Как держать форму. Массаж. Здоровье. Уход за волосами

Формула для расчета силы инерции. Техническая механика

Инертность - способность сохранять свое состояние неизмен­ным, это внутреннее свойство всех материальных тел.

Сила инерции - сила, возникающая при разгоне или торможе­нии тела (материальной точки) и направленная в обратную сторо­ну от ускорения. Силу инерции можно измерить, она приложена к «связям» - телам, связанным с разгоняющимся или тормозящимся телом.

Рассчитано, что сила инерции равна

F ин = | m*a|

Таким образом, силы, действующие на материальные точки m 1 и m 2 (рис. 14.1), при разгоне платформы соответственно равны

F ин1 = m 1 *a ; F ин2 = m 2 *a

Разгоняющееся тело (плат­форма с массой т (рис. 14.1)) силу инерции не воспринимает, иначе разгон платформы вооб­ще был бы невозможен.

При вращательном движении (криволинейном) возникающее ускорение принято представлять в виде двух составляющих: нормального а п и касательного а t (рис. 14.2).

Поэтому при рассмотрении кри­волинейного движения могут воз­никнуть две составляющие силы инерции: нормальная и касательная

a = a t + a n ;

При равномерном движении по дуге всегда возникает нормаль­ное ускорение, касательное ускорение равно нулю, поэтому действует только нормальная составляющая силы инерции, направленная по радиусу из центра дуги (рис. 14.3).

Принцип кинетостатики (принцип Даламбера)

Принцип кинетостатики используют для упрощения решения ряда технических задач.

Реально силы инерции приложены к телам, связанным с разго­няющимся телом (к связям).

Даламбер предложил условно прикладывать силу инерции к ак­тивно разгоняющемуся телу. Тогда система сил, приложенных к ма­териальной точке, становится уравновешенной, и можно при реше­нии задач динамики использовать уравнения статики.

Принцип Даламбера:

Материальная точка под действием активных сил, реакций связей и условно приложенной силы инерции находится в равновесии;

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механика

Теоретическая механика.. лекция.. тема основные понятия и аксиомы статики..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Задачи теоретической механики
Теоретическая механика - наука о механическом движении материальных твердых тел и их взаимодействии. Механическое дви­жение понимается как перемещение тела в пространстве и во време­ни по от

Третья аксиома
Не нарушая механического состояния тела, можно добавить или убрать уравновешенную систему сил (принцип отбрасывания систе­мы сил, эквивалентной нулю) (рис. 1.3). Р,=Р2 Р,=Р.

Следствие из второй и третьей аксиом
Силу, действующую на твер­дое тело, можно перемещать вдоль линии ее действия (рис. 1.6).

Связи и реакции связей
Все законы и теоремы статики справедливы для свободного твердого тела. Все тела делятся на свободные и связанные. Свободные тела - тела, перемещение которых не ограничено.

Жесткий стержень
На схемах стержни изображают толсто сплошной линией (рис. 1.9). Стержень може

Неподвижный шарнир
Точка крепления пере­мещаться не может. Стер­жень может свободно повора­чиваться вокруг оси шарни­ра. Реакция такой опоры про­ходит через ось шарнира, но

Плоская система сходящихся сил
Система сил, линии действия которых пе­ресекаются в одной точке, называется сходя­щейся (рис. 2.1).

Равнодействующая сходящихся сил
Равнодействующую двух пересекающихся сил можно опреде­лить с помощью параллелограмма или треугольника сил (4-я ак­сиома) (вис. 2.2).

Условие равновесия плоской системы сходящихся сил
При равновесии системы сил равнодействующая должна быть равна нулю, следовательно, при геометрическом построении конец последнего вектора должен совпасть с началом первого. Если

Решение задач на равновесие геометрическим способом
Геометрическим способом удобно пользоваться, если в системе три силы. При решении задач на равновесие тело считать абсолютно твердым (отвердевшим). Порядок решения задач:

Решение
1. Усилия, возникающие в стержнях крепления, по величине равны силам, с которыми стержни поддерживают груз (5-я аксиома статики) (рис. 2.5а). Определяем возможные направления реакций связе

Проекция силы на ось
Проекция силы на ось определяется отрезком оси, отсекаемым перпендикулярами, опущенными на ось из начала и конца вектора (рис. 3.1).

Сил аналитическим способом
Величина равнодействующей равна векторной (геометрической) сумме векторов системы сил. Определяем равнодействующую геоме­трическим способом. Выберем систему координат, определим про­екции всех зада

Сходящихся сил в аналитической форме
Исходя из того, что равнодействующая равна нулю, получим: Усл

Пара сил, момент пары сил
Парой сил называется система двух сил, равных по модулю, параллельных и направлен­ных в разные стороны. Рассмотрим систему сил (Р; Б"), образую­щих пару.

Момент силы относительно точки
Сила, не проходящая через точку крепления тела, вызывает вра­щение тела относительно точки, поэтому действие такой силы на тело оценивается моментом. Момент силы отн

Теорема Пуансо о параллельном переносе сил
Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Расположенных сил
Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произ­вольно вы

Влияние точки приведения
Точка приведения выбрана произвольно. При изменении поло­жения точки приведения величина главного вектора не изменится. Величина главного момента при переносе точки приведения из­менится,

Плоской системы сил
1. При равновесии главный вектор системы равен нулю. Аналитическое определение главного вектора приводит к выводу:

Виды нагрузок
По способу приложения нагрузки делятся на сосредоточенные и распределенные. Если реально передача нагрузки происходит на пренебрежимо малой площадке (в точке), нагрузку называют сосре­доточенной

Момент силы относительно оси
Момент силы относительно оси равен моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью (рис. 7.1 а). MOO

Вектор в пространстве
В пространстве вектор силы проецируется на три взаимно пер­пендикулярные оси координат. Проекции вектора образуют ребра прямоугольного параллелепипеда, век­тор силы совпадает с диагональю (рис. 7.2

Пространственная сходящаяся система сил
Пространственная сходящаяся система сил - система сил, не лежащих в одной плоскости, линии действия которых пересе­каются в одной точке. Равнодействующую пространственной системы си

Приведение произвольной пространственной системы сил к центру О
Дана пространственная система сил (рис. 7.5а). Приведем ее к центру О. Силы необходимо параллельно перемещать, при этом образует­ся система пар сил. Момент каждой из этих пар равен

Центр тяжести однородных плоских тел
(плоских фигур) Очень часто приходится определять центр тяжести различных плоских тел и геометрических плоских фигур сложной формы. Для плоских тел можно записать: V =

Определение координат центра тяжести плоских фигур
Примечание. Центр тяжести симметричной фигуры находится на оси симметрии. Центр тяжести стержня находится на середине высоты. Поло­жения центров тяжести простых геометрических фигур могут

Кинематика точки
Иметь представление о пространстве, времени, траектории, пути, скорости и ускорении.Знать способы задания движения точки (естественный и координатный). Знать обозначения, едини

Пройденный путь
Путь измеряется вдоль траектории в направлении движения. Обозначение - S, единицы измерения - метры. Уравнение движения точки: Уравнение, определяющ

Скорость движения
Векторная величина, характеризующая в данный момент бы­строту и направление движения по траектории, называется скоро­стью. Скорость - вектор, в любой момент направленный по к

Ускорение точки
Векторная величина, характеризующая быстроту изменения скорости по величине и направлению, называется ускорением точки. Скорость точки при перемещении из точки М1

Равномерное движение
Равномерное движение - это движение с постоянной скоро­стью: v = const. Для прямолинейного равномерного движения (рис. 10.1 а)

Равнопеременное движение
Равнопеременное движение - это движение с постоянным ка­сательным ускорением: at = const. Для прямолинейного равнопеременного движения

Поступательное движение
Поступательным называют такое движение твердого тела, при котором всякая прямая линия на теле при движении остается парал­лельной своему начальному положению (рис. 11.1, 11.2). При

Вращательное движение
При вращательном движении все точки тела описывают окруж­ности вокруг общей неподвижной оси. Неподвижная ось, вокруг которой вращаются все точки тела, называется осью вращения.

Частные случаи вращательного движения
Равномерное вращение (угловая скорость постоянна): ω =const Уравнение (закон) равномерного вращения в данном случае име­ет вид:

Скорости и ускорения точек вращающегося тела
Тело вращается вокруг точки О. Определим параметры дви­жения точки A , расположенной на расстоянии RA от оси вращения (рис. 11.6, 11.7). Путь

Решение
1. Участок 1 - неравномерное ускоренное движение, ω = φ’ ; ε = ω’ 2. Участок 2 - скорость постоянна - движение равномерное, . ω = const 3.

Основные определения
Сложным движением считают движение, которое можно разло­жить на несколько простых. Простыми движениями считают посту­пательное и вращательное. Для рассмотрения сложного движения точ

Плоскопараллельное движение твердого тела
Плоскопараллельным, или плоским, называется такое движение твердого тела, при котором все точки тела перемещаются парал­лельно некоторой неподвижной в рассматриваемой системе отсчета

Поступа­тельное и вращательное
Плоскопараллельное движение раскладывают на два движения: поступательное вместе с некоторым полюсом и вращательное от­носительно этого полюса. Разложение используют для опред

Центра скоростей
Скорость любой точки тела можно определять с помощью мгновенного центра скоростей. При этом сложное движение пред­ставляют в виде цепи вращений вокруг разных центров. Задача

Аксиомы динамики
Законы динамики обобщают результаты многочисленных опытов и наблюдений. Законы динамики, которые принято рассматривать как аксиомы, были сформулированы Ньютоном, но первый и четвертый законы были и

Понятие о трении. Виды трения
Трение - сопротивление, возникающее при движении одного шероховатого тела по поверхности другого. При скольжении тел воз­никает трение скольжения, при качении - трение качения. Природа сопро

Трение качения
Сопротивление при качении связано с взаимной деформацией грунта и колеса и значительно меньше трения скольжения. Обычно считают грунт мягче колеса, тогда в основном дефор­мируется грунт, и

Свободная и несвободная точки
Материальная точка, движение которой в пространстве не огра­ничено какими-нибудь связями, называется свободной. Задачи реша­ются с помощью основного закона динамики. Материальные то

Решение
Активные силы: движущая сила, сила трения, сила тяжести. Ре­акция в опоре R. Прикладываем силу инерции в обратную от ускоре­ния сторону. По принципу Даламбера, система сил, действующих на платформу

Работа равнодействующей силы
Под действием системы сил точка массой т перемещается из положения М1 в положение M 2 (рис. 15.7). В случае движения под действием системы сил пользуютс

Мощность
Для характеристики работоспособности и быстроты соверше­ния работы введено понятие мощности. Мощность - работа, выполненная в единицу времени:

Мощность при вращении
Рис. 16.2 Тело движется по дуге радиуса из точки М1 в точку М2 М1М2 = φr Работа силы

Коэффициент полезного действия
Каждая машина и механизм, совершая работу, тратит часть энергии на преодоление вредных сопротивлений. Таким образом, машина (механизм) кроме полезной работы совершает еще и дополнитель

Теорема об изменении количества движения
Количеством движения материальной точки называется векторная величина, равная произведению массы точки на ее скорость mv. Вектор количества движения совпадает по

Теорема об изменении кинетической энергии
Энергией называется способность тела совершать механиче­скую работу. Существуют две формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия,

Основы динамики системы материальных точек
Совокупность материальных точек, связанных между собой силами взаимодействия, называется механической системой. Любое материальное тело в механике рассматривается как механическая

Основное уравнение динамики вращающегося тела
Пусть твердое тело под действием внешних сил вращается во­круг оси Оz с угловой скоростью

Напряжения
Метод сечений позволяет определить величину внутреннего си­лового фактора в сечении, но не дает возможности установить за­кон распределения внутренних сил по сечению. Для оценки прочно­сти н

Внутренние силовые факторы, напряжения. Построение эпюр
Иметь представление о продольных силах, о нормальных на­пряжениях в поперечных сечениях. Знать правила построения эпюр продольных сил и нормальных напряжений, закон распределения

Продольных сил
Рассмотрим брус, нагруженный внешними силами вдоль оси. Брус закреплен в стене (закрепление «заделка») (рис. 20.2а). Делим брус на участки нагружения. Участком нагружения с

Геометрические характеристики плоских сечений
Иметь представление о физическом смысле и порядке опре­деления осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Статический момент площади сечения
Рассмотрим произвольное сечение (рис. 25.1). Если разбить сечение на бесконечно малые площадки dA и умножить каждую площадку на расстояние до оси координат и проинтегрировать получе

Центробежный момент инерции
Центробежным моментом инерции сечения называется взятая ковсей площади сумма произведений элементарных площадок на обе координаты:

Осевые моменты инерции
Осевым моментом инерции сечения относительно некоторой реи, лежащей в этой же плоскости, называется взятая по всей пло­щади сумма произведений элементарных площадок на квадрат их расстояния

Полярный момент инерции сечения
Полярным моментом инерции сечения относительно некоторой точки (полюса) называется взятая по всей площади сумма произве­дений элементарных площадок на квадрат их расстояния до этой точки:

Моменты инерции простейших сечений
Осевые моменты инерции прямоугольника (рис. 25.2) Представим прямо

Полярный момент инерции круга
Для круга вначале вычисляют поляр­ный момент инерции, затем - осевые. Представим круг в виде совокупности бесконечно тонких колец (рис. 25.3).

Деформации при кручении
Кручение круглого бруса происходит при нагружении его па­рами сил с моментами в плоскостях, перпендикулярных продольной оси. При этом образующие бруса искривляются и разворачиваются на угол γ,

Гипотезы при кручении
1. Выполняется гипотеза плоских сечений: поперечное сечение бруса, плоское и перпен- дикулярное продольной оси, после деформацииостается плоским и перпендикулярным продольной оси.

Внутренние силовые факторы при кручении
Кручением называется нагружение, при котором в поперечном сечении бруса возникает только один внутренний силовой фактор - крутящий момент. Внешними нагрузками также являются две про

Эпюры крутящих моментов
Крутящие моменты могут меняться вдоль оси бруса. После определения величин моментов по сечениям строим график-эпюру крутящих моментов вдоль оси бруса.

Напряжения при кручении
Проводим на поверхности бру­са сетку из продольных и попе­речных линий и рассмотрим рису­нок, образовавшийся на поверхно­сти после Рис. 27.1а деформации (рис. 27.1а). Поп

Максимальные напряжения при кручении
Из формулы для определения напряжений и эпюры распределе­ния касательных напряжений при кручении видно, что максималь­ные напряжения возникают на поверхности. Определим максимальное напряж

Виды расчетов на прочность
Существует два вида расчета на прочность 1. Проектировочный расчет - определяется диаметр бруса (вала) в опасном сечении:

Расчет на жесткость
При расчете на жесткость определяется деформация и сравни­вается с допускаемой. Рассмотрим деформацию круглого бруса над действием внешней пары сил с моментом т (рис. 27.4).

Основные определения
Изгибом называется такой вид нагружения, при котором в по­перечном сечении бруса возникает внутренний силовой фактор -изгибающий момент. Брус, работающий на

Внутренние силовые факторы при изгибе
Пример 1.Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения вну­тренних силовых факторов пользуемся методом с

Изгибающих моментов
Поперечная сила в сече­нии считается положитель­ной, если она стремится раз­вернуть се

Дифференциальные зависимости при прямом поперечном изгибе
Построение эпюр поперечных сил и изгибающих моментов су­щественно упрощается при использовании дифференциальных зави­симостей между изгибающим моментом, поперечной силой и интен­сивностью равномерн

Методом сечения Полученное выражение можно обобщить
Поперечная сила в рассматриваемом сечении равна алгебраической сумме всех сил, действующих на балку до рассматриваемого сечения: Q = ΣFi Поскольку речь идет

Напряжения
Рассмотрим изгиб балки, защемленной справа и нагруженной сосредоточенной силой F (рис. 33.1).

Напряженное состояние в точке
Напряженное состояние в точке характеризуется нормальны­ми и касательными напряжениями, возникающими на всех площад­ках (сечениях), проходящих через данную точку. Обычно достаточ­но определить напр

Понятие о сложном деформированном состоянии
Совокупность деформаций, возникающих по различным напра­влениям и в различных плоскостях, проходящих через точку, опре­деляют деформированное состояние в этой точке. Сложное деформи

Расчет круглого бруса на изгиб с кручением
В случае расчета круглого бруса при действии изгиба и кру­чения (рис. 34.3) необходимо учитывать нормальные и касательные напряжения, т. к. максимальные значения напряжений в обоих слу­чаях возника

Понятие об устойчивом и неустойчивом равновесии
Относительно короткие и массивные стержни рассчитывают на сжатие, т.к. они выходят из строя в результате разрушения или остаточных деформаций. Длинные стержни небольшого поперечного сечения под дей

Расчет на устойчивость
Расчет на устойчивость заключается в определении допускае­мой сжимающей силы и в сравнении с ней силы действующей:

Расчет по формуле Эйлера
Задачу определения критической силы математиче­ски решил Л. Эйлер в 1744 г. Для шарнирно закрепленного с обеих сторон стержня (рис. 36.2) формула Эйлера имеет вид

Критические напряжения
Критическое напряжение - напряжение сжатия, соответству­ющее критической силе. Напряжение от сжимающей силы определяется по формуле

Пределы применимости формулы Эйлера
Формула Эйлера выполняется только в пределах упругих де­формаций. Таким образом, критическое напряжение должно быть меньше предела упругости материала. Пред

Неинерциальной системой отсчёта называется система, движущаяся ускоренно относительно инерциальной.

Законы Ньютона справедливы только в инерциальных системах отсчета. Поэтому все рассматриваемые до сих пор вопросы относились к инерциальным системам. Однако на практике часто приходится иметь дело с неинерциальными системами отсчёта. Выясним, как должен записываться основной закон динамики в таких системах. Рассмотрим в начале движение материальной точки в инерциальной системе отсчёта:

Введём кроме неё неинерциальную систему отсчёта и договоримся первую называть неподвижной, а вторую подвижной:

На основании теоремы сложения ускорений:

Отсюда перепишем:

Мы видим, что в неинерциальной системе отсчёта ускорение точки определяется не только силой и массойm , но и характером движения самой подвижной системы отсчёта.

–фиктивные силы (они не обусловлены взаимодействием тел, а связаны с ускоренным движением неинерциальной системы относительно инерциальной) или силы инерции.

В инерциальных системах отсчёта единственной причиной ускоренного движения материальной точки являются силы, действующие со стороны материальных тел. В неинерциальных системах причиной ускоренного движения являются и силы инерции, не связанные ни с каким взаимодействием.

Необходимо подчеркнуть, что на точку, находящуюся в подвижной системе координат, силы инерции оказывают реальное действие, так как они входят в уравнение движения. Пример: движение человека в вагоне, при движении вагона с постоянной скоростью.

,

.

Пусть теперь вагон замедляет свой ход:

.

Таким образом, введение сил инерции приводит к удобной формулировке основных законов механики в относительном движении и придаёт им некоторую наглядность.

Рассмотрим два частных случая.

Пусть материальная точка совершает равномерное прямолинейное движение относительно движущейся системы координат, тогда с учетом
получим:

.

Таким образом, реальные силы уравновешиваются силами инерции.

Пусть материальная точка находится в покое по отношению к подвижной системе координат:

Тогда
,

Как уже отмечалось, законы Ньютона выполняются только в инерциальных системах отсчета. Системы отсчета, движущиеся относительно инерциальной системы с ускорением, называются н еинерциальными. В неинерциальных системах законы Ньютона, вообще говоря, уже несправедливы. Однако законы динамики можно применять и для них, если кроме сил, обусловленных воздействием тел друг на друга, ввести в рассмотрение силы особого рода – так называемые силы инерции.

Если учесть силы инерции, то второй закон Ньютона будет справедлив для любой системы отсчета: произведение массы тела на ускорение в рассматриваемой системе отсчета равно сумме всех сил, действующих на данное тело (включая и силы инерции). Силы инерции при этом должны быть такими, чтобы вместе с силами , обусловленными воздействием тел друг на друга, они сообщали телу ускорение , каким оно обладает в неинерциальных системах отсчета, т. е.

(1)

Так как
( – ускорение тела в инерциальной системе отсчета), то

Силы инерции обусловлены ускоренным движением системы отсчета относительно измеряемой системы, поэтому в общем случае нужно учитывать следующие случаи проявления этих сил:

1) силы инерции при ускоренном поступательном движении системы отсчета;

2) силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета;

3) силы инерции, действующие на тело, движущееся во вращающейся системе отсчета.

Рассмотрим эти случаи.

1. Силы инерции при ускоренном поступательном движение системы отсчета. Пусть на тележке к штативу на нити подвешен шарик массой т . Пока тележка покоится или движется равномерно и прямолинейно, нить, удерживающая шарик, занимает вертикальное положение и сила тяжести
уравновешивается силой реакции нити .

Если тележку привести в поступательное движение с ускорением , то нить начнет отклоняться от вертикали назад до такого угла α , пока результирующая сила
не обеспечит ускорение шарика, равное . Таким образом, результирующая сила направлена в сторону ускорения тележки и для установившегося движения шарика (шарик теперь движется вместе с тележкой с ускорением ) равна
, откуда
,т. е. угол отклонения нити от вертикали тем больше, чем больше ускорение тележки.

Относительно системы отсчета, связанной с ускоренно движущейся тележкой, шарик покоится, что возможно, если сила , которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Таким образом,

(2)

Проявление сил инерции при поступательном движении наблюдается в повседневных явлениях. Например, когда поезд набирает скорость, то пассажир, сидящий по ходу поезда, под действием силы инерции прижимается к спинке сиденья. Наоборот, при торможении поезда сила инерции направлена в противоположную сторону, и пассажир удаляется от спинки сиденья. Особенно эти силы заметны при внезапном торможении поезда. Силы инерции проявляются в перегрузках, которые возникают при запуске и торможении космических кораблей.

2. Силы инерции, действующие на тело, покоящееся во вращающейся системе отсчета. Пусть диск равномерно вращается с угловой скоростью ω (ω =const ) вокруг вертикальной оси, проходящей через его центр. На диске, на разных расстояниях от оси вращения, установлены маятники (на нитях подвешены шарики массой m ). При вращении маятников вместе с диском шарики отклоняются от вертикали на некоторый угол.

В инерциальной системе отсчета, связанной, например, с помещением, где установлен диск, шарик равномерно вращается по окружности радиусом R (расстояние от центра вращающегося шарика до оси вращения). Следовательно, на него действует сила, модуль которой равен F = 2 R и направлена сила перпендикулярно оси вращения диска. Она является равнодействующей силы тяжести
и силы натяжения нити :
. Когда движение шарика установится, то
, откуда
,т. е. углы отклонения нитей маятников будут тем больше, чем больше расстояние R от центра шарика до оси вращения диска и чем больше угловая скорость вращения ω .

Относительно системы отсчета, связанной с вращающимся диском, шарик покоится, что возможно, если сила уравновешивается равной и противоположно направленной ей силой , которая является ничем иным, как силой инерции, так как на шарик никакие другие силы не действуют. Сила , называемая центробежной силой инерции , направлена по горизонтали от оси вращения диска и её модуль равен

F ц = 2 R (3)

Действию центробежных сил инерции подвергаются, например, пассажиры в движущемся транспорте на поворотах, летчики при выполнении фигур высшего пилотажа; центробежные силы инерции используются во всех центробежных механизмах: насосах, сепараторах и т. д., где они достигают огромных значений. При проектировании быстро вращающихся деталей машин (роторов, винтов самолетов и т. д.) принимаются специальные меры для уравновешивания центробежных сил инерции.

Из формулы (3) вытекает, что центробежная сила инерции, действующая на тела во вращающихся системах отсчета в направлении радиуса от оси вращения, зависит от угловой скорости вращения ω системы отсчета и радиуса R , но не зависит от скорости тел относительно вращающихся систем отсчета. Следовательно, центробежная сила инерции действует во вращающихся системах отсчета на все тела, удаленные от оси вращения на конечное расстояние, независимо от того, покоятся ли они в этой системе (как мы предполагали до сих пор) или движутся относительно нее с какой-то скоростью.

3. Силы инерции, действующие на тело, движущееся во вращающейся системе отсчета. Пусть шарик массой т движется с постоянной скоростью вдоль радиуса равномерно вращающегося диска (). Если диск не вращается, то шарик, направленный вдоль радиуса, движется по радиальной прямой и попадает в точку А, если же диск привести во вращение в направлении, указанном стрелкой, то шарик катится по кривой ОВ , причем его скорость относительно диска изменяет свое направление. Это возможно лишь тогда, если на шарик действует сила, перпендикулярная скорости .

Для того чтобы заставить шарик катиться по вращающемуся диску вдоль радиуса, используем жестко укрепленный вдоль радиуса диска стержень, на котором шарик движется без трения равномерно и прямолинейно со скоростью .

При отклонении шарика стержень действует на него с некоторой силой . Относительно диска (вращающейся системы отсчета) шарик движется равномерно и прямолинейно, что можно объяснить тем, что сила уравновешивается приложенной к шарику силой инерции , перпендикулярной скорости . Эта сила называется кориолисовой силой инерции .

Можно показать, что сила Кориолиса

(4)

Вектор перпендикулярен векторам скорости тела и угловой скорости вращения системы отсчета в соответствии с правилом правого винта.

Сила Кориолиса действует только на тела, движущиеся относительно вращающейся системы отсчета, например, относительно Земли. Поэтому действием этих сил объясняется ряд наблюдаемых на Земле явлений. Так, если тело движется в северном полушарии на север, то действующая на него сила Кориолиса, как это следует из выражения (4), будет направлена вправо по отношению к направлению движения, т. е. тело несколько отклонится на восток. Если тело движется на юг, то сила Кориолиса также действует вправо, если смотреть по направлению движения, т. е. тело отклонится на запад. Поэтому в северном полушарии наблюдается более сильное подмывание правых берегов рек; правые рельсы железнодорожных путей по движению изнашиваются быстрее, чем левые, и т. д. Аналогично можно показать, что в южном полушарии сила Кориолиса, действующая на движущиеся тела, будет направлена влево по отношению к направлению движения.

Благодаря силе Кориолиса падающие на поверхность Земли тела отклоняются к востоку (на широте 60° это отклонение должно составлять 1 см при падении с высоты 100 м). С силой Кориолиса связано поведение маятника Фуко, явившееся в свое время одним из доказательств вращения Земли. Если бы этой силы не было, то плоскость колебаний качающегося вблизи поверхности Земли маятника оставалась бы неизменной (относительно Земли). Действие же сил Кориолиса приводит к вращению плоскости колебаний вокруг вертикального направления.

,

где силы инерции задаются формулами (2) – (4).

Обратим еще раз внимание на то, что силы инерции вызываются не взаимодействием тел, а ускоренным движением системы отсчета . Поэтому они не подчиняются третьему закону Ньютона, так как если на какое-либо тело действует сила инерции, то не существует противодействующей силы, приложенной к данному телу. Два основных положения механики, согласно которым ускорение всегда вызывается силой, а сила всегда обусловлена взаимодействием между телами, в системах отсчета, движущихся с ускорением, одновременно не выполняются.

Для любого из тел, находящихся в неинерциальной системе отсчета, силы инерции являются внешними; следовательно, здесь нет замкнутых систем. Это означает, что в неинерциальных системах отсчета не выполняются законы сохранения импульса, энергии и момента импульса. Таким образом, силы инерции действуют только в неинерциальных системах. В инерциальных системах отсчета таких сил не существует.

Возникает вопрос о «реальности» или «фиктивности» сил инерции. В ньютоновской механике, согласно которой сила есть результат взаимодействия тел, на силы инерции можно смотреть как на «фиктивные», «исчезающие» в инерциальных системах отсчета. Однако возможна и другая их интерпретация. Так как взаимодействия тел осуществляются посредством силовых полей, то силы инерции рассматриваются как воздействия, которым подвергаются тела со стороны каких-то реальных силовых полей, и тогда их можно считать «реальными». Независимо от того, рассматриваются ли силы инерции в качестве «фиктивных» или «реальных», многие явления, о которых упоминалось выше, объясняются с помощью сил инерции.

Силы инерции, действующие на тела в неинерциальной системе отсчета, пропорциональны их массам и при прочих равных условиях сообщают этим телам одинаковые ускорения. Поэтому в «поле сил инерции» эти тела движутся совершенно одинаково, если только одинаковы начальные условия. Тем же свойством обладают тела, находящиеся под действием сил поля тяготения.

При некоторых условиях силы инерции и силы тяготения невозможно различить. Например, движение тел в равноускоренном лифте происходит точно так же, как и в неподвижном лифте, висящем в однородном поле тяжести. Никакой эксперимент, выполненный внутри лифта, не может отделить однородное поле тяготения от однородного поля сил инерции.

Аналогия между силами тяготения и силами инерции лежит в основе принципа эквивалентности гравитационных сил и сил инерции (принципа эквивалентности Эйнштейна): все физические явления в поле тяготения происходят совершенно так же, как и в соответствующем поле сил инерции, если напряженности обоих полей в соответствующих точках пространства совпадают, а прочие начальные условия для рассматриваемых тел одинаковы. Этот принцип является основой общей теории относительности.

Инерциальные и неинерциальные системы отсчета

Законы Ньютона выполняются только в инерциальных системах отсчета. Относительно всех инерциальных систем данное тело движется с одинаковым ускорением $w$. Любая неинерциальная система отсчета движется относительно инерциальных систем с некоторым ускорением, поэтому ускорение тела в неинерциальной системе отсчета $w"$ будет отлично от $w$. Обозначим разность ускорений тела и инерциальной и неинерциальной системах символом $a$:

Для поступательно движущейся неинерциальной системы $a$ одинаково для всех точек пространства $a=const$ и представляет собой ускорение неинерциальной системы отсчета.

Для вращающейся неинерциальной системы $a$ в разных точках пространства будет различным ($a=a(r")$, где $r"$ - радиус-вектор, определяющий положение точки относительно неинерциальной системы отсчета).

Пусть результирующая всех сил, обусловленных действием на данное тело со стороны других тел, равна $F$. Тогда согласно второму закону Ньютона ускорение тела относительно любой инерциальной системы отсчета равно:

Ускорение же тела относительно некоторой неинерциальной системы можно представить в виде:

Отсюда следует, что даже при $F=0$ тело будет двигаться по отношению к неинерциальной системе отсчета с ускорением $-a$, т. е. так, как если бы на него действовала сила, равная $-ma$.

Сказанное означает, что при описании движения в неинерциальных системах отсчета можно пользоваться уравнениями Ньютона, если наряду с силами, обусловленными воздействием тел друг на друга, учитывать так называемые силы инерции $F_{in} $, которые следует полагать равными произведению массы тела на взятую с обратным знаком разность его ускорений по отношению к инерциальной и неинерциальной системам отсчета:

Соответственно уравнение второго закона Ньютона в неинерциальной системе отсчета будет иметь вид:

Поясним наше утверждение следующим примером. Рассмотрим тележку с укрепленным на ней кронштейном, к которому подвешен на нити шарик.

Рисунок 1.

Пока тележка покоится или движется без ускорения, нить расположена вертикально и сила тяжести $P$ уравновешивается реакцией нити $F_{r} $. Теперь приведем тележку в поступательное движение и ускорением $a$. Нить отклонится от вертикали на такой угол, чтобы результирующая сил $P$ и $F_{r} $, сообщала шарику ускорение, равное $a$. Относительно системы отсчета, связанной с тележкой, шарик покоится, несмотря на то, что результирующая сил $P$ и $F_{r} $ отлична от нуля. Отсутствие ускорения шарика по отношению к этой системе отсчета можно формально объяснить тем, что, кроме сил $P$ и $F_{r} $, равных, в сумме $ma$, на шарик действует еще и сила инерции $F_{in} =-ma$.

Силы инерции и их свойства

Введение сил инерции дает возможность описывать движение тел в любых (как инерциальных, так и неинерциальных) системах отсчета с помощью одних я тех же уравнений движения.

Замечание 1

Следует отчетливо понимать, что силы инерции нельзя ставить в один ряд с такими силами, как упругие, гравитационные силы и силы трения, т. е. силами, обусловленными воздействием на тело со стороны других, тел. Силы инерции обусловлены свойствами той системы отсчета, в которой рассматриваются механические явления. В этом смысле их можно назвать фиктивными силами.

Введение в рассмотрение сил инерции не является принципиально необходимым. В принципе любое движение можно всегда рассмотреть по отношению к инерциальной системе отсчета. Однако, практически часто представляет интерес как раз движение тел по отношению к неинерциальным системам отсчета, например, по отношению к земной поверхности.

Использование сил инерции даёт возможность решить соответствующую задачу непосредственно по отношению к такой системе отсчета, что часто оказывается значительно проще, чем рассмотрение движения в инерциальной системе.

Характерным свойством сил инерции является их пропорциональность массе тела. Благодаря этому свойству силы инерции оказываются аналогичными силам тяготения. Представим себе, что мы находимся в удаленной от всех внешних тел закрытой кабине, которая движется с ускорением g в направлении, которое мы назовем «верхом».

Рисунок 2.

Тогда все тела, находящиеся внутри кабины, будут вести себя так, как если бы на них действовала сила инерции $F_{in} =-ma$. В частности, пружина, к концу которой подвешено тело массы $m$, растянется так, чтобы упругая сила уравновесила силу инерции $-mg$. Однако такие же явлений наблюдались бы и в том случае, если бы кабина была неподвижной и находилась вблизи поверхности Земли. Не имея возможности «выглянуть» за пределы кабины, никакими опытами, проводимыми внутри кабины, мы не смогли бы установить чем обусловлена сила $-mg$ - ускоренным движением кабины или действием гравитационного поля Земли. На этом основании говорят об эквивалентности сил инерции и тяготения. Эта эквивалентность лежит в основе общей теории относительности Эйнштейна.

Пример 1

Тело свободно падает с высоты $200$ м на Землю. Определить отклонение тела к востоку под влиянием кориолисовой силы инерции, вызванной вращением Земли. Широта места падения $60^\circ$.

Дано: $h=200$м, $\varphi =60$?.

Найти: $l-$?

Решение: В земной системе отсчета на свободно падающее тело действует кориолисова сила инерции:

\, \]

где $\omega =\frac{2\pi }{T} =7,29\cdot 10^{-6} $рад/с -- угловая скорость вращения Земли, а $v_{r} $- скорость движения тела относительно Земли.

Кориолисова сила инерции во много раз меньше силы тяготения тела к Земле. Поэтому в первом приближении при определении $F_{k} $можно считать, что скорость $v_{r} $ направлена вдоль радиуса Земли и численно равна:

где $t$$ $- продолжительность падения.

Рисунок 3.

Из рисунка видно направление действия силы, тогда:

Так как $a_{k} =\frac{dv}{dt} =\frac{d^{2} l}{dt^{2} } $,

где $v$ - численное значение составляющей скорости тела, касательной к поверхности Земли, $l$ - смещение свободно падающего тела к востоку, то:

$v=\omega gt^{2} \cos \varphi +C_{1} $ и $l=\frac{1}{3} \omega gt^{3} \cos \varphi +C_{1} t+C_{2} $.

В начале падения тела $t=0,v=0,l=0$, поэтому постоянные интегрирования равны нулю и тогда имеем:

Продолжительность свободного падения тела с высоты $h$:

так что искомое отклонение тела к востоку:

$l=\frac{2}{3} \omega h\sqrt{\frac{2h}{g} } \cos \varphi =0,3\cdot 10^{-2} $м.

Ответ: $l=0,3\cdot 10^{-2} $м.

При изучении вопроса о том, что такое сила инерции (СИ), часто происходят недопонимания, приводящие к псевдонаучным открытиям и парадоксам. Давайте разберемся в данном вопросе, применив научный подход и обосновав все сказанное подтверждающими формулами.

Сила инерции окружает нас повсюду. Ее проявления люди заметили еще в древности, но объяснить не могли. Серьезно ее изучением занимался Галилей, а затем известный Именно из-за его пространного толкования стали возможны ошибочные гипотезы. Это вполне закономерно, ведь ученый сделал предположение, а накопленного наукой багажа знаний в этой области еще не существовало.

Ньютон утверждал, что естественным свойством всех материальных объектов является возможность находиться в состоянии по прямой линии или же покоиться, при условии, что не оказывается внешнего воздействия.

Давайте на основании современных знаний «расширим» данное предположение. Еще Галилео Галилей обратил внимание, что сила инерции непосредственно связана с гравитацией (притяжением). А естественные притягивающие объекты, воздействие которых очевидно - это планеты и звезды (благодаря своей массе). А так как они имеют форму шара, то на это и указал Галилей. Однако Ньютон данный момент полностью проигнорировал.

Сейчас известно, что вся Вселенная пронизана гравитационными линиями различной интенсивности. Косвенно подтверждено, хотя математически не доказано, существование гравитационного излучения. Следовательно, сила инерции всегда возникает при участии гравитации. Ньютон в своем предположении о «естественном свойстве» этого также не учел.

Более правильно исходить из другого определения - указанная сила представляет собой значение которой является произведением массы (m) перемещающегося тела на его ускорение (a). Вектор направлен встречно ускорению, то есть:

где F, а - значения векторов силы и полученного ускорения; m - масса движущегося тела (или математической

Физика и механика предлагают два названия для подобного воздействия: кориолисова и переносная сила инерции (ПСИ). Оба термина равнозначны. Отличие в том, что первый вариант общепризнан и используется в курсе механики. Другими словами, справедливо равенство:

F kor = F per = m*(-a kor) = m*(-a per),

где F - кориолисова сила; F per - переносная сила инерции; a kor и a per - соответствующие векторы ускорения.

ПСИ включает в себя три составляющих: инерции, поступательная СИ и вращательная. Если с первой обычно сложностей не возникает, то другие две требуют пояснения. Поступательная сила инерции определяется ускорением всей системы в целом относительно какой-либо инерциальной системы при поступательной разновидности движения. Соответственно, третья составляющая возникает из-за ускорения, появляющегося при вращении тела. В то же время, данные три силы могут существовать и независимо, не являясь частью ПСИ. Все они представлены одной и той же основной формулой F = m*a, а различия лишь в типе ускорения, которое, в свою очередь, зависит от разновидности движения. Таким образом, они являются частным случаем инерции. Каждая из них участвует в расчете теоретического абсолютного ускорения материального тела (точки) в неподвижной системе отсчета (невидимо для наблюдения из неинерциальной системы).

ПСИ необходима при изучении вопроса относительного движения, так как для создания формул движения тела в неинерциальной системе необходимо учитывать не только другие известные силы, но и ее (F kor или F per).

СИЛА ИНЕРЦИИ

СИЛА ИНЕРЦИИ

Векторная величина, численно равная произведению массы m материальной точки на её w и направленная противоположно ускорению. При криволинейном движении С. и. можно разложить на касательную, или тангенциальную составляющую Jt, направленную противоположно касат. ускорению wt , и на нормальную составляющую Jn, направленную вдоль нормали к траектории от центра кривизны; численно Jt=mwt, Jn=mv2/r, где v - точки, r - радиус кривизны траектории. При изучении движения по отношению к инерциальной системе отсчёта С. и. вводят для того, чтобы иметь формальную возможность составлять ур-ния динамики в форме более простых ур-ний статики (см. ). Понятие о С. и. вводится также при изучении относительного движения. В этом случае присоединение к действующим на материальную точку силам взаимодействия с др. телами С. и.- переносной Jпер и Кориолиса силы Jкор - позволяет составлять ур-ния движения этой точки в подвижной (неинерциальной) системе отсчёта так же, как и в инерциальной.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

СИЛА ИНЕРЦИИ

Векторная величина, численно равная произведениюмассы т материальной точки на её ускорение w и направленнаяпротивоположно ускорению. При криволинейном движении С. и. можно разложитьна касательную, или тангенциальную, составляющую ,направленную противоположно касат. ускорению ,и на нормальную, или центробежную, составляющую ,направленную вдоль гл. нормали траектории от центра кривизны; численно , , где v- скорость точки,- радиус кривизны траектории. При изучении движения по отношению к инерциальнойсистеме отсчёта С. и. вводят для того, чтобы иметь формальную возможностьсоставлять ур-ния динамики в форме более простых ур-ний статики (см. Д"Аламберапринцип, Кинетостатика).

Понятие о С. и. вводится также при изучении относительного движения. Вэтом случае, присоединив к действующим на материальную точку силам взаимодействияс др. телами переносную силу J nep и Кориолиса силу инерции, Тарг.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Смотреть что такое "СИЛА ИНЕРЦИИ" в других словарях:

    - (также инерционная сила) термин, широко применяемый в различных значениях в точных науках, а также, как метафора, в философии, истории, публицистике и художественной литературе. В точных науках сила инерции обычно представляет собой понятие … Википедия

    Современная энциклопедия

    Векторная величина, численно равная произведению массы m материальной точки на модуль ее ускорения? и направленная противоположно ускорению … Большой Энциклопедический словарь

    сила инерции - Векторная величина, модуль которой равен произведению массы материальной точки на модуль ее ускорения и направленная противоположно этому ускорению. [Сборник рекомендуемых терминов. Выпуск 102. Теоретическая механика. Академия наук СССР. Комитет… … Справочник технического переводчика

    Сила инерции - СИЛА ИНЕРЦИИ, векторная величина, численно равная произведению массы m материальной точки на ее ускорение u и направленная противоположно ускорению. Возникает вследствие неинерциальности системы отсчета (вращения или прямолинейного движения с… … Иллюстрированный энциклопедический словарь

    сила инерции - inercijos jėga statusas T sritis Standartizacija ir metrologija apibrėžtis Vektorinis dydis, lygus materialiojo taško arba kūno masės ir pagreičio sandaugai; kryptis priešinga pagreičiui. atitikmenys: angl. inertia force vok. Trägheitskraft, f;… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    Векторная величина, численно равная произведению массы т материальной точки на модуль её ускорения w и направленная противоположно ускорению. * * * СИЛА ИНЕРЦИИ СИЛА ИНЕРЦИИ, векторная величина, численно равная произведению массы m материальной… … Энциклопедический словарь

    сила инерции - inercijos jėga statusas T sritis automatika atitikmenys: angl. inertial force vok. Trägheitskraft, f rus. сила инерции, f pranc. force d inertie, f … Automatikos terminų žodynas

    сила инерции - inercijos jėga statusas T sritis fizika atitikmenys: angl. inertial force vok. Trägheitskraft, f rus. сила инерции, f pranc. force d’inertie, f … Fizikos terminų žodynas

    сила инерции - величина, численно равная произведению массы тела на его ускорение и направленная противоположно ускорению; Смотри также: Сила сила трения сила света сила волочения сила внутреннего трения … Энциклопедический словарь по металлургии