Как держать форму. Массаж. Здоровье. Уход за волосами

Цикл жизни звезды. Эволюция звезд с точки зрения точной науки и теории относительности

> Эволюция Солнца

Изучите этапы эволюции Солнца : рождение и формирование звезды из туманности, создание диска и планет, стадии развития и смерть Солнца, белый карлик.

Наше Солнце – типичный пример звезды, эволюционировавшей из звездной туманности 4,6 миллиарда лет назад. Но как выглядит рождение и развитие Солнца? Давайте внимательно изучим этапы солнечной эволюции.

Рождение и эволюция Солнца

Солнце и все ближайшие начали свое существование в гигантском облаке молекулярного газа и пыли. Примерно 4,6 миллиарда лет назад это облако под воздействием внешних сил (гравитационного поля ближайших звезд или выброса энергии сверхновой) начало сжиматься. Во время сжатия внутренние силы газа и взаимодействие частиц пыли сформировали участки пространства с большей плотностью материи. Эти скопления позже дадут начало жизни бесчисленного количества звездных систем, в том числе и нашей.

В процессе сжатия скоплений из-за сил взаимодействия частиц наша будущая звезда начала вращаться. Центробежная сила создала большой шар материи в центре и плоский диск из пыли и газа ближе к краю новосозданной системы. Из центрального шара позже образуется , а из диска – планеты и астероиды. В течение первых ста тысяч лет после сжатия газового облака Солнце было коллапсирующей протозвездой. Это продолжалось пока температура и давление звезды не привели к воспламенению ее центральной части – ядра. С этого момента наша звезда превратилась в светило типа Т Тельца – очень активную звезду с сильным солнечным ветром. Со временем Солнце постепенно стабилизировалось и обрело свою теперешнюю форму. Так началась жизнь нашей ближайшей звезды, но это лишь первый этап эволюции Солнца.

Основной этап эволюции Солнца

Солнце в собственном развитии находится на основном этапе жизни, как и большинство звезд во Вселенной. В ее ядре ежесекундно 600 миллионов тонн водорода превращается в гелий и производится 4*1027 Ватт энергии. Этот процесс в ядре Солнца начался 4,6 миллиарда лет назад и не менялся с тех пор. Но запас гидрогена в звезде не безграничен: горючего светилу хватит еще на 7 миллиардов лет жизни.

Чем больше в звезде накапливается гелия, тем больше сгорает водорода. Следствием этого является больший выход энергии и увеличение яркости свечения. Вы едва ли заметите эти изменения в краткосрочной перспективе, но за последующий миллиард лет Солнце станет ярче на 10%. А это уже не обещает ничего хорошего и другим планетам нашей системы.

Увеличение выхода энергии ядерного синтеза внутри Солнца за миллиард лет приведет к сильному парниковому эффекту на Земле, подобному тому, что происходит сейчас на . Со временем влага, содержащаяся в атмосфере планеты, выветрится усиленным солнечным излучением.

Через 3,5 миллиарда лет Солнце будет ярче уже на 40%, чем сейчас. Температура на поверхности Земли увеличится настолько, что существование на ней жидкой воды станет невозможным. Океаны выкипят, и пар не задержится в атмосфере. Ледники растают, а снег останется лишь мифом давно забытых времен. Все условия для жизни на планете будут уничтожены безжалостным солнечным излучением. Наша голубая планета окончательно превратится в раскаленную высушенную Венеру.

Ничто не вечно. Это правило справедливо для всего: для нас, для нашего дома – Земли и для Солнца. Хоть конец и не произойдет завтра и не выпадет на век кого-либо из живущих сегодня, когда-нибудь в далеком будущем звезда израсходует все топливо и отправится в последний путь, к забвению. Как же закончится развитие Солнца?

Примерно через 6 миллиардов лет Солнце израсходует все запасы водорода в ядре. После этого инертный гелий, накопившейся в ядре звезды, станет нестабильным и начнет коллапсировать под собственным весом. Вследствие этого ядро начнет нагреваться и уплотняться. Солнце начнет увеличивать свои размеры, пока не перейдет в стадию красного гиганта. Растущая звезда поглотит , Венеру и, наверное, даже Землю. Но даже в случае, если наша планета уцелеет, жар от раскаленной звезды нагреет ее поверхность и превратит в настоящий ад для любой известной органической жизни.

Смерть любой звезды, находящейся в стадии красного гиганта, не за горами. У Солнца будет еще достаточно температуры и давления, чтобы начать следующий этап ядерного синтеза: из гелия, который в этот раз будет топливом, синтезируется углерод. Этот этап займет около ста миллионов лет – до того момента, когда выгорит весь гелий. В конце оболочка станет нестабильной, и звезда начнет усиленно пульсировать. За весьма короткий промежуток времени эти пульсации выбросят в открытый космос большую часть атмосферы Солнца.

Когда от атмосферы недавнего гиганта ничего не останется, вместо большой и яркой звезды в пространстве повиснет белый карлик – небольшое, размером с Землю, светило из чистого карбона, по массе равное звезде. Алмаз размером с нашу планету будет еще долго светиться тепловым излучением, но этого недостаточно для ядерного синтеза. Со временем он остынет до температуры окружающей среды – пары градусов выше абсолютного нуля.

Так закончится жизнь нашего Солнца – одиноким алмазным постаментом.

Нет ни одного реалистичного сценария, по которому Солнце бы взорвалось. Хоть нам она и кажется огромной, наша звезда невелика относительно невообразимо больших звезд, которыми полна Вселенная. Даже когда Солнце сжигает весь гидроген, она сначала растет, а потом уменьшается до размера небольшой планеты, медленно остывая триллионы лет.

Для того чтобы звезда взорвалась, ее масса должна значительно превышать массу Солнца. Если бы наша звезда была бы в десяток раз больше, тогда можно было бы говорить о взрыве. Сверхмассивные звезды после расходования водорода и гелия продолжают синтез более тяжелых элементов – вплоть до железа, синтез которого не сопровождается выделением энергии. Тогда внутреннее давление звезды, удерживавшее ее от воздействия гравитационных сил, исчезает, и звезда взрывается, выбрасывая в космос огромное количество энергии.

После взрыва от таких звезд остаются нейтронные звезды, которые быстро вращаются вокруг своей оси, или даже черные дыры.

Привет дорогие читатели! Хотелось бы поговорить о прекрасном ночном небе. Почему о ночном? Спросите Вы. Потому, что на нем ярко видны звезды, эти прекрасные светящиеся маленькие точки на черно-синем фоне нашего неба. Но на самом деле они не маленькие, а просто огромные, а из -за большого расстояния кажутся такими крохотными .

Кто-нибудь из Вас представлял себе как рождаются звезды, как проживают свою жизнь, какая она у них вообще? Я предлагаю Вам сейчас прочесть эту статью и по ходу представить эволюцию звезд. Я подготовила парочку видео для наглядного примера 😉

Небо усеяно множеством звезд, среди которых разбросаны огромные облака пыли и газов, водорода в основном. Звезды рождаются именно в таких туманностях, или межзвездных областях.

Звезда живет настолько долго (до десятков миллиардов лет), что астрономам не под силу проследить жизнь от начала и до конца, хотя бы одной из них. Но зато у них есть возможность наблюдать за разными стадиями развития звезд.

Ученные объединили полученные данные, и смогли проследить за этапами жизни типичных звезд: момент рождения звезды в межзвездном облаке, ее молодость, средний возраст, старость и иногда весьма эффектную смерть.

Рождение звезды.


Возникновение звезды начинается с уплотнения вещества внутри туманности. Постепенно, образовавшееся уплотнение, уменьшается в размерах, сжимаясь под воздействием гравитации. Во время этого сжатия, или коллапса , выделяется энергия, которая разогревает пыль и газ и вызывает их свечение.

Возникает так называемая протозвезда . Температура и плотность вещества в ее центре, или ядре максимальные. Когда температура достигает отметки около 10 000 000°С, в газе начинают протекать термоядерные реакции.

Ядра атомов водорода начиняют соединяться и превращаются в ядра атомов гелия. При таком синтезе выделяется огромное количество энергии. Эта энергия, в процессе конвекции, переносится в поверхностный слой, а потом, в виде света и тепла излучается в космос. Таким вот образом, протозвезда превращается в настоящую звезду.

Излучение, которое исходит из ядра, разогревает газовую среду, создавая давление, которое направленное вовне, и таким образом, препятствуя гравитационному коллапсу звезды.

Результатом является, то, что она обретает равновесие, то есть имеет постоянные размеры, постоянную поверхностную температуру и постоянное количество выделяемой энергии.

Астрономы звезду на этой стадии развития называют звездой главной последовательности , таким образом, указывая место, которое она занимает на диаграмме Герцшпрунга-Ресселла. Эта диаграмма выражает связь между температурой звезды и светимостью.

Протозвезды, имеющие небольшую массу, никогда не разогреваются до температур, которые необходимы для начала термоядерной реакции. Эти звезды, в результате сжатия, превращаются в тусклых красных карликов , или даже еще более тусклых коричневых карликов . Первая звезда коричневый карлик была открыта лишь 1987 году.

Гиганты и карлики.

Диаметр Солнца приблизительно равен 1 400 000 км, а температура его поверхности около 6 000°С, и оно излучает желтоватый свет. Оно на протяжении 5 млрд. лет входит в главную последовательность звезд.

Водородное «топливо» на такой звезде, приблизительно за 10 млрд. лет исчерпается, а в ее ядре останется, главным образом, гелий. Когда больше не остается чему «гореть», интенсивность излучения, направленного от ядра, уже не достаточна для уравновешивания гравитационного коллапса ядра.

Но той энергии, которая при этом выделяется, достаточно для того, чтобы разогреть окружающее вещество. В этой оболочке начинается синтез ядер водорода, выделяется больше энергии.

Звезда начинает ярче светиться, но теперь уже красноватым светом, и одновременно она еще и расширяется, увеличиваясь в размере в десятки раз. Теперь такая звезда называются красным гигантом .

Ядро красного гиганта сжимается, а температура возрастает до 100 000 000°С и более. Здесь происходит реакция синтеза ядер гелия, превращая его в углерод. Благодаря той энергии, которая при этом выделяется, звезда еще светится каких-нибудь 100 млн. лет.

После того как заканчивается гелий и реакции затухают, вся звезда постепенно, под влиянием гравитации, сжимается почти до размеров . Энергии, которая при этом выделяется, достаточно для того, чтобы звезда (теперь уже белый карлик) продолжала еще некоторое время ярко светиться.

Степень сжатия вещества в белом карлике очень высока и, следовательно, у него очень большая плотность – вес одной столовой ложки может достигать тысячи тонн. Таким вот образом проходит эволюция звезд размером с наше Солнце.

Видео показывающее эволюцию нашего Солнца в белого карлика

Жизненный цикл у звезды, масса которой в пять раз превышает массу Солнца, значительно короче, и она несколько иначе эволюционирует. Такая звезда намного ярче, а температура ее поверхности 25 000°С и более, период пребывания в главной последовательности звезд всего лишь около 100 млн. лет.

Когда такая звезда входит в стадию красного гиганта , температура в ее ядре превышает 600 000 000°С. В нем происходят реакции синтеза ядер углерода, который превращается в более тяжелые элементы, включая железо.

Звезда, под действием выделяемой энергии, расширяется до размеров, которые в сотни раз превышают ее первоначальные размеры. Звезду на этой стадии называют сверхгигантом .

В ядре внезапно прекращается процесс производства энергии, и оно в течение считаных секунд сжимается. При всем этом выделяется огромное количество энергии и образуется катастрофическая ударная волна.

Эта энергия проходит через всю звезду и выбрасывает значительную ее часть силой взрыва в космическое пространство, вызывая явление, которое известно как вспышка сверхновой звезды .

Для лучшего представления всего написанного, рассмотрим на схеме цикл эволюции звезд

В феврале 1987 года подобная вспышка наблюдалась в соседней галактике – Большом Магеллановом облаке. Эта сверхновая звезда в течение короткого времени светилась ярче целого триллиона Солнц.

Ядро сверхгиганта сжимается и образует небесное тело диаметром всего лишь 10-20 км, а плотность его настолько велика, что чайная ложка его вещества может весить 100 млн. тонн!!! Такое небесное тело состоит из нейтронов и называется нейтронной звездой .

Нейтронная звезда, которая только что образовалась, отличается большой скоростью вращения и очень сильным магнетизмом.

В результате создается мощное электромагнитное поле, которое испускает радиоволны и другие виды излучения. Они распространяются из магнитных полюсов звезды в форме лучей.

Эти лучи, из-за вращения звезды вокруг своей оси, как бы сканируют космическое пространство. Когда они проносятся мимо наших радиотелескопов, мы их воспринимаем как короткие вспышки, или импульсы (англ. Pulse). Поэтому такие звезды называются пульсарами .

Обнаружены пульсары были благодаря именно радиоволнам, которые они излучают. Сейчас стало известно, что многие из них излучают световые и рентгеновские импульсы.

Первый световой пульсар обнаружили в Крабовидной туманности. Его импульсы повторяются с периодичностью 30 раз в секунду.

Импульсы других пульсаров повторяются гораздо чаще: ПИР (пульсирующий источник радиоизлучения) 1937+21 вспыхивает 642 раза в секунду. Представить даже сложно такое!

Звезды, которые имеют наибольшую массу, превышающую в десятки раз массу Солнца, тоже вспыхивают, как сверхновые. Но из-за огромной массы, их коллапс имеет гораздо более катастрофический характер.

Разрушительное сжатие не прекращается даже на стадии образования нейтронной звезды, создавая область, в которой обычное вещество прекращает свое существование.

Остается только лишь одна гравитация, которая настолько сильная, что ничто, даже свет, не может избежать ее воздействия. Эта область называется черной дырой . Да уж, эволюция больших звезд страшная и очень опасная.

В этом видеоролике речь пойдет о том, как сверхновая превращается в пульсар и в черную дыру

Я не знаю как Вы, дорогие читатели, но лично я очень люблю и интересуюсь космосом и всем, что с ним связанно, это так загадочно и прекрасно, аж дух захватывает! Эволюция звезд нам много поведала о будущем нашей и всей .

Эволюция звезд - изменение физ. характеристик, внутр. строения и хим. состава звезд со временем. Важнейшие задачи теории Э.з. - объяснение образования звезд, изменения их наблюдаемых характеристик, исследование генетической связи различных групп звезд, анализ их конечных состояний.

Поскольку в известной нам части Вселенной ок. 98-99% массы наблюдаемого вещества содержится в звездах или прошло стадию звезд, объяснение Э.з. явл. одной из наиболее важных проблем астрофизики.

Звезда в стаыционарном состоянии - это газовый шар, к-рый находится в гидростатич. и тепловом равновесии (т.е. действие сил тяготения уравновешино внутр. давлением, а потери энергии на излучение компенсируются энергией, выделяющейся в недрах звезды, см. ). "Рождение" звезды - это образование гидростатически равновесного объекта, излучение к-рого поддерживаются за счет собст. источников энергии. "Смерть" звезды - необратимое нарушение равновесия, ведущее к разрушению звезды или к ее катастрофич. сжатию.

Выделение гравитац. энергии может играть определяющую роль лишь тогда, когда темп-ра недр звезды недостаточна для того, чтобы ядерное энерговыделение могло компенсировать потери энергии, и звезда в целом или ее часть должна сжиматься для поддержания равновесия. Высвечивание тепловой энергии становится важным лишь после исчерпания запасов ядерной энергии. Т.о., Э.з. можно представить как последовательную смену источников энергии звезд.

Характерное время Э.з. слишком велико для того, чтобы можно было всю эволюцию проследить непосредственно. Поэтому осн. методом исследования Э.з. явл. построение последовательностей моделей звезд, описывающих изменения внутр. строения и хим. состава звезд со временем. Эволюц. последовательности затем сопоставляются с результатами наблюдений, напр., с (Г.-Р.д.), суммирующей наблюдения большого числа звезд, находящихся на разных стадиях эволюции. Особо важную роль играет сравнение с Г.-Р.д. для звездных скоплений, поскольку все звезды скопления имеют одинаковый начальный хим. состав и образовались практически одновременно. По Г.-Р.д. скоплений различного возраста удалось установить направление Э.з. Детально эволюц. последовательности рассчитываются путем численного решения системы дифференциальных уравнений, описывающих распределение массы, плотности, темп-ры и светимости по звезде, к к-рым добавляются , законы энерговыделения и непрозрачности звездного вещества и ур-ния, описывающие изменение хим. состава звезды со временем.

Ход эволюции звезды зависит в основном от ее массы и исходного хим. состава. Определенную, но не принципиальную роль могут играть вращение звезды и ее магн. поле, однако роль этих факторов в Э.з. еще недостаточно исследована. Хим. состав звезды зависит от времени, когда она образовалась, и от ее положения в Галактике в момент образования. Звезды первого поколения сформировались из вещества, состав к-рого определялся космологич. условиями. По=видимому, в нем было примерно 70% по массе водорода, 30% гелия и ничтожная примесь дейтерия и лития. В ходе эволюции звезд первого поколения образовались тяжелые элементы (следующие за гелием), к-рые были выброшены в межзвездное пространство в результате истечения вещества из звезд или при взрывах звезд. Звезды последующих поколений сформировались уже из вещества, содержавшего до 3-4% (по массе) тяжелых элементов.

Наиболее непосредственным указанием на то, что звездообразование в Галактике происходит и в настоящее время, явл. существование массивных ярких звезд спектр. классов O и B, время жизни к-рых не может превосходить ~ 10 7 лет. Скорость звездообразования в совр. эпоху оценивается в 5 в год.

2. Образование звезд, стадия гравитационного сжатия

Согласно наиболее распространенной точке зрения, звезды образуются в результате гравитац. конденсации вещества межзвездной среды. Необходимое для этого разделение межзвездной среды на две фазы - плотные холодные облака и разреженную среду с более высокой темп-рой - может происходить под воздействием тепловой неустойчивости Рэлея-Тейлора в межзвездном магн. поле. Газово-пылевые комплексы с массой , характерным размером (10-100) пк и концентрацией частиц n ~10 2 см -3 . действительно наблюдаются благодаря излучению ими радиоволн. Сжатие (коллапс) таких облаков требует определенных условий: гравитац. частиц облака должна превосходить сумму энергии теплового движения частиц, энергии вращения облака как целого и магн. энергии облака (критерий Джинса). Если учитывается только энергия теплового движения, то с точностью до множителя порядкаединицы критерий Джинса записывается в виде: align="absmiddle" width="205" height="20">, где - масса облака, T - темп-ра газа в К, n - число частиц в 1 см 3 . При типичных для совр. межзвездных облаков темп-рах К могут сколлапсировать лишь облака с массой, не меньшей . Критерий Джинса указывает, что для образования звезд реально наблюдаемого спектра масс концентрация частиц в коллапсирующих облаках должна достигать (10 3 -10 6) см -3 , т.е. в 10-1000 раз превышать наблюдаемую в типичных облаках. Однако такие концентрации частиц могут достигаться в недрах облаков, уже начавших коллапс. Отсюда следует, что происходит путем последовательной, осуществляющейся в неск. этапов, фрагментации массивных облаков. В этой картине естественно объясняется рождение звезд группами - скоплениями. При этом все еще неясными остаются вопросы, относящиеся к тепловому балансу в облаке, полю скоростей в нем, механизму, определяющему спектр масс фрагментов.

Коллапсирующие объекты звездной массы наз. протозвездами. Коллапс сферически-симметричной невращающейся протозвезды без магн. поля включает неск. этапов. В начальный момент времени облако однородно и изотермично. Оно прозрачно для собств. излучения, поэтому коллапс идет с объемными потерями энергии, гл. обр. за счет теплового излучения пыли, к-рой передают свою кинетич. энергию частицы газа. В однородном облаке нет градиента давления и сжатие начинается в режиме свободного падения с характерным временем , где G - , - плотность облака. С началом сжатия возникает волна разрежения, перемещающаяся к центру со скоростью звука, а т.к. коллапс происходит быстрее там, где плотность выше, протозвезда разделяется на компактное ядро и протяженную оболочку, в к-рой вещество распределяется по закону . Когда концентрация частиц в ядре достигает ~ 10 11 см -3 оно становится непрозрачным для ИК-излучения пылинок. Выделяющаяся в ядре энергия медленно просачивается к поверхности благодаря лучистой теплопроводности. Темп-ра начинает повышаться почти адиабатически, это приводит к росту давления, и ядро приходит в состояние гидростатич. равновесия. Оболочка продолжает падать на ядро, и на его периферии возникает . Параметры ядра в это время слабо зависят от общей массы протозвезды: К. По мере увеличения массы ядра за счет аккреции, его темп-ра изменяется практически адиабатически, пока не достигнет 2000 К, когда начинается диссоциация молекул H 2 . В результате расхода энергии на диссоциацию, а не не увеличение кинетич. энергии частиц, значение показателя адиабаты становится меньше 4/3, изменения давления не способны компенсировать силы тяготения и ядро повторно коллапсирует (см. ). Образуется новое ядро с параметрами , окруженное ударным фронтом, на которое аккрецируют остатки первого ядра. Подобная же перестройка ядра происходит при водорода.

Дальнейший рост ядра за счет вещества оболочки продолжается до тех пор, пока все вещество упадет на звезду либо рассеется под действием или , если ядро достаточно массивно (см. ). У протозвезд с характерное время вещества оболочки t a >t кн , поэтому их светимость определяется энерговыделением сжимающихся ядер.

Звезда, состоящая из ядра и оболочки, наблюдается как ИК-источник из-за переработки излучения в оболочке (пыль оболочки, поглощая фотоны УФ-излучения ядра, излучает в ИК-диапазоне). Когда оболочка становится оптически тонкой, протозвезда начинает наблюдаться как обычный объект звездной природы. У наиболее массивных звезд оболочки сохраняются до начала термоядерного горения водорода в центре звезды. Давление излучения ограничивает массу звезд величиной, вероятно, . Если даже и образуются более массивные звезды, то они оказываются пульсационно-неустойчивыми и могут потерять значит. часть массы на стадии горения водорода в ядре. Продолжительность стадии коллапса и рассеяния протозвездной оболочки того же порядка, что и время свободного падения для родительского облака, т.е. 10 5 -10 6 лет. Освещенные ядром сгустки темного вещества остатков оболочки, ускоренные звездным ветром, отождествляются с объектами Хербига-Аро (звездообразными сгущениями, имеющими эмиссионный спектр). Звезды малых масс, когда они становятся видимыми, находятся в области Г.-Р.д., занимаемой звездами типа Т Тельца (карликовыми ), более массивные - в области, где находятся эмиссионные звезды Хербига (неправильные ранних спектр. классов с эмиссионными линиями в спектрах).

Эволюц. треки ядер протозвезд с постоянной массой на стадии гидростатич. сжатия показаны на рис. 1. У звезд малых масс в момент, когда устанавливается гидростатич. равновесие, условия в ядрах таковы, что энергия в них переносится . Расчеты показывают, что темп-ра поверхности полностью конвективной звезды почти постоянна. Радиус звезды непрерывно уменьшается, т.к. она продолжает сжиматься. При неизменной темп-ре поверхности и уменьшающемся радиусе светимость звезды должна падать и на Г.-Р.д. этой стадии эволюции соответствуют вертикальные участки треков.

По мере продолжения сжатия темп-ра в недрах звезды повышается, вещество становится более прозрачным, и у звезд с align="absmiddle" width="90" height="17"> возникают лучистые ядра, но оболочки остаются конвективными. Менее массивные звезды остаются полностью конвективными. Их светимость регулируется тонким лучистым слоем в фотосфере. Чем массивнее звезда и чем выше ее эффективная темп-ра, тем больше у нее лучистое ядро (в звездах с align="absmiddle" width="74" height="17"> лучистое ядро возникает сразу). В конце концов, практически вся звезда (за исключением поверхностной конвективной зоны у звезд с массой ) переходит в состояние лучистого равновесия, при к-ром вся выделяющаяся в ядре энергия переносится излучением.

3. Эволюция на основе ядерных реакций

При темп-ре в ядрах ~ 10 6 К начинаются перве ядерные реакции - выгорают дейтерий, литий, бор. Первичное количество этих элементов настолько мало, что их выгорание практически не выдерживает сжатия. Сжатие прекращается, когда темп-ра в центре звезды достигает ~ 10 6 К и загорается водород, т.к. энергии, выделяющейся при термоядерном горении водорода, достаточно для компенсации потерь на излучение (см. ). Однородные звезды, в ядрах к-рых горит водород, образуют на Г.-Р.д. начальную главную последовательность (НГП). Массивные звезды достигают НГП быстрее звезд малой массы, т.к. у них скорость потерь энергии на единицу массы, а следовательно, и темп эволюции выше,чем у маломассивных звезд. С момента выхода на НГП Э.з. происходит на основе ядерного горения, главные стадии к-рого суммирована в табл. Ядерное горение может происходить до образования элементов группы железа, у к-рых наибольшая среди всех ядер энергия связи. Эволюц. треки звезд на Г.-Р.д. изображены на рис. 2. Эволюция центральных значений темп-ры и плотности звезд показана на рис. 3. При К осн. источником энергии явл. реакция водородного цикла, при б"ольших T - реакции углерод-азотного (CNO) цикла (см. ). Побочным эффектом CNO-цикла явл. установление равновесных концентраций нуклидов 14 N, 12 C, 13 C - соответственно 95%, 4% и 1% по массе. Преобладание азота в слоях, где происходило горение водорода, подтверждается результатами наблюдений , у к-рых эти слои оказываются на поверхности в результате потери внеш. слоев. У звезд, в центре к-рых реализуется CNO-цикл ( align="absmiddle" width="74" height="17">), возникает конвективное ядро. Причина этого в очень сильной зависимости энерговыделения от темп-ры: . Поток же лучистой энергии ~ T 4 (см. ), следовательно, он не может перенести всю выделяющуюся энергию, и должна возникнуть конвекция, более эффективная, чем лучистый перенос. У наиболее массивных звезд конвекцией охвачено более 50% массы звезд. Значение конвективного ядра для эволюции определяется тем, что ядерное горючее равномерно истощается в области, значительно большей, чем область эффективного горения, в то время как у звезд без конвективного ядра оно вначале выгорает лишь в малой окрестности центра, где темп-ра достаточно высока. Время выгорания водорода заключено в пределах от ~ 10 10 лет для до лет для . Время всех последующих стадий ядерного горения не превосходит 10% времени горения водорода, поэтому звезды на стадии горения водорода образуют на Г.-Р.д. густонаселенную область - (ГП). У звезд с темп-ра в центре никогда не достигает значений, необходимых для загорания водорода, они неограниченно сжимаются, превращаясь в "черные" карлики. Выгорание водорода при водит к увеличению ср. молекулярной массы вещества ядра, и поэтому для поддержания гидростатич. равновесия давление в центре дожно возрастать, что влечет за собой увеличение темп-ры в центре и градиента темп-ры по звезде, а следовательно, и светимости. К увеличению светимости приводит также и уменьшение непрозрачности вещества с ростом темп-ры. Ядро сжимается для поддержания условий ядерного энерговыделения с уменьшением содержания водорода, а оболочка расширяется из-за необходимости перенести возросший поток энергии от ядра. На Г.-Р.д. звезда перемещается вправо от НГП. Уменьшение непрозрачности приводит к отмиранию конвективных ядер у всех звезд, кроме наиболее массивныых. Темп эволюции массивных звезд наиболее высок, и они первыми покидают ГП. Время жизни на ГП составляет для звезд с ок. 10 млн. лет, с ок. 70 млн. лет, а с ок. 10 млрд. лет.

Когда содержание водорода в ядре уменьшается до 1%, расширение оболочек звезд с align="absmiddle" width="66" height="17"> сменяется общим сжатием звезды, необходимым для поддержания энерговыделения. Сжатие оболочки вызывает нагрев водорода в слое, прилегающем к гелиевому ядру, до темп-ры его термоядерного горения, и возникает слоевой источник энерговыделения. У звезд с массой , у к-рых в меньшей степени зависит от темп-ры и область энерговыделения не столь сильно концентрируется к центру, стадия общего сжатия отсутствует.

Э.з. после выгорания водорода зависит от их массы. Важнейшим фактором, влияющим на ход эволюции звезд с массой , явл. вырождение газа электронов при больших плотностях. В из-за большой плотности число квантовых состояний с малой энергией ограничено в силу принципа Паули и электроны заполняют квантовые уровни с высокой энергией, значительно превышающей энергию их теплового движения. Важнейшая особенность вырожденного газа состояит в том, что его давление p зависит лишь от плотности: для нерелятивистского вырождения и для релятивистского вырождения. Давление газа электронов намного превосходит давление ионов. Отсюда следует принципиальный для Э.з. вывод: поскольку сила тяготения, действующая на единичный объем релятивистски вырожденного газа, , зависит от плотности так же, как и градиент давления , должна существовать предельная масса (см. ), такая, что при align="absmiddle" width="66" height="15"> давление электронов не может противодействовать тяготению и начинается сжатие. Предельная масса align="absmiddle" width="139" height="17">. Граница области, в к-рой газ электронов вырожден, показана на рис. 3 . У звезд малых масс вырождение играет заметную роль уже в процессе образования гелиевых ядер.

Второй фактор, определяющий Э.з. на поздних стадиях, - это нейтринные потери энергии. В звездных недрах при T ~10 8 К осн. роль в рождении играют: фотонейтринный процесс , распад квантов плазменных колебаний (плазмонов) на пары нейтрино-антинейтрино (), аннигиляция пар электрон-позитрон () и (см. ). Важнейшая особенность нейтрино состояит в том, что вещество звезды для них практически прозрачно и нейтрино беспрепятственно уносят энергию из звезды.

Гелиевое ядро, в к-ром еще не возникли условия для горения гелия, сжимается. Темп-ра в слоевом источнике, прилегающем к ядру, увеличивается, скорость горения водорода возрастает. Необходимость переноса возросшего потока энергии приводит к расширению оболочки, на что тратится часть энергии. Поскольку светимость звезды не изменяется, темп-ра ее поверхности падает, и на Г.-Р.д. звезда перемещается в область, занимаемую красными гигантамию Время перестройки звезды на два порядка меньше времени выгорания водорода в ядре, поэтому между полосой ГП и областью красных сверхгигантов мало звезд. С уменьшением темп-ры оболочки возрастает ее прозрачность, вследствие этого появляется внеш. конвективная зона и возрастает светимость звезды.

Отвод энергии из ядра посредством теплопроводности вырожденных электронов и нейтринных потерь у звезд с оттягивает момент загорания гелия. Темп-ра начинает заметно расти лишь тогда, когда ядро становится почти изотермичным. Горение 4 He определяет Э.з. с момента, когда энерговыделение превышает потери энергии путем теплопроводности и излучения нейтрино. Это же условие относится к горению всех последующих видом ядерного топлива.

Примечательная особенность звездных ядер из вырожденного газа, охлаждаемых нейтрино, - это "конвергенция" - сближение треков, к-рые характеризуют соотношение плотности и темп-ры T c в центре звезды (рис. 3). Скорость энерговыделения при сжатии ядра определяется скоростью присоединения вещества к нему через слоевой источник, к-рая зависит только от массы ядра при данном виде топлива. В ядре должен поддерживаться баланс притока и оттока энергии, поэтому в ядрах звезд устанавливается одинаковое распределение темп-ры и плотности. К моменту загорания 4 He масса ядра в зависимости от содержания тяжелых элементов. В ядрах из вырожденного газа загорание 4 He имеет характер теплового взрыва, т.к. энергия, выделяющаяся при горении, идет на увеличение энергии теплового движения электронов, но давление с ростом темп-ры почти не изменяется до тех пор, пока тепловая энергия электронов не сравняется с энергией вырожденного газа электронов. Тогда вырождение снимается и ядро быстро расширяется - происходит гелиевая вспышка. Гелиевые вспышки, вероятно, сопровождаются потерей звездного вещества. У , где массивные звезды уже давно закончили эволюцию и красные гиганты имеют массы , звезды на стадии горения гелия находятся на горизонтальной ветви Г.-Р.д.

В гелиевых ядрах звезд с align="absmiddle" width="90" height="17"> газ не вырожден, 4 He загорается спокойно, но ядра также расширяются из-за возрастания T c . У наиболее массивных звезд загорание 4 He происходит еще тогда, когда они явл. голубыми сверхгигантами. Расширение ядра ведет к уменьшению T в области водородного слоевого источника, и светимость звезды после гелиевой вспышки падает. Для поддержания теплового равновесия оболочка сжимается, и звезда уходит из области красных сверхгигантов. Когда 4 He в ядре истощается, снова начинается сжатие ядра и расширение оболочки, звезда опять становится красным сверхгигантом. Образуется слоевой источник горения 4 He, к-рый доминирует в энерговыделении. Снова возникает внеш. конвективная зона. По мере выгорания гелия и водорода толщина слоевых источников уменьшается. Тонкий слой горения гелия оказывается термически неустойчивым, т.к. при очень сильной чувствительности энерговыделения к темп-ре () теплопроводность вещества недостаточна для того, чтобы погасить тепловые возмущения в слое горения. При тепловых вспышках в слое возникает конвекция. Если она проникает в слои, богатые водородом, то в результате медленного процесса (s -процесса, см. ) синтезируются элементы с атомными массами от 22 Ne до 209 B.

Давление излучения на пыль и молекулы, образующиеся в холодных протяженных оболочках красных сверхгигантов, приводит к непрерывной потере вещества со скоростью до в год . Непрерывная потеря массы может дополнятся потерями, обусловленными неустойчивостью слоевого горения или пульсациями, что может привести к выбросу одной или неск. оболочек. Когда количество вещества над углеродно-кислородным ядром становится меньшим нек-рого предела, оболочка для поддержания темп-ры в слоях горения вынуждена сжиматься до тех пор, пока сжатие способно поддерживать горение; звезда на Г.-Р.д. смещается почти горизонтально влево. На этом этапе неустойчивость слоев горения также может приводить к расширению оболочки и потере вещества. Пока звезда достаточно горяча, она наблюдается как ядро с одной или неск. оболочками. Когда слоевые источники смещаются к поверхности звезды настолько, что темп-ра в них становится ниже необходимой для ядерного горения, звезда охлаждается, превращаясь в белый карлик с , излучающий за счет расхода тепловой энергии ионного компонента его вещества. Характерное время охлаждения белых карликов ~ 10 9 лет. Нижняя граница масс одиночных звезд, превращающихся в белые карлики, неясна, она оценивается в 3-6 . У звезд с электронный газ вырождается на стадии роста углеродно-кислородных (C,O-) ядер звезд. Как и в гелиевых ядрах звезд, из-за нейтринных потерь энергии происходит "конвергенция" условий в центре и к моменту загорания углерода в C,O-ядре . Загорание 12 C при таких условиях, скорее всего, имеет характер взрыва и приводит к полному разрушению звезды. Полного разрушения может не произойти, если . Такая плотность достижима, когда скорость роста ядра определяется аккрецией вещества спутника в тесной двойной системе.

Как и любые тела в природе, звезды тоже не могут оставаться неизменными. Они рождаются, развиваются и, наконец, «умирают». Эволюция звезд занимает миллиарды лет, а вот по поводу времени их образования ведутся споры. Раньше астрономы считали, что процесс их «рождения» из звездной пыли требует миллионы лет, но не так давно были получены фотографии области неба из состава Большой Туманности Ориона. За несколько лет там возникло небольшое

На снимках 1947 года в этом месте была зафиксирована небольшая группа звездоподобных объектов. К 1954 году некоторые из них уже стали продолговатыми, а еще через пять лет эти объекты распались на отдельные. Так впервые процесс рождения звезд проходил буквально на глазах у астрономов.

Давайте подробно разберем, как проходит строение и эволюция звезд, с чего начинается и чем заканчивается их бесконечная, по людским меркам, жизнь.

Традиционно ученые предполагают, что звезды образуются в результате конденсации облаков газо-пылевой среды. Под действием гравитационных сил из образовавшихся облаков формируется непрозрачный газовый шар, плотный по своей структуре. Его внутреннее давление не может уравновесить сжимающие его гравитационные силы. Постепенно шар сжимается настолько, что температура звездных недр повышается, и давление горячего газа внутри шара уравновешивает внешние силы. После этого сжатие прекращается. Длительность этого процесса зависит от массы звезды и обычно составляет от двух до нескольких сотен миллионов лет.

Строение звезд предполагает очень высокую температуру в их недрах, что способствует беспрерывным термоядерным процессам (водород, который их образует, превращается в гелий). Именно эти процессы являются причиной интенсивного излучения звезд. Время, за которое они расходуют имеющийся запас водорода, определяется их массой. От этого же зависит и длительность излучения.

Когда запасы водорода истощаются, эволюция звезд подходит к этапу образования Это происходит следующим образом. После прекращения выделения энергии гравитационные силы начинают сжимать ядро. При этом звезда значительно увеличивается в размерах. Светимость также возрастает, поскольку процесс продолжается, но только в тонком слое на границе ядра.

Этот процесс сопровождается повышением температуры сжимающегося гелиевого ядра и превращением ядер гелия в ядра углерода.

По прогнозам, наше Солнце может превратиться в красного гиганта через восемь миллиардов лет. Радиус его при этом увеличится в несколько десятков раз, а светимость вырастет в сотни раз по сравнению с нынешними показателями.

Продолжительность жизни звезды, как уже отмечалось, зависит от ее массы. Объекты с массой, которая меньше солнечной, очень экономно «расходуют» запасы своего поэтому могут светить десятки миллиардов лет.

Эволюция звезд заканчивается образованием Это происходит с теми из них, чья масса близка к массе Солнца, т.е. не превышает 1,2 от нее.

Гигантские звезды, как правило, быстро истощают свой запас ядерного горючего. Это сопровождается значительной потерей массы, в частности, за счет сброса внешних оболочек. В результате остается только постепенно остывающая центральная часть, в которой ядерные реакции полностью прекратились. Со временем такие звезды прекращают свое излучение и становятся невидимыми.

Но иногда нормальная эволюция и строение звезд нарушается. Чаще всего это касается массивных объектов, исчерпавших все виды термоядерного горючего. Тогда они могут преобразовываться в нейтронные, или И чем больше ученые узнают об этих объектах, тем больше возникает новых вопросов.

Звезды, как и люди, могут быть новорожденными, молодыми, старыми. Каждый миг умирают одни звезды и образуются другие. Обычно самые юные из них похожи на Солнце. Они находятся на стадии формирования и фактически представляют собой протозвезды. Астрономы называют их звездами типа Т - Тельца, по имени своего прототипа. По своим свойствам - например, светимости - протозвезды являются переменными, поскольку их существование еще не вошло в стабильную фазу. Вокруг многих из них находится большое количество материи. От звезд типа Т исходят мощные ветровые потоки.

Протозвезды: начало жизненного цикла

Если на поверхность протозвезды падает вещество, оно быстро сгорает и превращается в тепло. Как следствие, температура протозвезд постоянно увеличивается. Когда она поднимается настолько, что в центре звезды запускаются ядерные реакции, протозвезда обретает статус обыкновенной. С началом протекания ядерных реакций у звезды появляется постоянный источник энергии, который поддерживает ее жизнедеятельность в течение длительного времени. Насколько долгой будет жизненный цикл звезды во Вселенной, зависит от ее первоначального размера. Однако считается, что у звезд, диаметром с Солнце, энергии хватит на то, чтобы безбедно существовать в течение приблизительно 10 млрд лет. Несмотря на это, случается и так, что даже более массивные звезды живут всего лишь несколько миллионов лет. Это происходит по причине того, что сжигают они свое топливо гораздо быстрее.

Звезды нормальных размеров

Каждая из звезд представляет собой сгустки горячего газа. В их глубинах постоянно происходит процесс выработки ядерной энергии. Однако не все звезды похожи на Солнце. Одно из главных различий заключается в цвете. Звезды бывают не только желтыми, но и синеватыми, красноватыми.

Яркость и светимость

Различаются они и по таким признакам, как блеск, яркость. То, насколько яркой окажется наблюдаемая с поверхности Земли звезда, зависит не только от ее светимости, но и от удаленности от нашей планеты. Учитывая расстояние до Земли, звезды могут обладать совершенно различной яркостью. Этот показатель колеблется от одной десятитысячной блеска Солнца до яркости, сопоставимой более чем с миллионом Солнц.

Большая часть звезд находится на нижнем отрезке этого спектра, являясь тусклыми. Во многих отношениях Солнце является среднестатистической, типичной звездой. Однако, по сравнению с другими, оно обладает гораздо большей яркостью. Большое количество тусклых звезд могут наблюдаться даже невооруженным глазом. Причина, по которой звезды отличаются по яркости, заключается в их массе. Цвет, блеск и изменение яркости во времени определяется количеством вещества.

Попытки объяснить жизненный цикл звезд

Люди издавна пытались проследить жизнь звезд, однако первые попытки ученых были достаточно робкими. Первым достижением было применение закона Лейна к гипотезе Гельмгольца-Кельвина о гравитационном сжатии. Это принесло в астрономию новое понимание: теоретически температура звезды должна повышаться (ее показатель обратно пропорционален радиусу звезды) до тех пор, пока увеличение плотности не замедлит процессы сжатия. Тогда расход энергии будет выше, чем ее приход. В этот момент звезда начнет стремительно остывать.

Гипотезы о жизни звезд

Одна из оригинальных гипотез о жизненном цикле звезды была предложена астрономом Норманом Локиером. Он считал, что звезды возникают из метеорной материи. При этом положения его гипотезы опирались не только на имеющиеся в астрономии теоретические выводы, но и на данные спектрального анализа звезд. Локиер был убежден в том, что химические элементы, которые принимают участие в эволюции небесных тел, состоят из элементарных частиц - «протоэлементов». В отличие от современных нейтронов, протонов и электронов, они обладают не общим, а индивидуальным характером. Например, согласно Локиеру, водород распадается на так называемый «протоводород»; железо становится «протожелезом». Описать жизненный цикл звезды пытались и другие ученые-астрономы, например, Джеймс Хопвуд, Яков Зельдович, Фред Хойл.

Звезды-гиганты и звезды-карлики

Звезды больших размеров являются самыми горячими и яркими. На вид они обычно белые или голубоватого оттенка. Несмотря на то что они обладают гигантскими размерами, топливо внутри них сгорает настолько быстро, что они лишаются его за каких-то несколько миллионов лет.

Звезды небольших размеров, в противоположность гигантским, обычно не столь яркие. Они обладают красным цветом, живут достаточно долго - в течение миллиардов лет. Но среди ярких звезд на небосклоне есть также красные и оранжевые. Примером может послужить звезда Альдебаран - так называемый «глаз быка», находящийся в созвездии Тельца; а также в созвездии Скорпиона. Почему же эти холодные звезды способны конкурировать по яркости с раскаленными звездами, наподобие Сириуса?

Так происходит из-за того, что когда-то они очень сильно расширились, и по своему диаметру стали превосходить огромные красные звезды (сверхгиганты). Огромная площадь позволяет этим звездам излучать на порядок больше энергии, чем Солнце. И это несмотря на тот факт, что их температура намного ниже. К примеру, диаметр Бетельгейзе, находящейся в созвездии Ориона, в несколько сотен раз больше диаметра Солнца. А диаметр обыкновенных красных звезд обычно не составляет и десятой части размера Солнца. Такие звезды называют карликами. Эти виды жизненного цикла звезд может проходить каждое небесное светило - одна и та же звезда на разных отрезках своей жизни может быть и красным гигантом, и карликом.

Как правило, светила, подобные Солнцу, поддерживают свое существование за счет находящегося внутри водорода. Он превращается в гелий внутри ядерной сердцевины звезды. Солнце располагает огромным количеством топлива, однако даже оно не бесконечно - за последние пять миллиардов лет была израсходована половина запаса.

Время жизни звезд. Жизненный цикл звезд

После того как внутри звезды исчерпываются запасы водорода, приходят серьезные перемены. Остатки водорода начинают сгорать не внутри ее ядра, а на поверхности. При этом все больше сокращается время жизни звезды. Цикл звезд, по крайней мере, большинства из них, на этом отрезке переходит в стадию красного гиганта. Размер звезды становится больше, а ее температура - напротив, меньше. Так появляется большинство красных гигантов, а также сверхгигантов. Этот процесс входит в состав общей последовательности происходящих со звездами изменений, которые ученые назвали эволюцией звезд. Цикл жизни звезды включает все ее стадии: в конечном счете все звезды стареют и умирают, а продолжительность их существования напрямую определяется количеством топлива. Большие звезды заканчивают свою жизнь огромным, эффектным взрывом. Более скромные, наоборот, погибают, постепенно сжимаясь до размеров белых карликов. Затем они просто угасают.

Сколько по времени живет средняя звезда? Жизненный цикл звезды может длиться от менее 1,5 млн лет и до 1 млрд лет и более. Все это, как было сказано, зависит от ее состава и размеров. Звезды, подобные Солнцу, живут от 10 до 16 млрд лет. Очень яркие звезды, наподобие Сириуса, живут относительно недолго - всего лишь несколько сотен миллионов лет. Схема жизненного цикла звезды включает в себя следующие этапы. Это молекулярное облако - гравитационный коллапс облака - рождение сверхновой звезды - эволюция протозвезды - окончание протозвездной фазы. Затем следуют этапы: начало стадии молодой звезды - середина жизни - зрелость - стадия красного гиганта - планетарная туманность - этап белого карлика. Последние две фазы свойственны звездам малого размера.

Природа планетарных туманностей

Итак, мы рассмотрели кратко жизненный цикл звезды. Но что представляет собой Превращаясь из огромного красного гиганта в белого карлика, иногда звезды сбрасывают внешние слои, и тогда ядро звезды становится обнаженным. Газовая оболочка начинает светиться под действием энергии, излучаемой звездой. Название свое эта стадия получила за счет того, что светящиеся газовые пузыри в этой оболочке часто похожи на диски вокруг планет. Но на самом деле они ничего общего с планетами не имеют. Жизненный цикл звезд для детей может не включать всех научных подробностей. Можно лишь описать основные фазы эволюции небесных светил.

Звездные скопления

Астрономы очень любят исследовать Есть гипотеза, что все светила рождаются именно группами, а не поодиночке. Так как звезды, принадлежащие к одному скоплению, обладают схожими свойствами, то и различия между ними являются истинными, а не обусловленными расстоянием до Земли. Какие бы изменения не приходились на долю этих звезд, свое начало они берут в одно и то же время и при равных условиях. Особенно много знаний можно получить, изучая зависимость их свойств от массы. Ведь возраст звезд в скоплениях и их удаленность от Земли примерно равны, поэтому отличаются они только по этому показателю. Скопления будут интересны не только профессиональным астрономам - каждый любитель будет рад сделать красивую фотографию, полюбоваться их исключительно красивым видом в планетарии.