Как держать форму. Массаж. Здоровье. Уход за волосами

Визуальный гид (2019). Угол между прямой и плоскостью

\(\blacktriangleright\) Угол между прямой и плоскостью – это угол между прямой и ее проекцией на эту плоскость (т.е. это угол \(0\leqslant \alpha\leqslant 90^\circ\) ).

\(\blacktriangleright\) Чтобы найти угол между прямой \(a\) и плоскостью \(\phi\) (\(a\cap\phi=B\) ), нужно:

Шаг 1: из какой-то точки \(A\in a\) провести перпендикуляр \(AO\) на плоскость \(\phi\) (\(O\) – основание перпендикуляра);

Шаг 2: тогда \(BO\) – проекция наклонной \(AB\) на плоскость \(\phi\) ;

Шаг 3: тогда угол между прямой \(a\) и плоскостью \(\phi\) равен \(\angle ABO\) .

Задание 1 #2850

Уровень задания: Сложнее ЕГЭ

Прямая \(l\) пересекает плоскость \(\alpha\) . На прямой \(l\) отмечен отрезок \(AB=25\) , причем известно, что проекция этого отрезка на плоскость \(\alpha\) равна \(24\) . Найдите синус угла между прямой \(l\) и плоскостью \(\alpha\)

Рассмотрим рисунок:

Пусть \(A_1B_1=24\) – проекция \(AB\) на плоскость \(\alpha\) , значит, \(AA_1\perp \alpha\) , \(BB_1\perp \alpha\) . Так как две прямые, перпендикулярные к плоскости, лежат в одной плоскости, то \(A_1ABB_1\) – прямоугольная трапеция. Проведем \(AH\perp BB_1\) . Тогда \(AH=A_1B_1=24\) . Следовательно, по теореме Пифагора \ Заметим также, что угол между прямой и плоскостью – это угол между прямой и ее проекцией на плоскость, следовательно, искомый угол – угол между \(AB\) и \(A_1B_1\) . Так как \(AH\parallel A_1B_1\) , то угол между \(AB\) и \(A_1B_1\) равен углу между \(AB\) и \(AH\) .
Тогда \[\sin\angle BAH=\dfrac{BH}{AB}=\dfrac7{25}=0,28.\]

Ответ: 0,28

Задание 2 #2851

Уровень задания: Сложнее ЕГЭ

\(ABC\) – правильный треугольник со стороной \(3\) , \(O\) – точка, лежащая вне плоскости треугольника, причем \(OA=OB=OC=2\sqrt3\) . Найдите угол, который образуют прямые \(OA, OB, OC\) с плоскостью треугольника. Ответ дайте в градусах.

Проведем перпендикуляр \(OH\) на плоскость треугольника.

Рассмотрим \(\triangle OAH, \triangle OBH, \triangle OCH\) . Они являются прямоугольными и равны по катету и гипотенузе. Следовательно, \(AH=BH=CH\) . Значит, \(H\) – точка, находящаяся на одинаковом расстоянии от вершин треугольника \(ABC\) . Следовательно, \(H\) – центр описанной около него окружности. Так как \(\triangle ABC\) – правильный, то \(H\) – точка пересечения медиан (они же высоты и биссектрисы).
Так как угол между прямой и плоскостью – это угол между прямой и ее проекцией на эту плоскость, а \(AH\) – проекция \(AO\) на плоскость треугольника, то угол между \(AO\) и плоскостью треугольника равен \(\angle OAH\) .
Пусть \(AA_1\) – медиана в \(\triangle ABC\) , следовательно, \ Так как медианы точкой пересечения делятся в отношении \(2:1\) , считая от вершины, то \ Тогда из прямоугольного \(\triangle OAH\) :\[\cos OAH=\dfrac{AH}{AO}=\dfrac12\quad\Rightarrow\quad \angle OAH=60^\circ.\]

Заметим, что из равенства треугольников \(OAH, OBH, OCH\) следует, что \(\angle OAH=\angle OBH=\angle OCH=60^\circ\) .

Ответ: 60

Задание 3 #2852

Уровень задания: Сложнее ЕГЭ

Прямая \(l\) перпендикулярна плоскости \(\pi\) . Прямая \(p\) не лежит в плоскости \(\pi\) и не параллельна ей, также не параллельна прямой \(l\) . Найдите сумму углов между прямыми \(p\) и \(l\) и между прямой \(p\) и плоскостью \(\pi\) . Ответ дайте в градусах.

Из условия следует, что прямая \(p\) пересекает плоскостью \(\pi\) . Пусть \(p\cap l=O\) , \(l\cap \pi=L\) , \(p\cap\pi=P\) .

Тогда \(\angle POL\) – угол между прямыми \(p\) и \(l\) .
Так как угол между прямой и плоскостью – угол между прямой и ее проекцией на эту плоскость, то \(\angle OPL\) – угол между \(p\) и \(\pi\) . Заметим, что \(\triangle OPL\) прямоугольный с \(\angle L=90^\circ\) . Так как сумма острых углов прямоугольного треугольника равна \(90^\circ\) , то \(\angle POL+\angle OPL=90^\circ\) .

Замечание.
Если прямая \(p\) не пересекает прямую \(l\) , то проведем прямую \(p"\parallel p\) , пересекающую \(l\) . Тогда угол между прямой \(p\) и \(l\) будет равен углу между \(p"\) и \(l\) . Аналогично угол между \(p\) и \(\pi\) будет равен углу между \(p"\) и \(\pi\) . А для прямой \(p"\) уже верно предыдущее решение.

Ответ: 90

Задание 4 #2905

Уровень задания: Сложнее ЕГЭ

\(ABCDA_1B_1C_1D_1\) – куб. Точка \(N\) – середина ребра \(BB_1\) , а точка \(M\) – середина отрезка \(BD\) . Найдите \(\mathrm{tg}^2\, \alpha\) , где \(\alpha\) – угол между прямой, содержащей \(MN\) , и плоскостью \((A_1B_1C_1D_1)\) . Ответ дайте в градусах.


\(NM\) – средняя линия в треугольнике \(DBB_1\) , тогда \(NM \parallel B_1D\) и \(\alpha\) равен углу между \(B_1D\) и плоскостью \((A_1B_1C_1D_1)\) .

Так как \(DD_1\) – перпендикуляр к плоскости \(A_1B_1C_1D_1\) , то \(B_1D_1\) проекция \(B_1D\) на плоскость \((A_1B_1C_1D_1)\) и угол между \(B_1D\) и плоскостью \((A_1B_1C_1D_1)\) есть угол между \(B_1D\) и \(B_1D_1\) .

Пусть ребро куба \(x\) , тогда по теореме Пифагора \ В треугольнике \(B_1D_1D\) тангенс угла между \(B_1D\) и \(B_1D_1\) равен \(\mathrm{tg}\,\angle DB_1D_1=\dfrac{DD_1}{B_1D_1} = \dfrac{1}{\sqrt{2}}=\mathrm{tg}\,\alpha\) , откуда \(\mathrm{tg}^2\, \alpha = \dfrac{1}{2}\) .

Ответ: 0,5

Задание 5 #2906

Уровень задания: Сложнее ЕГЭ

\(ABCDA_1B_1C_1D_1\) – куб. Точка \(N\) – середина ребра \(BB_1\) , а точка \(M\) делит отрезок \(BD\) в отношении \(1:2\) , считая от вершины \(B\) . Найдите \(9\mathrm{ctg}^2\, \alpha\) , где \(\alpha\) – угол между прямой, содержащей \(MN\) , и плоскостью \((ABC)\) . Ответ дайте в градусах.


Так как \(NB\) – часть \(BB_1\) , а \(BB_1\perp (ABC)\) , то и \(NB\perp (ABC)\) . Следовательно, \(BM\) – проекция \(NM\) на плоскость \((ABC)\) . Значит, угол \(\alpha\) равен \(\angle NMB\) .

Пусть ребро куба равно \(x\) . Тогда \(NB=0,5x\) . По теореме Пифагора \(BD=\sqrt{x^2+x^2}=\sqrt2x\) . Так как по условию \(BM:MD=1:2\) , то \(BM=\frac13BD\) , следовательно, \(BM=\frac{\sqrt2}3x\) .

Тогда из прямоугольного \(\triangle NBM\) : \[\mathrm{ctg}\,\alpha=\mathrm{ctg}\,\angle NMB=\dfrac{BM}{NB}=\dfrac{2\sqrt2}3 \quad\Rightarrow\quad 9\mathrm{ctg}^2\,\alpha=8.\]

Ответ: 8

Задание 6 #2907

Уровень задания: Сложнее ЕГЭ

Чему равен \(\mathrm{ctg^2}\,\alpha\) , если \(\alpha\) – угол наклона диагонали куба к одной из его граней?


Искомый угол будет совпадать с углом между диагональю куба и диагональю любой его грани, т.к. в данном случае диагональ куба будет являться наклонной, диагональ грани – проекцией этой наклонной на плоскость грани. Таким образом, искомый угол будет равен, например, углу \(C_1AC\) . Eсли обозначить ребро куба за \(x\) , то \(AC=\sqrt{x^2+x^2}=\sqrt2 x\) , тогда квадрат котангенса искомого угла: \[\mathrm{ctg^2}\,\alpha =(AC:CC_1)^2= (\sqrt2 x:x)^2 = 2.\]

Ответ: 2

Задание 7 #2849

Уровень задания: Сложнее ЕГЭ

\(\angle BAH=\angle CAH=30^\circ\) .
По теореме Пифагора \ Следовательно, \[\cos 30^\circ=\dfrac{AB}{AH}\quad\Rightarrow\quad AH=\dfrac{AB}{\cos 30^\circ}=2.\] Так как \(OH\perp (ABC)\) , то \(OH\) перпендикулярно любой прямой из этой плоскости, значит, \(\triangle OAH\) – прямоугольный. Тогда \[\cos \angle OAH=\dfrac{AH}{AO}=\dfrac25=0,4.\]

Ответ: 0,4

Учащимся старших классов на этапе подготовки к ЕГЭ по математике будет полезно научиться справляться с заданиями из раздела «Геометрия в пространстве», в которых требуется найти угол между прямой и плоскостью. Опыт прошлых лет показывает, что подобные задачи вызывают у выпускников определенные сложности. При этом знать базовую теорию и понимать, как найти угол между прямой и плоскостью, должны старшеклассники с любым уровнем подготовки. Только в этом случае они смогут рассчитывать на получение достойных баллов.

Основные нюансы

Как и другие стереометрические задачи ЕГЭ, задания, в которых требуется найти углы и расстояния между прямыми и плоскостями, могут быть решены двумя методами: геометрическим и алгебраическим. Учащиеся могут выбрать наиболее удобный для себя вариант. Согласно геометрическому методу, необходимо найти на прямой подходящую точку, опустить из нее перпендикуляр на плоскость и построить проекцию. После этого выпускнику останется применить базовые теоретические знания и решить планиметрическую задачу на вычисление угла. Алгебраический метод предполагает введение системы координат для нахождения искомой величины. Необходимо определить координаты двух точек на прямой, правильно составить уравнение плоскости и решить его.

Эффективная подготовка вместе со «Школково»

Чтобы занятия проходили легко и даже сложные задания не вызывали затруднений, выбирайте наш образовательный портал. Здесь представлен весь необходимый материал для успешной сдачи аттестационного испытания. Нужную базовую информацию вы найдете в разделе «Теоретическая справка». А для того чтобы попрактиковаться в выполнении заданий, достаточно перейти в «Каталог» на нашем математическом портале. В этом разделе собрана большая подборка упражнений разной степени сложности. В «Каталоге» регулярно появляются новые задания.

Выполнять задачи на нахождение угла между прямой и плоскостью или на , российские школьники могут в режиме онлайн, находясь в Москве или другом городе. По желанию учащегося любое упражнение можно сохранить в «Избранное». Это позволит при необходимости быстро его найти и обсудить ход его решения с преподавателем.

Углом между наклонной и плоскостью называется угол между наклонной и её проекцией на эту плоскость. Если прямая параллельна плоскости или лежит в ней, то угол между прямой и плоскостью считается нулевым. Если прямая перпендикулярна плоскости, то угол между ними по определению считается равным `90^@`. Если вектор `vecn(a;b;c)` перпендикулярен плоскости `alpha`, то угол `varphi` между этой плоскостью и прямой `a`, проходящей через точки `A` и `B`, определяется из равенства

`sinvarphi=|cos(vecn,vec(AB))|=|(vecn*vec(AB))/(|vecn|*|vec(AB)|)|`.

Пусть ребро куба имеет длину`a`. Введём прямоугольную систему координат с началом в точке `D` и базисом `{vece_1,vece_2,vece_3}`, где векторы `vece_1,vece_2,vece_3` имеют единичные длины и сонаправлены с векторами `vec(DA)`, `vec(DC)`, `vec(D D_1)` (см. рис. 12). В этой системе координат вершины куба имеют координаты: `A(a,0,0)`, `B(a,a,0)`, `C(0,a,0)`, `D(0,0,0)`, `A_1(a,0,a)`, `B_1(a,a,a)`, `C_1(0,a,a)`, `D_1(0,0,a)`.

Направляющий вектор прямой `BD_1` - вектор `vec(BD_1)=(-a,-a,a)`.

Составим уравнение плоскости `BC_1D`. Пусть оно имеет вид `a_1x+b_1y+c_1z+d_1=0`. Эта плоскость проходит через три точки: `(0, 0, 0)`, `(a , a , 0)` и `(0, a,a)`, подставляем координаты этих точек в уравнение плоскости и получаем систему уравнений:

d 1 = 0 , a · a 1 + a · b 1 + d 1 = 0 , a · b 1 + a · c 1 + d 1 = 0 . \left\{\begin{array}{l}d_1=0,\\a\cdot a_1+a\cdot b_1+d_1=0,\\a\cdot b_1+a\cdot c_1+d_1=0.\end{array}\right.

Находим `a_1=-b_1=c_1`, `d_1=0`. Тогда уравнение этой плоскости будет `x-y+z=0`, `vecn=(1,-1,1)`.

Искомый угол равен

`sinvarphi=((1*(-a)+(-1)*(-a)+1*a))/(asqrt(1^2+(-1)^2+1^2))=a/(3a)=1/3`,

т. е. `varphi=arcsin 1/3`.

При геометрическом способе нахождения угла между наклонной `a` и плоскостью `alpha`, пересекающей эту наклонную в некоторой точке `O`, выбирают какую-нибудь точку `A` прямой `a` и опускают из неё перпендикуляр `A A^"` на плоскость `alpha`. Угол `AOA^"` будет искомым углом между прямой `a` и плоскостью `alpha`. Для его нахождения можно использовать значения тригонометрических функций острых углов прямоугольного треугольника `AOA^"` или теорему косинусов.

Задача 11

В правильной шестиугольной призме `A...F_1`, все рёбра которой равны `1`, найти угол между прямой `CD_1` и плоскостью `AB B_1`.

Пусть `O_1` - центр верхнего основания (рис. 13), прямая `O_1H` перпендикулярна `A_1B_1`. Прямая `BO_1` параллельна `CD_1`. Искомый угол `varphi` равен углу `HBO_1`. В прямоугольном треугольнике `HBO_1` имеем `BO_1=sqrt2`, `O_1H=(sqrt3)/2`. Следовательно, `sinvarphi=(sqrt6)/4`.

С помощью векторов угол находится так. Пусть в пространстве заданы плоскость `alpha` с известным базисом `{veca,vecb}`, точка `A`, лежащая в этой плоскости, и точка `M` вне её, причём вектор `vec(AM)=vecr` предполагается известным (в том же базисе). Пусть `N` - ортогональная проекция точки `M` на плоскость `alpha` (рис. 14). Задача заключается в нахождении угла `MAN`. Представим вектор `vec(MN)` в виде разности векторов `vec(AN)` и `vec(AM)`, а затем, пользуясь компланарностью векторов `vec(AN)`, `veca` и `vecb`, запишем его в виде `vec(MN)=xveca+yvecb-vecr`, где `x` и `y` - неизвестные пока числа. Эти числа можно найти из условия перпендикулярности вектора `vec(MN)` векторам `veca` и `vecb`, т. е. из следующей системы уравнений:

X a → + y b → - r → · a → = 0 , x a → + y b → - r → · b → = 0 . \left\{\begin{array}{l}\left(x\overrightarrow a+y\overrightarrow b-\overrightarrow r\right)\cdot\overrightarrow a=0,\\\left(x\overrightarrow a+y\overrightarrow b-\overrightarrow r\right)\cdot\overrightarrow b=0.\end{array}\right.

Если `vec(AN)=vec0`, то, очевидно, прямая `AM` перпендикулярна плоскости `alpha`, иначе `cos/_(AM,alpha)=cos/_(AM,AN)=(|(xveca+yvecb)*vecr|)/(|xveca+yvecb|*|vecr|)`.

Задача 12

В кубе `A...D_1` найти угол между прямой `BD_1` и плоскостью `BC_1D`.

Пусть длина ребра куба равна `a`. Введём базис `veca=vec(DA)`, `vecb=vec(DC)`, `vecc=vec(D D_1` (рис. 15). Обозначим через `D_2` - ортогональную проекцию точки `D_1` н а плоскость `BC_1D` . Тогда `vec(D_1D_2)=x(veca+vecb)+y(vecb+vecc)+veca+vecb-vecc`.

Составим систему уравнений для нахождения неизвестных чисел `x` и `y`: x a → + b → + y b → + c → + a → + b → - c → a → + b → = 0 , x a → + b → + y b → + c → + a → + b → - c → b → + c → = 0 . \left\{\begin{array}{l}\left(x\left(\overrightarrow a+\overrightarrow b\right)+y\left(\overrightarrow b+\overrightarrow c\right)+\overrightarrow a+\overrightarrow b-\overrightarrow c\right)\left(\overrightarrow a+\overrightarrow b\right)=0,\\\left(x\left(\overrightarrow a+\overrightarrow b\right)+y\left(\overrightarrow b+\overrightarrow c\right)+\overrightarrow a+\overrightarrow b-\overrightarrow c\right)\left(\overrightarrow b+\overrightarrow c\right)=0.\end{array}\right.

Приведём эту систему к равносильной:

2 x + y + 2 = 0 , x + 2 y = 0 . \left\{\begin{array}{l}2x+y+2=0,\\x+2y=0.\end{array}\right.

Отсюда находим `x=-4/3`, `y=2/3`. Теперь найдём косинус искомого угла

`cosvarphi=(|vec(D_1B)*vec(BD_2)|)/(|vec(D_1B)|*|vec(BD_2)|)=(|(veca+vecb-vecc)(-4/3veca-2/3vecb+2/3vecc)|)/(sqrt((veca+vecb-vecc)^2)*sqrt((-4/3veca-2/3vecb+2/3vecc)^2))=`

`=(8/3 a^2)/(asqrt3*(2sqrt2)/(sqrt3)a)=(2sqrt2)/3`.

Следовательно, `/_(BD_1,BC_1D)=arccos (2sqrt2)/3`.

Статья начинается с определение угла между прямой и плоскостью. В данной статье будет показано нахождение угла между прямой и плоскостью методом координат. Подробно будут рассмотрены решение примеров и задач.

Yandex.RTB R-A-339285-1

Предварительно необходимо повторить понятие о прямой линии в пространстве и понятие плоскости. Для определения угла между прямой и плоскостью необходимый несколько вспомогательных определений. Рассмотрим эти определения подробно.

Определение 1

Прямая и плоскость пересекаются в том случае, когда они имеют одну общую точку, то есть она является точкой пересечения прямой и плоскости.

Прямая, пересекающая плоскость, может являться перпендикулярной относительно плоскости.

Определение 2

Прямая является перпендикулярной к плоскости , когда она перпендикулярна любой прямой, находящейся в этой плоскости.

Определение 3

Проекция точки M на плоскость γ является сама точка, если она лежит в заданной плоскости, либо является точкой пересечения плоскости с прямой, перпендикулярной плоскости γ , проходящей через точку M , при условии, что она не принадлежит плоскости γ .

Определение 4

Проекция прямой а на плоскость γ - это множество проекций всех точек заданной прямой на плоскость.

Отсюда получаем, что перпендикулярная к плоскости γ проекция прямой имеет точку пересечения. Получаем, что проекция прямой a – это прямая, принадлежащая плоскости γ и проходящая через точку пересечения прямой a и плоскости. Рассмотрим на рисунке, приведенном ниже.

На данный момент имеем все необходимые сведения и данные для формулировки определения угла между прямой и плоскостью

Определение 5

Углом между прямой и плоскостью называют угол между этой прямой и ее проекцией на эту плоскость, причем прямая не перпендикулярна к ней.

Определение угла, приведенное выше, помогает прийти к выводу о том, что угол между прямой и плоскостью представляет собой угол между двумя пересекающимися прямыми, то есть заданной прямой вместе с ее проекцией на плоскость. Значит, угол между ними всегда будет острым. Рассмотрим на картинке, приведенной ниже.

Угол, расположенный между прямой и плоскостью, считается прямым, то есть равным 90 градусов, а угол, расположенный между параллельными прямыми, не определяется. Бывают случаи, когда его значение берется равным нулю.

Задачи, где необходимо найти угол между прямой и плоскостью, имеет множество вариация решения. Ход самого решения зависит от имеющихся данных по условию. Частыми спутниками решения являются признаки подобия или равенства фигур, косинусы, синусы, тангенсы углов. Нахождение угла возможно при помощи метода координат. Рассмотрим его более детально.

Если в трехмерном пространстве вводится прямоугольная система координат О х у z , тогда в ней задается прямая a , пересекающая плоскость γ в точке M , причем она не перпендикулярна плоскости. Необходимо найти угол α , находящийся между заданной прямой и плоскостью.

Для начала необходимо применить определение угла между прямой и плоскостью методом координат. Тогда получим следующее.

В системе координат О х у z задается прямая a , которой соответствуют уравнения прямой в пространстве и направляющий вектор прямой пространства, для плоскости γ соответствует уравнение плоскости и нормальный вектор плоскости. Тогда a → = (a x , a y , a z) является направляющим вектором заданной прямой a , а n → (n x , n y , n z) - нормальным вектором для плоскости γ . Если представить, что у нас имеются координаты направляющего вектора прямой a и нормального вектора плоскости γ , тогда известны их уравнения, то есть заданы по условию, тогда есть возможность определения векторов a → и n → , исходя из уравнения.

Для вычисления угла необходимо преобразовать формулу, позволяющую получить значение этого угла при помощи имеющихся координат направляющего вектора прямой и нормального вектора.

Необходимо отложить векторы a → и n → , начиная от точки пересечения прямой a с плоскостью γ . Существуют 4 варианта расположения этих векторов относительно заданных прямых и плоскости. Рассмотри рисунок, приведенный ниже, на котором имеются все 4 вариации.

Отсюда получаем, что угол между векторами a → и n → имеет обозначение a → , n → ^ и является острым, тогда искомый угол α , располагающийся между прямой и плоскостью, дополняется, то есть получаем выражение вида a → , n → ^ = 90 ° - α . Когда по условию a → , n → ^ > 90 ° , тогда имеем a → , n → ^ = 90 ° + α .

Отсюда имеем, что косинусы равных углов являются равными, тогда последние равенства записываются в виде системы

cos a → , n → ^ = cos 90 ° - α , a → , n → ^ < 90 ° cos a → , n → ^ = cos 90 ° + α , a → , n → ^ > 90 °

Необходимо использовать формулы приведения для упрощения выражений. Тогда получим равенства вида cos a → , n → ^ = sin α , a → , n → ^ < 90 ° cos a → , n → ^ = - s i n α , a → , n → ^ > 90 ° .

Проведя преобразования, система приобретает вид sin α = cos a → , n → ^ , a → , n → ^ < 90 ° sin α = - cos a → , n → ^ , a → , n → ^ > 90 ° ⇔ sin α = cos a → , n → ^ , a → , n → ^ > 0 sin α = - cos a → , n → ^ , a → , n → ^ < 0 ⇔ ⇔ sin α = cos a → , n → ^

Отсюда получим, что синус угла между прямой и плоскостью равен модулю косинуса угла между направляющим вектором прямой и нормальным вектором заданной плоскости.

Раздел нахождения угла, образованного двумя векторами, выявили, что этот угол принимает значение скалярного произведения векторов и произведения этих длин. Процесс вычисления синуса угла, полученного пересечением прямой и плоскости, выполняется по формуле

sin α = cos a → , n → ^ = a → , n → ^ a → · n → = a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2

Значит, формулой для вычисления угла между прямой и плоскостью с координатами направляющего вектора прямой и нормального вектора плоскости после преобразования получается вида

α = a r c sin a → , n → ^ a → · n → = a r c sin a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2

Нахождение косинуса при известном синусе позволительно, применив основное тригонометрическое тождество. Пересечение прямой и плоскости образует острый угол. Это говорит о том, что его значение будет являться положительным числом, а его вычисление производится из формулы cos α = 1 - sin α .

Выполним решение нескольких подобных примеров для закрепления материала.

Пример 1

Найти угол, синус, косинус угла, образованного прямой x 3 = y + 1 - 2 = z - 11 6 и плоскостью 2 x + z - 1 = 0 .

Решение

Для получения координат направляющего вектора необходимо рассмотреть канонические уравнения прямой в пространстве. Тогда получим, что a → = (3 , - 2 , 6) является направляющим вектором прямой x 3 = y + 1 - 2 = z - 11 6 .

Для нахождения координат нормального вектора необходимо рассмотреть общее уравнение плоскости, так как их наличие определяется коэффициентами, имеющимися перед переменными уравнения. Тогда получим, что для плоскости 2 x + z - 1 = 0 нормальный вектор имеет вид n → = (2 , 0 , 1) .

Необходимо перейти к вычислению синуса угла между прямой и плоскостью. Для этого необходимо произвести подстановку координат векторов a → и b → в заданную формулу. Получаем выражение вида

sin α = cos a → , n → ^ = a → , n → ^ a → · n → = a x · n x + a y · n y + a z · n z a x 2 + a y 2 + a z 2 · n x 2 + n y 2 + n z 2 = = 3 · 2 + (- 2) · 0 + 6 · 1 3 2 + (- 2) 2 + 6 2 · 2 2 + 0 2 + 1 2 = 12 7 5

Отсюда найдем значение косинуса и значение самого угла. Получим:

cos α = 1 - sin α = 1 - 12 7 5 2 = 101 7 5

Ответ: sin α = 12 7 5 , cos α = 101 7 5 , α = a r c cos 101 7 5 = a r c sin 12 7 5 .

Пример 2

Имеется пирамида, построенная при помощи значений векторов A B → = 1 , 0 , 2 , A C → = (- 1 , 3 , 0) , A D → = 4 , 1 , 1 . Найти угол между прямой A D и плоскостью А В С.

Решение

Для вычисления искомого угла, необходимо иметь значения координат направляющего вектора прямой и нормального вектора плоскости. для прямой A D направляющий вектор имеет координаты A D → = 4 , 1 , 1 .

Нормальный вектор n → , принадлежащий плоскости А В С, является перпендикулярным вектору A B → и A C → . Это подразумевает то, что нормальным вектором плоскости А В С можно считать векторное произведение векторов A B → и A C → . Вычислим это по формуле и получим:

n → = A B → × A C → = i → j → k → 1 0 2 - 1 3 0 = - 6 · i → - 2 · j → + 3 · k → ⇔ n → = (- 6 , - 2 , 3)

Необходимо произвести подстановку координат векторов для вычисления искомого угла, образованного пересечением прямой и плоскости. получим выражение вида:

α = a r c sin A D → , n → ^ A D → · n → = a r c sin 4 · - 6 + 1 · - 2 + 1 · 3 4 2 + 1 2 + 1 2 · - 6 2 + - 2 2 + 3 2 = a r c sin 23 21 2

Ответ: a r c sin 23 21 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Давайте повторим определение угла между прямой и плоскостью.

Определение. Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней , называется угол между прямой и ее проекцией на плоскость.

Пусть даны плоскость γ и прямая a, которая пересекает эту плоскость и не перпендикулярна к ней.

Построим угол между прямой a и плоскостью γ:

  1. Из любой удобной для нас точки прямой a опустим перпендикуляр к плоскости γ;
  2. Через точки оснований наклонной и перпендикуляра проведем прямую b . Прямая b - проекция прямой a на плоскость γ;
  3. Острый угол между прямыми a и b – это угол между прямой a и плоскостью γ, т.е. ∠(a;b)= ∠(a;γ) , где ∠(a;b) - угол между прямыми а и b; ∠(a;γ) - угол между прямой а и плоскостью γ.

Для решения задач с помощью метода координат нам необходимо вспомнить следующее:

3. Если известны координаты направляющего вектора { a 1 ; b 1 ; c 1 } и вектора нормали
{a; b; c}, то угол между прямой а и плоскостью γ вычисляется по формуле, которую сейчас выведем.

Нам известна формула нахождения угла между прямыми:

; (1)
∠(s; a) = 90°-∠(a;b), тогда cos∠(s;a) =cos (90°-∠(a;b))=sin ∠(a;b) ; (2)
Из (1) и (2) => ; (3)
, где – угол между векторами m и n; (4)
Подставляем (4) в (3) и т.к. ∠(a;b)= ∠(a;γ), то получаем:

4. Если координаты вектора нормали неизвестны, то нам необходимо знать уравнение плоскости.

Любая плоскость в прямоугольной системе координат может быть задана уравнением

ax + by + cz + d = 0,

где хотя бы один из коэффициентов a, b, c отличен от нуля. Эти коэффициенты и будут координатами вектора нормали, т.е. {a; b; c}.

Алгоритм решения задач на нахождение угла между прямой и плоскостью с помощью метода координат:

  1. Делаем рисунок, на котором отмечаем прямую и плоскость;
  2. Вводим прямоугольную систему координат;
  3. Находим координаты направляющего вектора по координатам его начала и конца;
  4. Находим координаты вектора нормали к плоскости;
  5. Подставляем полученные данные в формулу синуса угла между прямой и плоскостью;
  6. Находим значение самого угла.

Рассмотрим задачу:
1. В кубе ABCDA 1 B 1 C 1 D 1 найдите тангенс угла между прямой AC 1 и плоскостью BDD 1 .
Решение:


1. Введем прямоугольную систему координат с началом координат в точке D.
2. Найдем координаты направляющего вектора АС 1 . Для этого сначала определим координаты точек А и С 1:
А(0; 1; 0);
С 1 (1; 0; 1).
{1; -1; 1}.
3. Найдем координаты вектора нормали к плоскости BB 1 D 1 . Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости:
D(0; 0; 0);
D 1 (0; 0; 1);
В(1; 1; 0);
D: a⋅0+b⋅0+c⋅0+d=0;
D 1: a⋅0+b⋅0+c⋅1+d=0;
B: a⋅1+b⋅1+c⋅0+d=0.

Подставим в уравнение: a⋅x+(-a)⋅y+0⋅z+0 = 0;
a⋅x-a⋅y = 0; |:a
x-y = 0.
Т.о., вектор нормали к плоскости BDD 1 имеет координаты:
{1;-1; 0}.
4. Найдем синус между прямой АС 1 и плоскостью BDD 1:

5. Воспользуемся основным тригонометрическим тождеством и найдем косинус угла между прямой АС 1 и плоскостью BDD 1:

6. Найдем тангенс угла между прямой АС 1 и плоскостью BDD 1:

Ответ: .

2. В правильной четырехугольной пирамиде SABCD, все ребра которой равны 1, найдите синус угла между прямой BD и плоскостью SBC.

Решение:

1. Введем прямоугольную систему координат с началом координат в точке B.
2. Найдем координаты направляющего вектора BD . Для этого сначала определим координаты точек B и D:


3. Найдем координаты вектора нормали к плоскости SBC. Для этого найдем координаты трех точек плоскости, не лежащих на одной прямой, и составим уравнение плоскости SBC:

Как получили координаты точки S ?

Из точки S опустили перпендикуляр к плоскости основания ABC. Точку пересечения обозначили О. Точка О - проекция точки S на плоскость ABC. Ее координаты по осям х и у будут первыми двумя координатами точки S.

Узнав значение высоты пирамиды, мы нашли третью координату точки S (по оси z)

Треугольник SOB - прямоугольный, следовательно, по теореме Пифагора:



Уравнение плоскости имеет вид ax+by+cz+d=0. Подставим в это уравнение координаты точек:

Получили систему из трех уравнений:


Подставим в уравнение:

Т.о., вектор нормали к плоскости SBD имеет координаты:

.
4. Найдем синус между прямой BD и плоскостью SBD.

Тип задания: 14

Условие

На рёбрах AD и BD правильного тетраэдра DABC взяты точки M и K соответственно так, что MD:AM=BK:KD=2.

а) Пусть L — точка пересечения прямой KM с плоскостью ABC . Докажите, что AB:AL=3.

б) Найдите угол между прямой KM и плоскостью ABC .

Показать решение

Решение

а) План решения.

1. Выполним схематический чертёж.

2. Сделаем предположение, что MK \perp BD, и докажем это утверждение (например, методом «от противного»).

3. Обозначим ребро тетраэдра какой-нибудь буквой (например, a ) и через неё выразим другие величины.

4. Рассмотрим треугольник AML , найдём его углы. Из равенства \angle AML=\angle ALM сделаем вывод о том, что треугольник равнобедренный: AL=AM.

5. Найдём отношение AB:AL.

Решение.

1. Так как MK и AB лежат в плоскости ABD , то они пересекутся, L — точка их пересечения.

2. В \triangle MDK,\, \angle MDK=60^{\circ}, MD=2DK, значит, MK \perp BD. Действительно, допустим, что это не так. Тогда опустим перпендикуляр MK", MK" \perp BD. В прямоугольном треугольнике MK"D по определению косинуса \frac{K"D}{MD}=\cos \angle MDK", K"D=MD \cos 60^{\circ}=\frac12MD. Но тогда точки K и K" совпадают. Получили противоречие. Значит, MK \perp BD.

3. Обозначим AB=AD=a, тогда MD =\frac23a, DK =\frac13a, AM=\frac13a.

4. \angle DMK=30^{\circ}. Следовательно, \angle AML=30^{\circ} (по свойству вертикальных углов). Так как \angle MLA= 180^{\circ}-\angle MAL-\angle AML= 180^{\circ}-120^{\circ}-30^{\circ}= 30^{\circ}, то \triangle AML — равнобедренный и AL=AM=\frac13a.

5. Тогда AB:AL=a:\frac13a=3.

Замечание. Вместо рассуждений, проведённых в пункте 4 , можно было рассмотреть прямоугольный треугольник LBK и воспользоваться свойством катета, лежащего против угла в 30^{\circ}.

б) План решения.

1. Угол между прямой и плоскостью — это угол между прямой и её проекцией на плоскость. Построим проекцию отрезка KL на плоскость ABC . Для этого опустим перпендикуляр KH, KH \perp ABC, точка H лежит в плоскости ABC . HL — проекция KL .

2. Найдём \sin \angle KLH (из треугольника KHL ) и по синусу угла определим угол. Для этого выполним следующие действия.

2.1. Пусть O — центр основания ABC тетраэдра. Из подобия треугольников KHB и DOB найдём KH (для этого найдём DO ).

2.2. Из треугольника BKL найдём KL .

2.3. Из треугольника KHL найдём \sin \angle KLH и \angle KLH.

Решение.

1. Искомый угол равен углу KLH .

2. Найдём \sin \angle KLH =\frac{KH}{KL}

2.1. \triangle KHB \sim \triangle DOB. Следовательно,

KH= \frac23DO= \frac23\sqrt {BD^2-BO^2}= \frac23\sqrt{BD^2-\left(\frac23BF\right)^2}= \frac23\sqrt {a^2-\left(\frac23\cdot \left(\frac{a\sqrt 3}2\right) \right) ^2}= \frac{2\sqrt 2}{3\sqrt 3}\cdot a.

2.2. В прямоугольном треугольнике BKL,\, BL =\frac43a, BK=\frac23a найдём KL=\sqrt {BL^2-BK^2} =\frac{2\sqrt 3}3a.

2.3. \sin \angle KLH =\frac{KH}{KL}=\frac{\sqrt 2}{3}, \angle KLH=arcsin \frac{\sqrt 2}3.

Ответ

arcsin \frac{\sqrt 2}3.

Источник: «Математика. Подготовка к ЕГЭ-2017. Профильный уровень». Под ред. Ф. Ф. Лысенко, С. Ю. Кулабухова.

Тип задания: 14
Тема: Угол между прямой и плоскостью

Условие

Основанием четырехугольной пирамиды SABCD является прямоугольник со сторонами AB=12,BC=5 . Боковые ребра SA= 3\sqrt{3},SB= \sqrt{171}, SD = 2\sqrt{13}.

а) Докажите, что SA — высота пирамиды.

б) Найдите угол между SC и BD .

Показать решение

Решение

а) Заметим, что треугольник SAB является прямоугольным, так как в нем SB^2=171=27+144=SA^2+AB^2. Аналогично треугольник SAD тоже является прямоугольным, поскольку SD^2=52=27+25=SA^2+AD^2. Получаем, что прямая SA перпендикулярна прямым AB и AD , а значит, перпендикулярна плоскости основания ABCD .

б) Отложим на прямой AD за точку D отрезок DE , равный отрезку AD . Тогда в четырехугольнике BCED стороны BC и DE равны и параллельны. Следовательно, BCED является параллелограммом, поэтому BD\parallel CE , и угол между SC и BD будет равен углу между SC и CE .

По теореме Пифагора BD^2=AB^2+AD^2=144+25=169,

SC^2= SA^2+AC^2= SA^2+BD^2= 27+169= 196 ,

SE^2=SA^2+AE^2=27+100=127.

Значит, BD=CE=13, SC=14, SE=\sqrt{127}.

Пусть \angle SCE=\alpha. По теореме косинусов для треугольника SCE имеем: SE^2=SC^2+CE^2-2SC\cdot CE\cdot \cos \alpha,

\cos \alpha= \frac{SC^2+CE^2-SE^2}{2SC\cdot CE}= \frac{196+169-127}{2\cdot 13\cdot 14}= \frac{119}{182} .

Откуда \alpha=\arccos\frac{119}{182}.