot40= \frac{a^2\sqrt3}{4}\cdot40, и, V=\frac{(2a)^2\sqrt3}{4}\cdot H. Отсюда \frac{a^2\sqrt3}{4}\cdot40=\frac{(2a)^2\sqrt3}{4}\cdot H, 40=4H, H=10.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

В правильной шестиугольной призме ABCDEFA_1B_1C_1D_1E_1F_1 все рёбра равны 2 . Найдите расстояние между точками A и E_1 .

Показать решение

Решение

Треугольник AEE_1 — прямоугольный, так как ребро EE_1 перпендикулярно плоскости основания призмы, прямым углом будет угол AEE_1.

Тогда по теореме Пифагора AE_1^2 = AE^2 + EE_1^2. Найдём AE из треугольника AFE по теореме косинусов. Каждый внутренний угол правильного шестиугольника равен 120^{\circ}. Тогда AE^2= AF^2+FE^2-2\cdot AF\cdot FE\cdot\cos120^{\circ}= 2^2+2^2-2\cdot2\cdot2\cdot\left (-\frac12 \right).

Отсюда, AE^2=4+4+4=12,

AE_1^2=12+4=16,

AE_1=4.

Ответ

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 8
Тема: Призма

Условие

Найдите площадь боковой поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными 4\sqrt5 и 8 , и боковым ребром, равным 5 .

Показать решение

Решение

Площадь боковой поверхности прямой призмы находим по формуле S бок. = P осн. · h = 4a\cdot h, где P осн. и h соответственно периметр основания и высота призмы, равная 5 , и a — сторона ромба. Найдём сторону ромба, пользуясь тем, что диагонали ромба ABCD взаимно перпендикулярны и точкой пересечения делятся пополам.

Предлагаю читателям «Хабрахабра» перевод публикации «100 Prisoners Escape Puzzle» , которую я нашел на сайте компании DataGenetics. Все ошибки по данной статье присылайте, пожалуйста, в личные сообщения.

По условию задачи в тюрьме находится 100 заключенных, каждый из которых имеет личный номер от 1 до 100. Тюремщик решает дать заключенным шанс на освобождение и предлагает пройти придуманное им испытание. Если все заключенные справятся, то они свободны, если хотя бы один провалится - все умрут.

Задача

Тюремщик идет в секретную комнату и подготавливает 100 коробок с крышками. На каждую коробку он наносит числа с нумерацией от 1 до 100. Затем он приносит 100 бумажных табличек, по числу заключенных, и нумерует эти таблички от 1 до 100. После этого он перемешивает 100 табличек и помещает в каждую коробку по одной табличке, закрывая крышку. Заключенные не видят, как тюремщик выполняет все эти действия.

Соревнование начинается, тюремщик отводит каждого заключенного по одному в комнату с коробками и говорит заключенным, что они должны найти коробку, в которой будет находиться табличка с номером заключенного. Заключенные пытаются найти табличку со своим номером, открывая коробки. Каждому разрешается открыть до 50-ти коробок; если каждый из заключенных найдет свой номер, то заключенных отпустят, если хотя бы один из них не найдет свой номер за 50 попыток, то все заключенные умрут.

Для того, чтобы заключенные были освобождены, ВСЕ заключенные должны пройти испытание успешно.

Так какой же шанс, что заключенных помилуют?

  • После открытия коробки заключенным и проверки им таблички она помещается обратно в коробку и крышка снова закрывается;
  • Местами таблички менять нельзя;
  • Заключенные не могут оставлять друг другу подсказки или как-то взаимодействовать друг с другом после начала испытания;
  • Заключенным разрешается обсудить стратегию до начала испытания.

Какая же оптимальная стратегия для заключенных?

Дополнительный вопрос:
Если товарищ заключенных (не участник испытания) будет иметь возможность проникнуть в секретную комнату до начала испытания, изучить все таблички во всех коробках и (по желанию, но не обязательно) поменять местами две таблички из двух коробок (при этом у товарища не будет возможности как-то сообщить заключенным о результате своих действий), то какую стратегию он должен предпринять, чтобы увеличить шансы заключенных на спасение?

Решение маловероятно?

С первого взгляда эта задача кажется почти безнадежной. Кажется, что шанс на нахождение каждым из заключенных своей таблички микроскопически мал. К тому же, заключенные не могут обмениваться информацией между собой в процессе испытания.

Шансы одного заключенного - 50:50. Всего 100 коробок и он может открыть до 50-ти коробок в поисках своей таблички. Если он будет открывать коробки наугад и откроет половину всех коробок, то найдет свою табличку в открытой половине коробок, или его табличка останется в закрытых 50-ти коробках. Его шансы на успех - ½.

Возьмем двух заключенных. Если оба выбирают коробки наугад, для каждого из них шансы будут ½, а для двоих ½x½=¼.
(для двух заключенных успех будет в одном случае из четырех).

Для трех заключенных шансы будут ½ × ½ × ½ = ⅛.

Для 100 заключенных, шансы следующие: ½ × ½ × … ½ × ½ (перемножение 100 раз).

Это равняется

Pr ≈ 0.0000000000000000000000000000008

То есть это очень маленький шанс. При таком раскладе, скорее всего, все заключенные будут мертвы.

Невероятный ответ

Если каждый заключенный будет открывать ящики наугад, то вряд ли они пройдут испытание. Существует стратегия, при которой заключенные могут рассчитывать на успех более чем в 30% случаев. Это потрясающе невероятный результат (если вы не слышали про эту математическую задачу ранее).

Больше чем 30% для всех 100 заключенных! Да это даже больше, чем шансы для двоих заключенных, при условии, что те будут открывать ящики наугад. Но как это возможно?

Понятно, что по одному у каждого заключенного шансы не могут быть выше 50% (ведь нет способа для общения между заключенными). Но не стоит забывать, что информация хранится в расположении табличек внутри коробок. Никто не перемешивает таблички между посещениями комнаты отдельными заключенными, так что мы можем использовать эту информацию.

Решение

Для начала расскажу решение, затем разъясню, почему оно работает.

Стратегия крайне легкая. Первый из заключенных открывает коробку с тем номером, который написан на его одежде. Например, заключенный номер 78 открывает коробку с номером 78. Если он находит свой номер на табличке внутри коробки, то это здорово! Если нет, то он смотрит номер на табличке в «своей» коробке и затем открывает следующую коробку с этим номером. Открыв вторую коробку, он смотрит номер таблички внутри этой коробки и открывает третью коробку с этим номером. Далее просто переносим эту стратегию на оставшиеся ящики. Для наглядности смотрим картинку:

В конце концов, заключенный либо найдет свой номер, или дойдет до предела в 50 коробок. На первый взгляд, это выглядит бессмысленно, по сравнению с простым выбором коробки наугад (и для одного отдельного заключенного это так), но так как все 100 заключенных будут использовать тот же набор коробок, это имеет смысл.

Красота этой математической задачки - не только знать результат, но и понять, почему эта стратегия работает.

Так почему же стратегия работает?

В каждой коробке по одной табличке - и эта табличка уникальна. Это означает, что табличка находится в коробке с тем же номером, или она указывает на другую коробку. Так как все таблички уникальны, то для каждой коробки есть только одна табличка, указывающая на нее (и всего один путь, как добраться до этой коробки).

Если поразмыслить над этим, то коробки образуют замкнутую круглую цепочку. Одна коробка может быть частью только одной цепочки, так как внутри коробки только один указатель на следующую и, соответственно, в предыдущей коробке только один указатель на данную коробку (программисты могут увидеть аналогию со связанными списками).

Если коробка не указывает на саму себя (номер коробки равен номеру таблички в ней), то она будет в цепочке. Некоторые цепочки могут состоять из двух коробок, некоторые длиннее.

Так как все заключенные начинают с коробки с тем же номером, что и на их одежде, они, по определению, попадают на цепочку, которая содержит их табличку (есть всего одна табличка, которая указывает на эту коробку).

Исследуя коробки по этой цепочке по кругу, они гарантированно в конечном итоге найдут свою табличку.

Единственный вопрос остается в том, найдут ли они свою табличку за 50 ходов.

Длина цепочек

Для того, чтобы все заключенные прошли испытание, максимальная длина цепочки должна быть меньше, чем 50 коробок. Если цепочка длиннее, чем 50 коробок, заключенные, имеющие номера из этих цепочек провалят испытание - и все заключенные будут мертвы.

Если максимальная длина самой длинной цепочки меньше, чем 50 коробок, тогда все заключенные пройдут испытание!

Задумайтесь об этом на секунду. Выходит, что может быть только одна цепочка, которая длиннее 50-ти коробок при любом раскладе табличек (у нас всего 100 коробок, так что если одна цепочка длиннее 50-ти, то остальные будут короче, чем 50 в итоге).

Шансы на расклад с длинной цепочкой

После того, как вы убедили себя, что для достижения успеха максимальная длина цепи должна быть меньше или равна 50, и может быть только одна длинная цепочка в любом наборе, мы можем вычислить вероятность успеха прохождения испытания:

Еще немного математики

Итак, что нам нужно, чтобы выяснить вероятность существования длинной цепочки?

Для цепочки с длиной l, вероятность того, что коробки будут вне этой цепочки равна:

В этой коллекции чисел существует (l-1)! способов расположить таблички.

Оставшиеся таблички могут быть расположены (100-l)! способами (не забываем, что длина цепочки не превосходит 50).

Учитывая это, число перестановок, которые содержат цепочку точной длины l: (>50)

Выходит, есть 100(!) способов раскладок табличек, так что вероятность существования цепочки длиной l равно 1/l. Кстати, этот результат не зависит от количества коробок.

Как мы уже знаем, может быть только один вариант, при котором существует цепочка длиной > 50, так что вероятность успеха рассчитывается по данной формуле:

Результат

31.18% - вероятность того, что размер самой длинной цепочки будет меньше 50 и каждый из заключенных сможет найти свою табличку, учитывая предел в 50 попыток.

Вероятность того, что все заключенные найдут свои таблички и пройдут испытание 31.18%

Ниже приведен график, показывающий вероятности (по оси ординат) для всех цепей длины l (на оси абсцисс). Красный цвет означает все «неудачи» (данная кривая здесь - это просто график 1/l). Зеленый цвет означает «успех» (расчет немного сложнее для этой части графика, так как существует несколько способов для определения максимальной длины <50). Общая вероятность складывается из зеленых столбцов в 31.18% шанс на спасение.

Гармоническое число (эта часть статьи для гиков)

В математике n-м гармоническим числом называется сумма обратных величин первых n последовательных чисел натурального ряда.

Посчитаем предел, если вместо 100а коробок мы имеем произвольное большое количество коробок (давайте считать, что у нас есть 2n коробок в итоге).

Постоянная Эйлера-Маскерони - константа, определяемая как предел разности между частичной суммой гармонического ряда и натуральным логарифмом числа.

Так как число заключенных увеличивается, то при условии, если надсмотрщик разрешает заключенным открывать половину всех коробок, то шанс на спасение стремится к числу 30.685%

(Если вы приняли решение, при котором заключенные случайно угадывают коробки, то с увеличением количества заключенных вероятность спасения стремится к нулю!)

Дополнительный вопрос

Кто-нибудь еще помнит про дополнительный вопрос? Что может сделать наш полезный товарищ, чтобы увеличить шансы на выживание?

Сейчас мы уже знаем решение, так что стратегия тут простая: он должен изучить все таблички и найти самую длинную цепочку из коробок. Если самая длинная цепочка меньше 50-ти, то ему вообще не нужно менять таблички, или поменять их так, чтобы самая длинная цепочка не стала длиннее 50-ти. Тем не менее, если он нашел цепочку длиннее 50-ти коробок, всё, что ему нужно - это поменять содержимое двух коробок из этой цепи, чтобы разбить эту цепочку на две более короткие цепи.

В результате этой стратегии не будет длинных цепочек и все заключенные гарантированно найдут свою табличку и спасение. Так что, поменяв местами две таблички, мы сводим вероятность спасения к 100%!

Определение .

Это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро - это общая сторона двух смежных боковых граней

Высота призмы - это отрезок, перпендикулярный основаниям призмы

Диагональ призмы - отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость - плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение - границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) - это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
  • Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
  • Боковая поверхность - сумма площадей всех боковых граней призмы
  • Полная поверхность - сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
  • Диагональ B 1 D
  • Диагональ основания BD
  • Диагональное сечение BB 1 D 1 D
  • Перпендикулярное сечение A 2 B 2 C 2 D 2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения - прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Указания к решению задач

При решении задач на тему "правильная четырехугольная призма " подразумевается, что:

Правильная призма - призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия - призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Задача.

В правильной четырёхугольной призме площадь основания 144 см 2 , а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение .
Правильный четырехугольник - это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√(12 2 + 12 2 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√((12√2) 2 + 14 2 ) = 22 см

Ответ : 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .

Автомобили с механической коробкой передач, которую сокращенно называют МКПП, до недавнего времени составляли абсолютное большинство среди других ТС с различными .

Более того, механическая (ручная) коробка и сегодня остается достаточно распространенным устройством для изменения и передачи крутящего момента двигателя. Далее мы поговорим о том, как устроена и работает «механика», как выглядит схема КПП данного типа, а также какие преимущества и недостатки имеет данное решение.

Читайте в этой статье

Схема механической коробки передач и особенности

Начнем с того, что механическим данный тип КПП называется по причине того, что подобный агрегат предполагает ручное переключение передач. Другими словами, на машинах с МКПП передачи переключает сам водитель.

Идем далее. Коробка «механика» является ступенчатой, то есть крутящий момент изменяется ступенями. Многие автолюбители знают, что фактически коробка передач имеет шестеренки и валы, однако не все понимают, как работает агрегат.

Итак, ступенью (она же передача) является пара шестерен (ведущая и ведомая шестерня), взаимодействующих между собой. Каждая такая ступень обеспечивает вращение с той или иной угловой скоростью, то есть имеет свое передаточное число.

Под передаточным числом следует понимать отношение числа зубьев ведомой шестерни к числу зубьев на ведущей шестерне. При этом разные ступени коробки получают разные передаточные числа. Самая низкая ступень (пониженная передача) имеет самое большое передаточное число, а наиболее высокая ступень (повышенная передача) имеет наименьшее передаточное число.

Становится понятно, что количество ступеней равно количеству передач на той или иной коробке (четырехступенчатая КПП, пятиступенчатая и т.д.) Отметим, что на подавляющем большинстве авто сегодня устанавливается пятиступенчатая коробка передач, реже встречаются МКПП на 6 и более ступеней, а достаточно распространенные ранее 4-х ступенчатые механические коробки передач постепенно отошли на задний план.

Устройство механической коробки передач

Итак, хотя конструкций такой коробки с теми или иными особенностями может быть много, однако на начальном этапе можно выделить два основных типа:

  • трехвальные КПП;
  • двухвальные коробки;

На автомобили с задним приводом обычно устанавливается трехвальная механическая коробка передач, в то время как двухвальная КПП ставится на переднеприводные легковые авто. При этом устройство механических коробок передач как первого, так и второго типа может заметно отличаться.

Начнем с трехвальной механической коробки. Такая коробка состоит из:

  • ведущего вала, который еще называется первичным;
  • промежуточного вала КПП;
  • ведомого вала (вторичного);

На валах установлены шестерни с синхронизаторами. Также в устройство КПП включен механизм переключения передач. Указанные составные элементы расположены в корпусе коробки передач, который еще называют картером КПП.

Задачей ведущего вала является создание соединения со сцеплением. На ведущем валу выполнены шлицы для ведомого диска сцепления. Что касается крутящего момента, указанный момент от ведущего вала передается через шестерню, которая находится с ним в жестком зацеплении.

Затрагивая работу промежуточного вала, этот вал располагается параллельно первичному валу КПП, на нем установлена группа шестерен, которая находится в жестком зацеплении. В свою очередь, ведомый вал установлен на одной оси с ведущим валом.

Такая установка реализована при помощи торцевого подшипника на ведущем валу. В этот подшипник входит ведомый вал. Группа шестерен (блок шестерен) на ведомом валу не имеет жесткого зацепления с самим валом и поэтому свободно вращается на нем. При этом группа шестерен промежуточного вала, ведомого вала и шестерня ведущего вала находятся в постоянном зацеплении.

Синхронизаторы (муфты синхронизаторов) установлены между шестернями ведомого вала. Их задачей является выравнивание угловых скоростей шестерен ведомого вала с угловой скоростью самого вала посредством силы трения.

Синхронизаторы находятся в жестком зацеплении с ведомым валом, а также имеют возможность перемещаться по валу в продольном направлении благодаря наличию шлицевого соединения. Современные коробки передач имеют муфты синхронизаторов на всех передачах.

Если рассматривать механизм переключения передач на трехвальных КПП, зачастую этот механизм установлен на корпусе агрегата. Конструкция включает в себя рычага управления, ползуны и вилки.

Корпус коробки (картер) изготовлен из алюминиевых или магниевых сплавов, необходим для установки валов с шестернями и механизмов, а также ряда других деталей. Еще в картере коробки передач находится трансмиссионное масло (масло коробки передач).

  • Чтобы понять, как работает механическая (ручная) коробка передач трехвального типа, давайте в общих чертах рассмотрим принцип ее действия. Когда рычаг переключения передач находится в нейтральном положении, передачи крутящего момента от двигателя на ведущие колеса автомобиля не происходит.

После того, как водитель произведет перемещение рычага, вилка переместит муфту синхронизатора той или иной передачи. Затем синхронизатор выровняет угловые скорости нужной шестерни и ведомого вала. Затем зубчатый венец муфты войдет в зацепление с аналогичным венцом шестерни, что обеспечит блокировку шестерни на ведомом валу.

Еще добавим, что задний ход автомобиля обеспечивает задняя передача КПП. В этом случае промежуточная шестерня заднего хода, установленная на отдельной оси, позволяет изменить направление вращения.

Двухвальная механическая коробка передач: устройство и принцип работы

Разобравшись с тем, из чего состоит коробка передач с тремя валами, перейдем к двухвальным коробкам. Данный тип КПП имеет в своем устройстве два вала: первичный и вторичный. Первичный вал является ведущим, вторичный ведомым. На валах закреплены шестерни и синхронизаторы. Также в картере коробки находится главная передача и дифференциал.

Ведущий вал отвечает за соединение со сцеплением, также на валу находится блок шестерен в жестком зацеплении с валом. Ведомый вал расположен параллельно ведущему, при этом шестерни ведомого вала в постоянном зацеплении с шестернями ведущего вала, а также свободно вращаются на самом валу.

Также на ведомом валу жестко закрепляется ведущая шестерня главной передачи, а между самими шестернями ведомого вала расположены муфты синхронизаторов. Добавим, чтобы уменьшить размеры КПП, а также увеличить количество передач, в современных коробках нередко вместо одного ведомого вала может быть установлено 2 или даже 3 вала.

На каждом таком валу жестко закреплена шестерня главной передачи, при этом такая шестерня имеет жесткое зацепление с ведомой шестерней. Получается, конструкция фактически реализует 3 главных передачи.

Сама главная передача, а также дифференциал в устройстве КПП осуществляют передачу крутящего момента от вторичного вала на ведущие колеса. При этом дифференциал также может обеспечить такое вращение колес, когда ведущие колеса вращаются с разными угловыми скоростями.

Что касается механизма переключения передач, на двухвальных КПП он вынесен отдельно, то есть за пределы корпуса. Коробка связана с механизмом переключения тросами или специальными тягами. Чаще встречается соединение при помощи тросов.

Сам механизм переключения 2-х вальной коробки имеет рычаг, который соединяется тросами с рычагом выбора и рычагом включения передачи. Указанные рычаги соединяются с центральным штоком переключения передач, который также имеет вилки.

  • Если говорить о принципе работы двухвальной механической коробки передач, он похож на принцип трехвальной КПП. Отличия состоят в том, как работает механизм переключения передач. В двух словах, рычаг может осуществлять как продольные, так и поперечные движения относительно оси автомобиля. Во время поперечного движения происходит выбор передачи, так как усилие идет на трос выбора передач, который оказывает воздействие на рычаг выбора передач.

Далее рычаг движется продольно, а усилие идет уже на трос переключения передач. Соответствующий рычаг горизонтально перемещает шток с вилками, вилка на штоке смещает синхронизатор, что и приводит к блокировке шестерни ведомого вала.

Напоследок отметим, что также механические коробки разных типов имеют дополнительные блокировочные устройства, которые препятствуют включению одновременно двух передач или же непредвиденному выключению передачи.

Читайте также

Выжим сцепления перед запуском мотора: когда нужно выжимать сцепление и в каких случаях делать это не рекомендуется. Полезные советы и рекомендации.

  • Причины затрудненного включения передач на заведенном моторе. Трансмиссионное масло и уровень в КПП, износ синхронизаторов и шестерен коробки, сцепление.


  • Следует отметить, что комбинаторика является самостоятельным разделом высшей математики (а не частью тервера) и по данной дисциплине написаны увесистые учебники, содержание которых, порой, ничуть не легче абстрактной алгебры. Однако нам будет достаточно небольшой доли теоретических знаний, и в данной статье я постараюсь в доступной форме разобрать основы темы с типовыми комбинаторными задачами. А многие из вас мне помогут;-)

    Чем будем заниматься? В узком смысле комбинаторика – это подсчёт различных комбинаций, которые можно составить из некоторого множества дискретных объектов. Под объектами понимаются какие-либо обособленные предметы или живые существа – люди, звери, грибы, растения, насекомые и т.д. При этом комбинаторику совершенно не волнует, что множество состоит из тарелки манной каши, паяльника и болотной лягушки. Принципиально важно, что эти объекты поддаются перечислению – их три (дискретность) и существенно то, что среди них нет одинаковых.

    С множеством разобрались, теперь о комбинациях. Самыми распространёнными видами комбинаций являются перестановки объектов, их выборка из множества (сочетание) и распределение (размещение). Давайте прямо сейчас посмотрим, как это происходит:

    Перестановки, сочетания и размещения без повторений

    Не пугайтесь малопонятных терминов, тем более, некоторые из них действительно не очень удачны. Начнём с хвоста заголовка – что значит «без повторений »? Это значит, что в данном параграфе будут рассматриваться множества, которые состоят из различных объектов. Например, … нет, кашу с паяльником и лягушкой предлагать не буду, лучше что-нибудь повкуснее =) Представьте, что перед вами на столе материализовалось яблоко, груша и банан (при наличии таковых ситуацию можно смоделировать и реально). Выкладываем фрукты слева направо в следующем порядке:

    яблоко / груша / банан

    Вопрос первый : сколькими способами их можно переставить?

    Одна комбинация уже записана выше и с остальными проблем не возникает:

    яблоко / банан / груша
    груша / яблоко / банан
    груша / банан / яблоко
    банан / яблоко / груша
    банан / груша / яблоко

    Итого : 6 комбинаций или 6 перестановок .

    Хорошо, здесь не составило особого труда перечислить все возможные случаи, но как быть, если предметов больше? Уже с четырьмя различными фруктами количество комбинаций значительно возрастёт!

    Пожалуйста, откройте справочный материал (методичку удобно распечатать) и в пункте № 2 найдите формулу количества перестановок.

    Никаких мучений – 3 объекта можно переставить способами.

    Вопрос второй : сколькими способами можно выбрать а) один фрукт, б) два фрукта, в) три фрукта, г) хотя бы один фрукт?

    Зачем выбирать? Так нагуляли же аппетит в предыдущем пункте – для того, чтобы съесть! =)

    а) Один фрукт можно выбрать, очевидно, тремя способами – взять либо яблоко, либо грушу, либо банан. Формальный подсчёт проводится по формуле количества сочетаний :

    Запись в данном случае следует понимать так: «сколькими способами можно выбрать 1 фрукт из трёх?»

    б) Перечислим все возможные сочетания двух фруктов:

    яблоко и груша;
    яблоко и банан;
    груша и банан.

    Количество комбинаций легко проверить по той же формуле:

    Запись понимается аналогично: «сколькими способами можно выбрать 2 фрукта из трёх?».

    в) И, наконец, три фрукта можно выбрать единственным способом:

    Кстати, формула количества сочетаний сохраняет смысл и для пустой выборки:
    способом можно выбрать ни одного фрукта – собственно, ничего не взять и всё.

    г) Сколькими способами можно взять хотя бы один фрукт? Условие «хотя бы один» подразумевает, что нас устраивает 1 фрукт (любой) или 2 любых фрукта или все 3 фрукта:
    способами можно выбрать хотя бы один фрукт.

    Читатели, внимательно изучившие вводный урок по теории вероятностей , уже кое о чём догадались. Но о смысле знака «плюс» позже.

    Для ответа на следующий вопрос мне требуется два добровольца… …Ну что же, раз никто не хочет, тогда буду вызывать к доске =)

    Вопрос третий : сколькими способами можно раздать по одному фрукту Даше и Наташе?

    Для того чтобы раздать два фрукта, сначала нужно их выбрать. Согласно пункту «бэ» предыдущего вопроса, сделать это можно способами, перепишу их заново:

    яблоко и груша;
    яблоко и банан;
    груша и банан.

    Но комбинаций сейчас будет в два раза больше. Рассмотрим, например, первую пару фруктов:
    яблоком можно угостить Дашу, а грушей – Наташу;
    либо наоборот – груша достанется Даше, а яблоко – Наташе.

    И такая перестановка возможна для каждой пары фруктов.

    Рассмотрим ту же студенческую группу, которая пошла на танцы. Сколькими способами можно составить пару из юноши и девушки?

    Способами можно выбрать 1 юношу;
    способами можно выбрать 1 девушку.

    Таким образом, одного юношу и одну девушку можно выбрать: способами.

    Когда из каждого множества выбирается по 1 объекту, то справедлив следующий принцип подсчёта комбинаций: «каждый объект из одного множества может составить пару с каждым объектом другого множества».

    То есть, Олег может пригласить на танец любую из 13 девушек, Евгений – тоже любую из тринадцати, и аналогичный выбор есть у остальных молодых людей. Итого: возможных пар.

    Следует отметить, что в данном примере не имеет значения «история» образования пары; однако если принять во внимание инициативу, то количество комбинаций нужно удвоить, поскольку каждая из 13 девушек тоже может пригласить на танец любого юношу. Всё зависит от условия той или иной задачи!

    Похожий принцип справедлив и для более сложных комбинаций, например: сколькими способами можно выбрать двух юношей и двух девушек для участия в сценке КВН?

    Союз И недвусмысленно намекает, что комбинации необходимо перемножить:

    Возможных групп артистов.

    Иными словами, каждая пара юношей (45 уникальных пар) может выступать с любой парой девушек (78 уникальных пар). А если рассмотреть распределение ролей между участниками, то комбинаций будет ещё больше. …Очень хочется, но всё-таки воздержусь от продолжения, чтобы не привить вам отвращение к студенческой жизни =).

    Правило умножения комбинаций распространяется и на бОльшее количество множителей:

    Задача 8

    Сколько существует трёхзначных чисел, которые делятся на 5?

    Решение : для наглядности обозначим данное число тремя звёздочками: ***

    В разряд сотен можно записать любую из цифр (1, 2, 3, 4, 5, 6, 7, 8 или 9). Ноль не годится, так как в этом случае число перестаёт быть трёхзначным.

    А вот в разряд десятков («посерединке») можно выбрать любую из 10 цифр: .

    По условию, число должно делиться на 5. Число делится на 5, если оно заканчивается на 5 либо на 0. Таким образом, в младшем разряде нас устраивают 2 цифры.

    Итого, существует : трёхзначных чисел, которые делятся на 5.

    При этом произведение расшифровывается так: «9 способами можно выбрать цифру в разряд сотен и 10 способами выбрать цифру в разряд десятков и 2 способами в разряд единиц »

    Или ещё проще: «каждая из 9 цифр в разряде сотен комбинируется с каждой из 10 цифр разряда десятков и с каждой из двух цифр в разряде единиц ».

    Ответ : 180

    А теперь…

    Да, чуть не забыл об обещанном комментарии к задаче № 5, в которой Боре, Диме и Володе можно сдать по одной карте способами. Умножение здесь имеет тот же смысл: способами можно извлечь 3 карты из колоды И в каждой выборке переставить их способами.

    А теперь задача для самостоятельного решения… сейчас придумаю что-нибудь поинтереснее, …пусть будет про ту же русскую версию блэкджека:

    Задача 9

    Сколько существует выигрышных комбинаций из 2 карт при игре в «очко»?

    Для тех, кто не знает: выигрывает комбинация 10 + ТУЗ (11 очков) = 21 очко и, давайте будем считать выигрышной комбинацию из двух тузов.

    (порядок карт в любой паре не имеет значения)

    Краткое решение и ответ в конце урока.

    Кстати, не надо считать пример примитивным. Блэкджек – это чуть ли не единственная игра, для которой существует математически обоснованный алгоритм, позволяющий выигрывать у казино. Желающие могут легко найти массу информации об оптимальной стратегии и тактике. Правда, такие мастера довольно быстро попадают в чёрный список всех заведений =)

    Пришло время закрепить пройденный материал парой солидных задач:

    Задача 10

    У Васи дома живут 4 кота.

    а) сколькими способами можно рассадить котов по углам комнаты?
    б) сколькими способами можно отпустить гулять котов?
    в) сколькими способами Вася может взять на руки двух котов (одного на левую, другого – на правую)?

    Решаем : во-первых, вновь следует обратить внимание на то, что в задаче речь идёт о разных объектах (даже если коты – однояйцовые близнецы). Это очень важное условие!

    а) Молчание котов. Данной экзекуции подвергаются сразу все коты
    + важно их расположение, поэтому здесь имеют место перестановки:
    способами можно рассадить котов по углам комнаты.

    Повторюсь, что при перестановках имеет значение лишь количество различных объектов и их взаимное расположение. В зависимости от настроения Вася может рассаживать животных полукругом на диване, в ряд на подоконнике и т.д. – перестановок во всех случаях будет 24. Желающие могут для удобства представить, что коты разноцветные (например, белый, чёрный, рыжий и полосатый) и перечислить все возможные комбинации.

    б) Сколькими способами можно отпустить гулять котов?

    Предполагается, что коты ходят гулять только через дверь, при этом вопрос подразумевает безразличие по поводу количества животных – на прогулку могут выйти 1, 2, 3 или все 4 кота.

    Считаем все возможные комбинации:

    Способами можно отпустить гулять одного кота (любого из четырёх);
    способами можно отпустить гулять двух котов (варианты перечислите самостоятельно);
    способами можно отпустить гулять трёх котов (какой-то один из четырёх сидит дома);
    способом можно выпустить всех котов.

    Наверное, вы догадались, что полученные значения следует просуммировать:
    способами можно отпустить гулять котов.

    Энтузиастам предлагаю усложнённую версию задачи – когда любой кот в любой выборке случайным образом может выйти на улицу, как через дверь, так и через окно 10 этажа. Комбинаций заметно прибавится!

    в) Сколькими способами Вася может взять на руки двух котов?

    Ситуация предполагает не только выбор 2 животных, но и их размещение по рукам:
    способами можно взять на руки 2 котов.

    Второй вариант решения: способами можно выбрать двух котов и способами посадить каждую пару на руки:

    Ответ : а) 24, б) 15, в) 12

    Ну и для очистки совести что-нибудь поконкретнее на умножение комбинаций…. Пусть у Васи дополнительно живёт 5 кошек =) Сколькими способами можно отпустить гулять 2 котов и 1 кошку?

    То есть, с каждой парой котов можно выпустить каждую кошку.

    Ещё один баян для самостоятельного решения:

    Задача 11

    В лифт 12-этажного дома сели 3 пассажира. Каждый независимо от других с одинаковой вероятностью может выйти на любом (начиная со 2-го) этаже. Сколькими способами:

    1) пассажиры могут выйти на одном и том же этаже (порядок выхода не имеет значения) ;
    2) два человека могут выйти на одном этаже, а третий – на другом;
    3) люди могут выйти на разных этажах;
    4) пассажиры могут выйти из лифта?

    И тут часто переспрашивают, уточняю: если 2 или 3 человека выходят на одном этаже, то очерёдность выхода не имеет значения. ДУМАЙТЕ, используйте формулы и правила сложения/умножения комбинаций. В случае затруднений пассажирам полезно дать имена и порассуждать, в каких комбинациях они могут выйти из лифта. Не нужно огорчаться, если что-то не получится, так, например, пункт № 2 достаточно коварен.

    Полное решение с подробными комментариями в конце урока.

    Заключительный параграф посвящён комбинациям, которые тоже встречаются достаточно часто – по моей субъективной оценке, примерно в 20-30% комбинаторных задач:

    Перестановки, сочетания и размещения с повторениями

    Перечисленные виды комбинаций законспектированы в пункте № 5 справочного материала Основные формулы комбинаторики , однако некоторые из них по первому прочтению могут быть не очень понятными. В этом случае сначала целесообразно ознакомиться с практическими примерами, и только потом осмысливать общую формулировку. Поехали:

    Перестановки с повторениями

    В перестановках с повторениями, как и в «обычных» перестановках, участвует сразу всё множество объектов , но есть одно но: в данном множестве один или бОльшее количество элементов (объектов) повторяются. Встречайте очередной стандарт:

    Задача 12

    Сколько различных буквосочетаний можно получить перестановкой карточек со следующими буквами: К, О, Л, О, К, О, Л, Ь, Ч, И, К?

    Решение : в том случае, если бы все буквы были различны, то следовало бы применить тривиальную формулу , однако совершенно понятно, что для предложенного набора карточек некоторые манипуляции будут срабатывать «вхолостую», так, например, если поменять местами любые две карточки с буквами «К» в любом слове, то получится то же самое слово. Причём, физически карточки могут сильно отличаться: одна быть круглой с напечатанной буквой «К», другая – квадратной с нарисованной буквой «К». Но по смыслу задачи даже такие карточки считаются одинаковыми , поскольку в условии спрашивается о буквосочетаниях.

    Всё предельно просто – всего: 11 карточек, среди которых буква:

    К – повторяется 3 раза;
    О – повторяется 3 раза;
    Л – повторяется 2 раза;
    Ь – повторяется 1 раз;
    Ч – повторяется 1 раз;
    И – повторяется 1 раз.

    Проверка: 3 + 3 + 2 + 1 + 1 + 1 = 11, что и требовалось проверить.

    По формуле количества перестановок с повторениями :
    различных буквосочетаний можно получить. Больше полумиллиона!

    Для быстрого расчёта большого факториального значения удобно использовать стандартную функцию Экселя: забиваем в любую ячейку =ФАКТР(11) и жмём Enter .

    На практике вполне допустимо не записывать общую формулу и, кроме того, опускать единичные факториалы:

    Но предварительные комментарии о повторяющихся буквах обязательны!

    Ответ : 554400

    Другой типовой пример перестановок с повторениями встречается в задаче о расстановке шахматных фигур, которую можно найти на складе готовых решений в соответствующей pdf-ке. А для самостоятельного решения я придумал менее шаблонное задание:

    Задача 13

    Алексей занимается спортом, причём 4 дня в неделю – лёгкой атлетикой, 2 дня – силовыми упражнениями и 1 день отдыхает. Сколькими способами он может составить себе расписание занятий на неделю?

    Формула здесь не годится, поскольку учитывает совпадающие перестановки (например, когда меняются местами силовые упражнения в среду с силовыми упражнениями в четверг). И опять – по факту те же 2 силовые тренировки могут сильно отличаться друг от друга, но по контексту задачи (с точки зрения расписания) они считаются одинаковыми элементами.

    Двухстрочное решение и ответ в конце урока.

    Сочетания с повторениями

    Характерная особенность этого вида комбинаций состоит в том, что выборка проводится из нескольких групп, каждая из которых состоит из одинаковых объектов.

    Сегодня все хорошо потрудились, поэтому настало время подкрепиться:

    Задача 14

    В студенческой столовой продают сосиски в тесте, ватрушки и пончики. Сколькими способами можно приобрести пять пирожков?

    Решение : сразу обратите внимание на типичный критерий сочетаний с повторениями – по условию на выбор предложено не множество объектов как таковое, а различные виды объектов; при этом предполагается, что в продаже есть не менее пяти хот-догов, 5 ватрушек и 5 пончиков. Пирожки в каждой группе, разумеется, отличаются – ибо абсолютно идентичные пончики можно смоделировать разве что на компьютере =) Однако физические характеристики пирожков по смыслу задачи не существенны, и хот-доги / ватрушки / пончики в своих группах считаются одинаковыми.

    Что может быть в выборке? Прежде всего, следует отметить, что в выборке обязательно будут одинаковые пирожки (т.к. выбираем 5 штук, а на выбор предложено 3 вида). Варианты тут на любой вкус: 5 хот-догов, 5 ватрушек, 5 пончиков, 3 хот-дога + 2 ватрушки, 1 хот-дог + 2 + ватрушки + 2 пончика и т.д.

    Как и при «обычных» сочетаниях, порядок выбора и размещение пирожков в выборке не имеет значения – просто выбрали 5 штук и всё.

    Используем формулу количества сочетаний с повторениями:
    способом можно приобрести 5 пирожков.

    Приятного аппетита!

    Ответ : 21

    Какой вывод можно сделать из многих комбинаторных задач?

    Порой, самое трудное – это разобраться в условии.

    Аналогичный пример для самостоятельного решения:

    Задача 15

    В кошельке находится достаточно большое количество 1-, 2-, 5- и 10-рублёвых монет. Сколькими способами можно извлечь три монеты из кошелька?

    В целях самоконтроля ответьте на пару простых вопросов:

    1) Могут ли в выборке все монеты быть разными?
    2) Назовите самую «дешевую» и самую «дорогую» комбинацию монет.

    Решение и ответы в конце урока.

    Из моего личного опыта, могу сказать, что сочетания с повторениями – наиболее редкий гость на практике, чего не скажешь о следующем виде комбинаций:

    Размещения с повторениями

    Из множества, состоящего из элементов, выбирается элементов, при этом важен порядок элементов в каждой выборке. И всё бы было ничего, но довольно неожиданный прикол заключается в том, что любой объект исходного множества мы можем выбирать сколько угодно раз. Образно говоря, от «множества не убудет».

    Когда так бывает? Типовым примером является кодовый замок с несколькими дисками, но по причине развития технологий актуальнее рассмотреть его цифрового потомка:

    Задача 16

    Сколько существует четырёхзначных пин-кодов?

    Решение : на самом деле для разруливания задачи достаточно знаний правил комбинаторики: способами можно выбрать первую цифру пин-кода и способами – вторую цифру пин-кода и столькими же способами – третью и столькими же – четвёртую. Таким образом, по правилу умножения комбинаций, четырёхзначный пин-код можно составить: способами.

    А теперь с помощью формулы. По условию нам предложен набор из цифр, из которого выбираются цифры и располагаются в определенном порядке , при этом цифры в выборке могут повторяться (т.е. любой цифрой исходного набора можно пользоваться произвольное количество раз) . По формуле количества размещений с повторениями:

    Ответ : 10000

    Что тут приходит на ум… …если банкомат «съедает» карточку после третьей неудачной попытки ввода пин-кода, то шансы подобрать его наугад весьма призрачны.

    И кто сказал, что в комбинаторике нет никакого практического смысла? Познавательная задача для всех читателей сайт:

    Задача 17

    Согласно государственному стандарту, автомобильный номерной знак состоит из 3 цифр и 3 букв. При этом недопустим номер с тремя нулями, а буквы выбираются из набора А, В, Е, К, М, Н, О, Р, С, Т, У, Х (используются только те буквы кириллицы, написание которых совпадает с латинскими буквами) .

    Сколько различных номерных знаков можно составить для региона?

    Не так их, кстати, и много. В крупных регионах такого количества не хватает, и поэтому для них существуют по несколько кодов к надписи RUS.

    Решение и ответ в конце урока. Не забываем использовать правила комбинаторики;-) …Хотел похвастаться эксклюзивом, да оказалось не эксклюзивом =) Заглянул в Википедию – там есть расчёты, правда, без комментариев. Хотя в учебных целях, наверное, мало кто прорешивал.

    Наше увлекательное занятие подошло к концу, и напоследок я хочу сказать, что вы не зря потратили время – по той причине, что формулы комбинаторики находят ещё одно насущное практическое применение: они встречаются в различных задачах по теории вероятностей ,
    и в задачах на классическое определение вероятности – особенно часто =)

    Всем спасибо за активное участие и до скорых встреч!

    Решения и ответы :

    Задача 2: Решение : найдём количество всех возможных перестановок 4 карточек:

    Когда карточка с нулём располагается на 1-м месте, то число становится трёхзначным, поэтому данные комбинации следует исключить. Пусть ноль находится на 1-м месте, тогда оставшиеся 3 цифры в младших разрядах можно переставить способами.

    Примечание : т.к. карточек немного, то здесь несложно перечислить все такие варианты:
    0579
    0597
    0759
    0795
    0957
    0975

    Таким образом, из предложенного набора можно составить:
    24 – 6 = 18 четырёхзначных чисел
    Ответ : 18

    Задача 4: Решение : способами можно выбрать 3 карты из 36.
    Ответ : 7140

    Задача 6: Решение : способами.
    Другой вариант решения : способами можно выбрать двух человек из группы и и
    2) Самый «дешёвый» набор содержит 3 рублёвые монеты, а самый «дорогой» – 3 десятирублёвые.

    Задача 17: Решение : способами можно составить цифровую комбинацию автомобильного номера, при этом одну из них (000) следует исключить: .
    способами можно составить буквенную комбинацию автомобильного номера.
    По правилу умножения комбинаций, всего можно составить:
    автомобильных номера
    (каждая цифровая комбинация сочетается с каждой буквенной комбинацией).
    Ответ : 1726272