Как держать форму. Массаж. Здоровье. Уход за волосами

Спускаемые аппараты. Викторина почему конструкторы предлагают покрывать спускаемые отсеки

Движение космического корабля в плотных слоях атмосферы Земли, подлетающего к Земле из межпланетного пространства со второй космической скоростью, создает свои проблемы. Это прежде всего недопустимые для членов экипажа перегрузки. Защитить такой корабль от тепловой нагрузки также непросто.

Торможение советских межпланетных автоматических станций серии «Зонд» и «Луна», а также американских обитаемых космических кораблей «Аполлон» при возвращении их из дальнего космоса и спуске на Землю оказалось возможным производить без опасности перегрева и без больших перегрузок при двукратном их нырянии в атмосферу Земли. Воздушный океан, окружающий нашу планету, в какой-то мере похож на водный океан, поэтому и применяют такой термин, как «ныряние», что означает вход космического корабля в атмосферу. В первом нырянии корабль входит на какую-то глубину в атмосферу, а затем опять выходит из нее в космическое безвоздушное пространство.

Разберемся, почему космический корабль при подлете к Земле со второй космической скоростью должен делать два ныряния в воздушный океан. Если бы космический корабль, имея скорость 11,2 км/сек, сразу вошел в атмосферу и двигался в ней по крутой траектории, он бы сильно нагрелся и в нем возникли бы большие перегрузки. При крутой траектории корабль быстро бы достиг нижних, плотных слоев атмосферы, где разогревание происходит очень быстро. Если же траекторию полета корабля выбрать очень пологой, так, чтобы он длительное время двигался в разреженных слоях атмосферы, т. е. высоко над Землей, он, возможно бы, и не сгорел, но зато воздух внутри кабины сильно перегрелся бы. Температура в кабине стала бы настолько большой, что не только для экипажа, но и для приборов, установленных на корабле, она была бы неприемлемой.


Рис. 18. Посадка космического корабля, подлетающего к Земле со второй космической скоростью, с использованием тормозящего действия атмосферы Земли.


Тогда и родилось такое решение - космический корабль входит в атмосферу, пронизывает ее (см. рис. 18) и снова выходит в космическое пространство, т. е. в пространство, где нет воздуха. Пролетев какое-то время в атмосфере, корабль, конечно, уменьшит скорость. Путь корабля в воздухе в первом его нырянии делают таким, чтобы корабль, вылетев обратно в космос, имел скорость несколько меньшую первой космической. Снова попав в космическое пространство, корабль будет охлаждаться, так как его раскаленная наружная поверхность будет излучать тепло. Затем он снова входит в атмосферу, т. е. делает второе ныряние, но уже со скоростью меньшей, чем первая космическая. После второго входа в атмосферу корабль будет двигаться к Земле так же, как при возвращении из орбитального полета вокруг Земли.


Рис. 19. «Коридор торможения» космического корабля в атмосфере.


Как космический корабль, имеющий вторую космическую скорость, должен входить в атмосферу, т. е. выполнять первый нырок, чтобы не сгореть, и в то же время уменьшить скорость движения с 11,2 км/сек до первой космической? Полеты обитаемых космических кораблей показали, что вход в атмосферу со второй космической скоростью будет безопасным при условии, если космический корабль пройдет в атмосфере по очень узкому коридору, не отклоняясь ни в ту, ни в другую сторону (см. рис. 19). Для кораблей серии «Аполлон» этот коридор имеет ширину всего лишь 40 км. Это очень узкий коридор, если учесть, что к нему приближается космический корабль со скоростью 46 320 км/ч, с расстояния примерно 300 000 км. Ну, а если космический корабль пройдет ниже границы этого коридора или выше, что можно ожидать в таком случае?

Если корабль пройдет ниже установленной границы коридора входа, он слишком глубоко войдет в плотные слои атмосферы. Двигаясь длительно в плотных слоях воздушной оболочки Земли, он перегреется и может сгореть. Пройдя над верхней границей коридора, космический корабль пронижет слишком малый слой атмосферы, к тому же и сильно разреженный, поэтому затормозится меньше, чем следует. После вылета в безвоздушное пространство корабль будет иметь скорость меньшую, чем вторая космическая, но большую, чем первая космическая. В этом случае, как мы уже говорили, траекторией движения корабля будет сильно вытянутый эллипс. Опасно войти в коридор ниже допустимой границы, но и вход выше границы также небезопасен. Ведь, перед тем как корабль входит в атмосферу, от него с целью уменьшения веса отбрасывается почти все, остается только спускаемый аппарат, в котором имеется лишь самое необходимое для поддержания жизнедеятельности экипажа на время, в течение которого продолжается спуск корабля на Землю. А сколько времени может летать космический корабль по вытянутому эллипсу вокруг Земли? Ведь тормозить его теперь, чтобы заставить вновь войти в плотные слои атмосферы, нечем, топливо израсходовано, двигатель отброшен. Корабль может двигаться по такой траектории неопределенно долгое время. А на его борту очень ограниченные запасы кислорода, необходимого для дыхания, воды для питья, пищи, источников электроэнергии.

Итак, после того как космический корабль затормозится до скорости, несколько меньшей первой космической, он начинает снижаться, падая на Землю. Выбором соответствующей траектории полета в атмосфере можно обеспечить возникновение перегрузок не выше допустимой величины. Однако при спуске стенки корабля могут и должны разогреваться до очень высокой температуры. Поэтому безопасный спуск в атмосфере Земли возможен лишь при наличии на наружной обшивке спускаемого аппарата специальной теплозащиты. Как предупредить нагревание тела выше допустимой величины, если оно находится под воздействием очень мощного источника тепла?

Если поставить на газовую плиту чугунную сковороду и нагревать ее, она накалится до очень высокой температуры, может стать красной или даже белой, излучая при этом тепло и свет. Но попробуйте нагреть сковороду еще больше. Сколько бы ни держали сковороду на газовой плите, поднять ее температуру выше определенной не удастся. Наступит такое состояние, при котором тепло, поступающее от газовой плиты к сковороде, уже не сможет изменить температуру последней. Почему? Ведь и сковороде непрерывно подводится тепло, и она должна бы нагреться до более высокой температуры и в конце концов расплавиться. Однако этого не происходит по следующей причине. Нагретый металл не только получает тепло от газовой плиты, но, нагревшись до высокой температуры и раскалившись до красного или белого цвета, он и сам путем лучеиспускания отдает тепло окружающему воздуху. При определенной температуре металла наступает равновесие между количеством тепла, передаваемого металлу, и тем теплом, которое он излучает в окружающее пространство. Металл как бы сам создает теплозащиту для себя, благодаря которой он не нагревается выше определенной температуры при данном источнике тепла.

Подобный тип теплозащиты принципиально можно применить и в космических кораблях. На лобовой части спускаемого аппарата можно установить тепловой экран из очень тугоплавкого металла, который не теряет механической прочности при нагревании до высоких температур. Раскаленная металлическая плита (тепловой экран) и будет служить теплозащитой спускаемого аппарата от воздействия раскаленных газов атмосферы.

Другой способ теплозащиты спускаемых аппаратов состоит в применении так называемых экранов с отпотеванием. В жаркую погоду человек сильно потеет. Почему?

Потому что организм для защиты от перегрева применяет очень эффективный способ - он выделяет через поры кожи влагу. Влага с поверхности кожи испаряется, на что требуется затрата тепла (напомним, испарение 1 кг воды требует затраты 560 ккал тепла). Таким образом, все излишнее тепло, которое в жаркую погоду подводится к нашему телу, затрачивается не на нагревание организма, а на испарение с поверхности кожи влаги, выделяющейся в виде пота. Насколько такой способ отвода излишков тепла эффективен, можно судить по тому, что температура тела человека практически остается постоянной (36,5°С) при изменении окружающей температуры воздуха в широком интервале (вплоть до 60°С).

По такому же принципу может работать теплозащитное устройство спускаемого аппарата, представляющее собой экран с отпотеванием. На лобовой части можно установить толстый металлический лист, имеющий множество мелких отверстий, через которые на поверхность листа подается какая-либо жидкость. Лучше всего для этой цели использовать воду, так как она обладает высокой теплотой испарения. Поступающая через поры-отверстия влага будет испаряться, на что расходуется тепло, поступающее от раскаленных газов атмосферы.

Тепловые экраны и экраны с отпотеванием пока не используются. Во всех аппаратах, возвращающихся на Землю после космического полета, применяется другой способ защиты от тепловых потоков, который называется абляционным. Он оказался наиболее простым, надежным и эффективным. Давайте выясним, что означает его название - абляционный. В одном слове - абляция, объединяются названия сразу нескольких процессов. Какие же это процессы? Мы знаем, что плавление твердого тела сопряжено с поглощением тепла. Всем хорошо известно, что если кастрюлю со снегом поставить на огонь и в снег поместить термометр, то он будет показывать, что температура образующейся от плавления снега воды будет около 0° С до тех пор, пока весь снег не растает (не расплавится). В этом процессе все тепло затрачивается на расплавление снега. Известно, что испарение жидкости также сопряжено с поглощением тепла. Опустите термометр в кипящую воду, он покажет температуру 100°С. Как бы долго ни нагревать кипящую воду, температура ее будет оставаться 100°С, пока вся вода не выкипит.

Вам, конечно, приходилось покупать мороженое. Не только зимой, но и летом оно бывает твердым и холодным, сильно замороженным. Замораживают его с помощью так называемого сухого льда. Сухим его называют потому, что при его нагревании не образуется жидкости, как при нагревании обычного льда. Сухой лед - это углекислый газ, который довели до твердого состояния, охладив до температуры - 78° С. Твердый углекислый газ обладает замечательным свойством: при нагревании он не тает, а испаряется, т. е. переходит из твердого состояния в газообразное, минуя жидкую фазу. Такой процесс, при котором вещество из твердого состояния переходит сразу в газообразное, называют сублимацией. Свойством сублимировать обладает не только твердый углекислый газ, но и целый ряд других веществ.

Есть ли что-нибудь похожее в процессах плавления и кипения, с одной стороны, и в процессе сублимации - с другой? Есть. Характерным для процессов кипения и плавления является постоянство температуры. Сублимация также происходит при неизменной температуре. Твердый сухой лед, как его ни нагревай, всегда будет иметь температуру - 78°С. Все тепло, которое будет к нему подводиться, затрачивается на его сублимирование, т. е. образование паров из твердого вещества. Очевидно, если твердый углекислый газ вначале расплавить, т. е. перевести в жидкое состояние (а это можно сделать при определенных условиях), а затем жидкость испарить, то общее количество тепла, которое затрачивается на плавление, а затем на испарение, будет равно теплу, которое пришлось бы затратить, превращая твердый углекислый газ непосредственно в газообразное состояние. Другими словами, теплота сублимации для данного вещества равна сумме теплот испарения и плавления. Следовательно, теплота сублимации вещества всегда больше теплоты его плавления или испарения, взятых отдельно. Мы уже подошли к тому, чтобы дать определение термину «абляция».

Если на наружную поверхность спускаемого аппарата нанести слой какого-либо вещества, которое при нагревании его в процессе спуска аппарата в плотных слоях атмосферы будет плавиться, или испаряться, или сублимировать, или, наконец, сильно разогреваться, то оно потеряет механическую прочность и потоком воздуха небольшими кусочками будет сноситься с поверхности космического объекта. Эти процессы сопровождаются поглощением тепла, которое отнимается от поверхности спускаемого аппарата. Абляцией и называют этот процесс уноса вещества в твердом, жидком или газообразном виде с поверхности какого-либо тела, подвергающегося нагреванию.

Каким же основным требованиям должны удовлетворять абляционные материалы? Требования к абляционным теплозащитным материалам определяются, во-первых, их назначением - отводить как можно больше тепла при минимальном расходе массы вещества, а во-вторых, теми условиями, в которых находится теплозащитный материал перед тем, как он начинает выполнять свое основное назначение.

Спускаемый аппарат.до начала спуска на Землю находится в космическом пространстве. При орбитальном полете температура наружной оболочки космического корабля может меняться в пределах от +95° С на стороне, освещенной Солнцем, до - 180°С на теневой стороне. Совершая полет в космическом пространстве, корабль неоднократно меняет свое положение относительно Солнца, поэтому его стенки то нагреваются, то охлаждаются. К чему это может привести? Попробуйте налить в обычный стакан кипяток. Стакан треснет. Резкое изменение температуры тела, обладающего большим коэффициентом термического расширения и малой теплопроводностью, приводит обычно к такому явлению. Следовательно, для того чтобы теплозащитное покрытие, находясь в космосе, не растрескивалось от резкого перепада температур, оно должно обладать минимальным термическим коэффициентом расширения, т. е. при нагревании не сильно увеличиваться в размерах, а при охлаждении, наоборот, не сильно уменьшаться.

Мы уже говорили, что космическое пространство - это чрезвычайно глубокий вакуум (практически абсолютный). Вакуум способствует выделению из вещества летучих составляющих. В теплозащитном покрытии летучие вещества должны отсутствовать, иначе при длительном нахождении в космическом пространстве теплозащитное покрытие может изменить свой состав, а следовательно, механические и другие свойства.

В космосе кораблю довольно часто приходится встречаться с роями мельчайших частиц - метеорной пылью. Удары этих мельчайших частиц не могут вызвать механическое разрушение теплозащитного покрытия, однако материал покрытия может получить повреждения от трения таких частиц. Поэтому он должен обладать высокой износоустойчивостью, т. е. быть мало чувствительным к абразивному действию метеорного вещества. В космическом пространстве теплозащитное покрытие будет подвергаться также действию и космических лучей, и радиации, и ряда других факторов.

Воздействие всех факторов космического пространства на теплозащитное покрытие в течение запланированного времени полета корабля не должно сильно изменить его свойства. Во всяком случае теплозащитный материал должен сохранять свои свойства в такой мере, чтобы выполнить свое назначение - обеспечить безопасный спуск спускаемого аппарата на Землю. Основные требования к теплозащитным материалам, конечно, обуславливаются условиями их работы во время спуска при прохождении спускаемым аппаратом плотных слоев атмосферы, где он подвергается как механическому, так и тепловому воздействию. В первую очередь теплозащитные материалы должны обладать большой теплотой уноса (ее называют эффективной энтальпией). Это значит, что с поверхности теплозащитного покрытия масса веществ уносится при подводе к нему большого количества тепла. Ценность теплозащитных материалов главным образом и определяется величиной эффективной энтальпии. Чем больше величина эффективной энтальпии, тем лучше теплозащитный материал.

Понятно, конечно, почему эта величина так важна. Ведь чем выше эффективная энтальпия вещества, из которого изготовлено теплозащитное покрытие, тем меньше по массе при прочих равных условиях его потребуется нанести на поверхность спускаемого аппарата. А какое имеет значение масса для объектов, поднимаемых в космос, мы уже видели. К тому же следует иметь в виду и то обстоятельство, что теплозащитное покрытие по массе составляет иногда до 50% всей массы спускаемого аппарата.

Эффективная энтальпия - главный показатель качества теплозащитного материала, но не единственный. Теплозащитное покрытие должно выдерживать большие механические нагрузки, иначе оно может разрушиться под действием набегающего на аппарат потока воздуха. Наконец, теплозащитные материалы должны обладать малой теплопроводностью. Тепло от спускаемого аппарата необходимо отводить для того, чтобы внутри его, где находится экипаж и необходимые приборы, температура не повышалась выше допустимой величины. Температура же внутри спускаемого аппарата определяется тем количеством тепла, которое пройдет извне, через его оболочку, т. е. теплопроводностью стенки аппарата и, в частности, покрытия, наносимого на него. Очевидно, чем меньше теплопроводность теплозащитного покрытия, тем меньше тепла поступит внутрь аппарата.

Совместить в одном материале большую эффективную энтальпию, высокую прочность и малую теплопроводность, как показывает практика, невозможно. Чтобы получить теплозащитное покрытие с требуемыми свойствами, его приходится изготавливать из нескольких слоев различных материалов. Наружный слой выполняют из материала, обладающего высоким значением эффективной энтальпии и достаточно высокой механической прочностью. Второй слой изготавливают из материала, обладающего небольшой механической прочностью и относительно небольшим значением энтальпии, но зато малой теплопроводностью. Второй слой покрытия защищен от воздействия горячих газов атмосферы и их давления наружным слоем. Материал второго слон покрытия является главным препятствием для проникновения тепла от внешнего слоя теплозащитного покрытия, имеющего очень высокую температуру, к металлическому корпусу спускаемого аппарата.

Какую температуру может иметь наружный слой теплозащитного покрытия? Мы уже говорили, что температура газов, образующихся в раскаленном слое воздуха, сжатого летящим к Земле спускаемым аппаратом, достигает 8000°К. Теплозащитное покрытие, нанесенное на лобовую часть спускаемого аппарата, непосредственно соприкасается с этим слоем и нагревается. Однако температура поверхности абляционного материала, из которого изготовлено теплозащитное покрытие, всегда бывает значительно меньше температуры газов, с которыми оно соприкасается. Более того, она в известной степени не зависит от величины температуры раскаленных газов атмосферы. Температура поверхности теплозащитного покрытия определяется в основном свойствами материала, из которого оно изготовлено. Поясним это. Температура пламени газовой горелки = 800°С. Поставьте на горелку пустой чайник. Через некоторое время он нагреется до температуры, почти равной температуре пламени горелки. Теперь наполним чайник водой и также будем греть. Температура чайника, как бы долго ни держать его на огне, выше 100°С не поднимется. А если налить в чайник спирт, имеющий температуру кипения 76°С, то стенки чайника не удастся нагреть и выше 76°С, хотя температура пламени горелки останется прежней - 800° С.

Испарение в процессе кипения - это по существу один из видов абляции, при котором уносится вещество с поглощением тепла. Ведь и защита корпуса спускаемого аппарата абляционным теплозащитным покрытием от перегрева происходит так же, как и защита стенок чайника от перегрева испаряющейся в нем жидкостью. Максимальная температура, до которой можно нагреть стенки чайника, зависит от температуры кипения находящейся в нем жидкости. Температура поверхности теплозащитного покрытия, которая имеет контакт с раскаленными до 8000° К газами, будет определяться температурой, при которой теплозащитный материал из твердого состояния превращается в газообразное. Можно изготавливать теплозащитные материалы с различными температурами превращения в газообразное состояние (температурами сублимации). В практике строительства космических аппаратов наибольшее распространение получили материалы с температурами сублимации 2500 - 3500° С. Основу этих материалов составляют так называемые эпоксидные или формальдегидные смолы. Смолы для придания им механической прочности смешивают со стеклянными нитями, стеклотканью, асбестом или другими тугоплавкими веществами.

В нормальных условиях такие смешанные материалы имеют большую твердость и прочность. При нагревании до температуры сублимации (2500 - 3500° С) они переходят в газообразное состояние, частично обугливаются. Температуру нагрева наружной поверхности теплозащитного покрытия можно менять (в известных пределах), изменяя состав теплозащитного материала. Возникает вопрос, почему в практике нашли применение абляционные материалы, превращающиеся из твердого состояния в газообразное при температурах порядка 3000°С? Не опасно ли допускать нагрев наружной стенки спускаемого аппарата до столь высокой температуры? Казалось бы, чем ниже температура оболочки спускаемого аппарата, тем безопаснее будет спуск. В действительности получается наоборот - применение теплозащитных материалов с меньшей температурой сублимации, чем имеют ныне применяемые материалы, невыгодно. Ведь чем ниже будет температура газообразования, тем больший слой теплозащитного покрытия за время спуска должен испариться. Следовательно, слой теплозащитного покрытия нужно будет делать большим по массе, а это ведет к увеличению веса, что, как мы знаем, нежелательно.

Применять теплозащитные материалы с более высокой температурой сублимации (т. е. выше 2500 - 3500°С) также невыгодно. Применение теплозащитных материалов с повышенной температурой сублимации означает нагревание верхних слоев теплозащитного покрытия до более высоких температур. А известно, что при данной теплоизоляции количество тепла, проходимое через нее, будет тем больше, чем значительнее разница температур между ее наружной и внутренней частями. Следовательно, к металлической обшивке спускаемого аппарата при таком теплозащитном покрытии станет поступать больше тепла, что приведет к большому нагреву всего, что находится внутри его. Чтобы предупредить перегрев отсека, где помещается экипаж, потребуется увеличить толщину теплоизолирующего слоя, что также скажется на весе корабля.

Расчет и практика показали, что наименьший вес спускаемого аппарата при прочих равных условиях получается, если применять теплозащитное покрытие с температурой сублимации не выше 3500° С и не ниже 2500° С. Теплозащитное покрытие спускаемого аппарата космического корабля «Аполлон», на котором американские космонавты, возвращаясь с Луны, подлетают к Земле со второй космической скоростью, изготовлено из материала на основе эпоксидной смолы. Толщина теплозащитного слоя, наносимого на поверхность спускаемого аппарата, не везде одинакова. Наибольшая толщина делается на лобовой поверхности, где она достигает 66 мм, а наименьшая - на донной части (23 мм). Это лишь толщина материала, который может подвергаться уносу (абляции) в процессе нагрева. Общая же толщина теплозащитного покрытия, защищающего металлический корпус от нагрева на лобовой части спускаемого аппарата космического корабля «Аполлон», составляет 450 мм, т. е. почти полметра.

Вот какую толщу теплозащитного материала должно пройти тепло, поступающее от раскаленных газов атмосферы, чтобы достигнуть металлической оболочки аппарата и нагреть воздух, находящийся в нем. Нагревание - главная опасность при спуске корабля в атмосфере. Несмотря на огромную толщину теплозащитного и теплоизолирующего слоя, часть тепла все-таки проходит внутрь спускаемого аппарата. Кроме того, внутри аппарата происходит выделение тепла в результате жизнедеятельности членов экипажа и работы аппаратуры. При полете корабля в космическом пространстве излишки тепла, как мы видели, отводятся системой терморегулирования. Отвод производится путем охлаждения воздуха жидкостью, которая в свою очередь охлаждается в змеевике, помещенном в космосе.

В период спуска на Землю, когда аппарат находится в атмосфере, такой способ отвода излишков тепла из него исключается. За бортом спускаемого аппарата не вакуум, как в космическом пространстве, а поток раскаленного до огромной температуры газа. Специальными исследованиями установлено, что человек может выдерживать температуру 71°С в течение 67 мин без особого вреда для организма. А если тело человека предварительно переохладить всего на 1° С, указанную температуру он сможет выдерживать 114 мин. Время спуска с орбиты на Землю в среднем составляет 20 - 25 мин, т. е. оно гораздо меньше того времени, в течение которого человек может выдерживать температуру 71° С.

Однако температура атмосферы внутри спускаемого аппарата за счет внешнего нагревания и выделения тепла приборами может оказаться и больше, чем 70° С, и это уже будет опасно для здоровья и жизни членов экипажа. Поэтому все спускаемые аппараты снабжены системами регулирования температуры, которые могут работать и в условиях спуска аппарата в плотных слоях атмосферы Земли. Система терморегулирования, работающая во время снижения спускаемого аппарата, принципиально отличается от системы терморегулирования, работающей во время нахождения космического корабля в безвоздушном пространстве. Принцип ее работы заключается в отводе тепла путем испарения жидкости. Испарение жидкости происходит за счет тепла, содержащегося в отсеке спускаемого аппарата. Образующиеся при этом пары отводятся за борт аппарата. Жидкость, применяющаяся в системе терморегулирования спускаемого аппарата, должна обладать следующими свойствами: иметь большую теплоту испарения и низкую температуру кипения. Такими свойствами обладают некоторые сжиженные газы, в частности аммиак. Жидкий аммиак кипит при температуре - 33° С, но, находясь в баллоне под давлением в несколько атмосфер, он сохраняет жидкое состояние при нормальной комнатной температуре.

А что произойдет, если в баке с жидким аммиаком постепенно уменьшать давление при помощи вентиля? Аммиак станет вскипать и в газообразном состоянии выходить наружу. Образование газа из жидкости сопровождается поглощением тепла. Откуда берется тепло, необходимое для испарения аммиака? Из окружающей среды. Баллон очень скоро станет холодным. Теплый воздух помещения будет нагревать баллон, а он в свою очередь будет отдавать тепло испаряющемуся аммиаку. Так постепенно весь воздух, находящийся в помещении, можно охладить до нужной температуры; для этого конечно, потребуется испарить определенное количество аммиака. Охлаждение воздуха в отсеке спускаемого аппарата, где находится экипаж, проводится таким же образом, только пары вещества, испаряющегося в специальном устройстве, выбрасываются не в отсек, а но трубкам отводятся за борт аппарата.

Хотя атмосфера Земли и является причиной очень сильного разогревания спускаемого аппарата во время его спуска на Землю, она в то же время служит средством торможения. С помощью атмосферы можно «погасить» огромные космические скорости. Но можно ли безопасно приземлять спускаемый аппарат, если тормозить его только атмосферой? Конечно, нет. Прыжок из окна первого этажа не представляет никакой опасности, а со второго прыгнет не каждый. С третьего этажа и выше прыгать опасно. Под действием силы тяжести, создающей ускорение, скорость приземления человека, прыгающего из окна высокого дома, достигает такой величины, при которой он сможет разбиться. Какую же скорость должен иметь спускаемый аппарат в момент приземления, чтобы удар его о Землю был не опасен как для членов экипажа, так и для аппаратуры, установленной в нем. Лучше всего, конечно, приземляться так, чтобы скорость аппарата в момент соприкосновения с поверхностью Земли была бы равна нулю или во всяком случае не превышала 2 м/сек. При атом условии посадка будет мягкой, совершенно безопасной и для экипажа и для конструкции аппарата.

Довольно жесткий удар, но еще терпимый, будет ощущаться, если приземление происходит со скоростью подхода к поверхности Земли 5 - 6 м/сек. А если скорость будет больше? Понятно, что это плохо и для экипажа, и для аппаратуры.

Начиная с некоторой высоты, спускаемый аппарат ведет себя как обычное тело, падающее на Землю с некоторой начальной скоростью. Скорость его падения по сравнению с первой космической скоростью будет небольшой. Например, тело, сброшенное с самолета, летящего на высоте 2000 м, приземлится со скоростью 200 м/сек (v² = √2gH). 200 м/сек - это небольшая скорость, но приземляться с такой скоростью, безусловно, нельзя. Как же обеспечить безопасное приземление?

Находясь уже не в космосе, а в непосредственной близости от Земли, можно воспользоваться обычными, земными средствами. Парашют - испытанный способ спуска с высоты на Землю. Правда, спуск космического аппарата на парашютах, после того как он потеряет за счет тормозящего действия атмосферы значительную часть своей скорости, происходит не так, как спуск парашютиста, прыгающего с борта самолета. Спускаемый аппарат имеет на борту, как правило, два основных парашюта и третий вспомогательный. Первый, тормозной парашют (он гораздо меньше по размеру, чем второй) раскрывается во время движения космического аппарата со скоростью около 250 м/сек. Его назначение - несколько снизить скорость аппарата, поэтому этот парашют и называют тормозным.

Второй, основной парашют служит для обеспечения плавной посадки аппарата на Землю. Размер купола его в несколько раз больше, чем у тормозного парашюта, а поэтому и тормозящее действие значительно больше. Почему сразу не выбрасывается большой парашют? Этого делать нельзя. При большой скорости движения на него будет действовать слишком большая нагрузка и он может порваться. А для чего нужен вспомогательный парашют? Его назначение: вытянуть основной парашют из гнезда, в котором он уложен. Основной парашют имеет и большой размер и большую массу. Чтобы сбросить его с борта спускаемого аппарата, требуется затратить значительное усилие. Вспомогательный парашют невелик по размеру, вытянуть его из гнезда не представляет большой трудности. Этот небольшой парашют крепится к кольцу второго, основного парашюта. Когда вспомогательный парашют раскрывается в воздухе, давление потока воздуха на его купол создает силу, достаточную для того, чтобы вытянуть из гнезда основной парашют.

Система парашютов обеспечивает спуск и приземление спускаемого аппарата, при котором удар о Землю не сопровождается толчками, опасными для экипажа. Однако приземление с помощью парашютов не обеспечивает мягкой посадки. Правда, если парашют сделать очень больших размеров, посадку можно было бы производить и мягко (т. е. со скоростью приземления не более 2 м/сек). Есть другой, более приемлемый способ, позволяющий обеспечить мягкую посадку, при котором не требуется большого увеличения веса спускаемого аппарата. На борту аппарата можно иметь реактивный двигатель, который следует включить в тот момент, когда аппарат будет на высоте 1 - 2 м над поверхностью Земли. Направление силы тяги двигателя должно быть противоположно направлению движения аппарата. Тягу двигателя можно выбрать такой, чтобы его работа в течение заданного времени (обычно это доли секунды) полностью приостановила падение аппарата на Землю на высоте 0,2 - 0,15 м. Аппарат как бы повиснет в воздухе на какое-то мгновение. После того как двигатель прекратит работу, спускаемый аппарат снова будет падать на Землю. Но с какой высоты? Всего лишь 0,2 - 0,15 м. Падение с такой высоты не даст резкого удара, приземление будет мягким и совершенно безопасным.

Спуск на Землю без применения тормозных двигателей приводит лишь к некоторой жесткости приземления, однако такой спуск все же безопасен. Но на некоторых небесных телах, в частности на Луне, атмосферы нет. Следовательно, произвести спуск космического объекта на поверхность Луны с помощью парашютов невозможно. Безопасный спуск космических объектов на планеты, не имеющие достаточно плотной атмосферы, можно обеспечить только с помощью тормозных двигателей.

с. 1
УПК-8, Краснокамск

Викторина


  1. Почему конструкторы предлагают покрывать спускаемые отсеки космического корабля слоем легкоплавкого материала?
Это делается для обеспечения безопасности, чтобы отсек не перегрелся. Действует так называемая абляционная защита (от англ. ablation - абляция; унос массы) - технология защиты космических кораблей.

Температура корабля при входе в плотные слои атмосферы достигает нескольких тысяч градусов, абляционная защита в таких условиях постепенно сгорает, разрушается, и уносится потоком, таким образом, отводя тепло от корпуса аппарата.

Т ехнология защиты космических кораблей , теплозащита на основе абляционных материалов, конструктивно состоит из силового набора элементов (асбесто текстолитовые кольца) и «обмазки», состоящей из фенолформальдегидных смол или аналогичных по характеристикам материалов.

Абляционная теплозащита использовалась в конструкциях всех спускаемых аппаратов с первых лет развития космонавтики (серии кораблей «Восток », «Восход », «Меркурий », «Джемини », «Аполлон », «ТКС »), продолжает использоваться в кораблях «Союз » и «Шэньчжоу ».

Альтернативой абляционной теплозащите является использование термостойких теплозащитных плиток («Шаттл », «Буран »).

2.Можно ли пользоваться на космической станции маятниковыми часами?

Маятник работает за счет силы тяжести, а на космической станции ее нет, здесь состояние невесомости. Маятниковые часы здесь не будут работать. На космической станции будут работать механические (пружинные) часы.

Первые часы, совершившие полёт в космос, принадлежали Юрию Алексеевичу Гагарину. Это были советские «Штурманские». С 1994 года официальными часами Центра подготовки космонавтов стали швейцарские часы Fortis. В начале 2000 годов на МКС испытывали орбитальные часы «Космонавигатор», разработанные летчиком-космонавтом Владимиром Джанибековым. Этот прибор позволял в любой момент времени определить, над какой точкой Земли находятся корабль. Первые специальные часы для использования в открытом космосе - японские Spring Drive Spacewalk. Электронные часы на орбите не прижились. Космический корабль пронизывают частицы высокой энергии, которые выводят из строя незащищенные микросхемы

3 Можно ли в невесомости пить воду из стакана?

До первых полетов в космос ученым было во многом загадкой, как организовать в состоянии невесомости прием пищи. Было известно, что жидкость или соберется в шар, или растечется по стенкам, смачивая их. Значит, пить воду из стакана невозможно. Предлагалось космонавту высасывать её из сосуда.

Практика в основном подтвердила эти предположения, но и внесла некоторые существенные поправки. Питаться из тюбиков оказалось удобно, но, соблюдая аккуратность, можно есть пищу и в ее земном виде. Космонавты брали с собой жареное мясо, ломти хлеба. На корабле «Восход» было организовано для экипажа четырехразовое питание. А при полете Быковского телезрители видели, как он ел зеленый лук, пил воду из пластмассового флакончика и с особым удовольствием ел воблу.

Мы видели на сайте http://www.youtube.com/watch?v=OkUIgVzanPM как американские астронавты пьют кофе. Но стакан там тоже пластиковый, его форму можно изменить. Можно выдавливать из него жидкость. Значит, воду их обычного твердого стеклянного стакана пить практически невозможно.

Сегодня у каждого члена экипажа Международной космической станции (МКС) для питья есть индивидуальный мундштук, который насаживается на шприцы разветвлённой бортовой системы водоснабжения «Родник» . Вода в системе «Родник» не простая, а посеребрённая. Её пропускают через особые серебряные фильтры , что предохраняет экипаж от возможности разнообразных инфекций.

Но возможно, в ближайшем будущем космонавты легко смогут пить воду из обычного стакана. Планируются широкомасштабные исследования поведения жидкостей и газов в невесомости на независимой от МКС платформе. Сейчас идут проектные работы, в которых участвуют преподаватели и студенты кафедры общей физики Пермского университета. Исследования в этом направлении ведутся в Перми более 30 лет.

4.Кто из космонавтов первым побывал в открытом космосе?

Первым вышел в открытый космос советский космонавт Алексей Архипович Леонов 18 марта 1965 года с борта космического корабля «Восход-2» с использованием гибкой шлюзовой камеры. Через 1 час 35 минут после старта (в начале 2-го витка) Алексей Леонов первым в мире покинул космический корабль, о чем на весь мир объявил командир корабля Павел Беляев: "Внимание! Человек вышел в космическое пространство! Человек вышел в космическое пространство!" Телевизионное изображение парящего на фоне Земли Алексея Леонова транслировалось по всем телеканалам. В это время он удалялся от корабля на расстояние до 5.35 м . Его скафандр расходовал около 30 литров кислорода в минуту при общем запасе в 1666 литров, рассчитанном на 30 минут работы в открытом космосе. Возвращаться на корабль ему было очень трудно. Об этом он говорит в интервью со страниц журнала «Генеральный директор» (№3, 2013 г.): «Из-за деформации скафандра (он раздулся) фаланги пальцев вышли из перчаток, поэтому сматывать фал было очень трудно. Кроме того, войти в шлюз корабля ногами вперед, как положено, стало невозможно. …Паниковать было некогда: до захода в тень оставалось всего пять минут, а в тени смотать фал невозможно. …Я все время думал о том, что случится через пять минут, а что – через тридцать. И действовал исходя из этих соображений».

Общее время первого выхода составило 23 минуты 41 секунду (из них вне корабля 12 минут 9 секунд). Он провел медико-биологические исследования, помог в решении задач космической навигации. По итогам выхода был сделан вывод о возможности работать в открытом космосе.

Из-за внештатной ситуации корабль приземлился в Пермском крае, у деревни Кургановка, на границе Усольского и Соликамского районов 19 марта 1965 г. Их не сразу нашли в глухой уральской тайге. В память об этом событии в Перми появились улицы Беляева, Леонова, шоссе Космонавтов. Через три года космонавты снова побывали здесь. На месте приземления была установлена стела. Алексей Леонов не раз был гостем Перми.

Космонавты стали почетными гражданами Перми. А вообще среди почетных граждан Перми более трети связаны с космической отраслью. Ведь дорога в космос начинается у нас. В марте 1958 г. правительство СССР приняло решение о развертывании производства ракет и ракетных двигателей на пермских предприятиях. 19 крупнейших заводов и конструкторских бюро работали на космос. Ракеты, оснащенные пермскими двигателями, вывели в космос сотни космических аппаратов. Сегодня в Перми действуют три предприятия, на которых собирают отдельные узлы или целые двигатели космических ракет. «Протон-ПМ» производит жидкостные двигатели к ракетам-носителям «Протон». НПО «Искра» выпускает ракетные двигатели на твердом топливе, а Пермский завод «Машиностроитель» занимается изготовлением различных механизмов ракет.

Пермские вузы выпускают специалистов для аэрокосмической отрасли, а ещё проводят исследовательские программы по космической тематике.

В 2013 году коллектив учёных кафедры общей физики физического факультета Пермского Государственного научно-исследовательского университета снова приглашён к участию в реализации Федеральной космической программы России. Вместе со специалистами Ракетно-космической корпорации «Энергия» физики Пермского госуниверситета разработают научную аппаратуру и программу прикладных исследований для новейшего космического аппарата «ОКА-Т».
с. 1


Электронно-вычислительные машины Центра управления и бортовая ЭВМ выдали все необходимые данные для ориентации спускаемого аппарата. Поочередно включаются и выключаются ракетные движки ориентации. Спускаемый аппарат разворачивается под нужным углом к горизонту. Теперь сопло тормозного двигателя смотрит в направлении полета. Внизу появляется Африка. Пора. В заранее рассчитанный на ЭВМ момент с точностью до долей секунды включается тормозной двигатель. Мощность этого двигателя мала, и работает он всего лишь десятки секунд. В результате его работы спускаемый аппарат замедляется примерно на 200 м/сек. Это очень незначительное уменьшение, но этого достаточно — ведь скорость стала уже меньше первой космической и под действием силы притяжения спускаемый аппарат начинает сходить с орбиты и постепенно приближаться к Земле. Сначала он движется в очень разреженной атмосфере — плотность воздуха здесь в миллиард (!) раз меньше, чем у поверхности Земли. И только поэтому спутники и орбитальные станции могут летать здесь достаточно долго. Если бы мы запустили спутник на орбиту с высотой 100 километров, то он не сделал бы даже одного оборота вокруг Земли, хотя здесь плотность воздуха в миллион раз меньше, чем у поверхности Земли. Для того чтобы летать вокруг Земли на этих высотах, нужно время от времени включать двигатель.

Итак, спускаемый аппарат, снижаясь под действием силы притяжения Земли, постепенно входит во все более плотные слои атмосферы. Чем ниже, тем больше сопротивление воздуха, тем сильнее тормозит он спускаемый аппарат, тем меньше становится скорость, тем круче становится траектория его снижения.

Однако что значит «тем меньше становится скорость»? Это ведь означает, что уменьшается кинетическая энергия аппарата. А мы знаем, что энергия не исчезает и не появляется — она лишь может переходить из одного вида в другой. В данном случае кинетическая энергия спускаемого аппарата переходит в тепловую, то есть расходуется на нагрев встречного воздуха и самого спускаемого аппарата.

Как происходит передача и превращение энергии, мы здесь рассматривать не будем. Сейчас для нас важно, что эта кинетическая энергия огромна — такая же, как у тяжелогруженого железнодорожного состава, мчащегося со скоростью 100 км/час! И почти вся эта огромная энергия должна превратиться в тепловую. Если не принять специальных мер, то одной трети ее будет достаточно, чтобы превратить весь спускаемый аппарат в пар.

В результате торможения передняя поверхность спускаемого аппарата нагревается до температуры примерно 6000°. Такую температуру будет иметь воздух у передней стенки спускаемого аппарата. Это уже не привычный нам воздух, состоящий из молекул азота, кислорода и углекислого газа, а плазма, состоящая из атомов азота, кислорода и углерода, ионов и электронов.

Вспомните таблицу температур плавления различных веществ. Найдется в ней хоть один материал, который при такой температуре останется в твердом состоянии? Нет. Все известные нам материалы при такой температуре превращаются в жидкость или даже в пар. И даже если бы мы имели материал, который не плавился бы при такой температуре, этого мало. Ведь самое главное заключается в том, чтобы возникающее при торможении огромное количество тепла не передавалось внутрь спускаемого аппарата. Какова бы ни была температура вне спускаемого аппарата, в отсеке экипажа она должна быть обычной, комнатной. Для этого стенки спускаемого аппарата должны хорошо защищать от тепла, то есть иметь малую теплопроводность. Но и это не все. Они должны быть очень прочными — ведь при торможении в плотных слоях спускаемый аппарат подвергается огромному давлению. Кроме того, нужно, чтобы стенки корабля имели возможно меньший вес, ибо на космическом корабле каждый грамм веса на счету.

Итак, материал должен иметь и высокую температуру плавления, и низкую теплопроводность, и высокую прочность, и к тому же малый удельный вес. И хотя в наше время ученые создали и создают множество самых разнообразных искусственных материалов, ни один из них не может удовлетворить одновременно всем этим требованиям.

Как же быть? Когда этот вопрос возник, ученые и инженеры начали интенсивные поиски выхода из создавшегося положения. Может быть, покрыть весь спускаемый аппарат медной обшивкой? У меди очень хорошая теплопроводность, и за счет этого тепло с передней поверхности будет отводиться на боковые и заднюю стенки спускаемого аппарата (сильно нагревается только передняя, лобовая поверхность корабля).
Но такая обшивка будет весить целую тонну, а это значит, что стартовый вес ракеты-носителя и, следовательно, тягу двигателя придется увеличить на 50 тонн. Кроме того, в этом случае почти все тепло все равно останется на корабле и постепенно пройдет внутрь спускаемого аппарата.

Было предложение делать переднюю поверхность аппарата пористой (то есть имеющей множество мельчайших дырочек) и через эти поры во время спуска продавливать холодную жидкость или выдувать газ изнутри корабля. Эта идея вообще-то неплоха, но осуществить ее трудно, так как при высоких температурах и давлениях, возникающих на передней поверхности спускаемого аппарата, поры будут засоряться, заплавляться и т. д.

Наиболее эффективный способ предложили советские ученые. Сейчас этот способ применяется при возвращении на Землю всех спускаемых аппаратов — и советских, и американских.

Ученые рассуждали примерно так. Материалов, удовлетворяющих всем четырем требованиям, в настоящее время нет, и вряд ли удастся создать их в ближайшие годы. Нет даже материала, который удовлетворял бы только первому требованию, то есть имел бы достаточно высокие температуры плавления и испарения. Но ведь главная-то задача состоит в том, чтобы температура в отсеке экипажа оставалась комнатной, то есть чтобы как можно меньше тепла прошло внутрь корабля. А этого можно добиться следующим образом.

Покроем переднюю стенку спускаемого аппарата материалом, который хотя и плавится или испаряется при такой температуре, но требует для своего плавления и испарения большого количества тепла (или, как говорят ученые, имеет большие скрытые теплоты фазовых переходов), а в расплавленном состоянии обладает малой вязкостью (легко течет). Тогда во время спуска этот материал будет нагреваться, плавиться и испаряться, а как только он расплавится, капли и пары материала будут встречным потоком воздуха сдуваться с поверхности спускаемого аппарата. При этом тепло, которое накопилось в каплях и парах при нагреве, плавлении и испарении материала, будет уноситься с аппарата вместе с каплями и парами вместо того, чтобы передаваться от них внутрь корабля.

Чтобы уменьшить теплопередачу внутрь аппарата, под слоем этого материала нужно расположить слой материала с очень низкой теплопроводностью. Прочность конструкции можно обеспечить, сделав третий слой — каркас из легких титановых сплавов, а к нему прикрепить «уносящийся» панцирь из низкотеплопроводного материала. Этот способ получил название «теплозащиты за счет уноса массы».

Именно этот способ и применяется в настоящее время на всех спускаемых аппаратах. Таким образом, во время снижения в плотных слоях атмосферы спускаемый аппарат мчится, окруженный пеленой раскаленной плазмы и капель теплозащитного материала. Эта пелена обволакивает и антенны корабля, а так как плазма не пропускает радиоволны, то прекращается связь с Землей. Но это длится всего несколько минут. Воздух так сильно тормозит корабль, что, пока он спускается со 100 километров до 30 километров, его скорость уменьшается в 56 раз! Теперь уже можно выпускать стабилизирующий парашют с диаметром купола в несколько метров, а на высоте 10 километров — основной, диаметром в несколько десятков метров. Очень просто и остроумно придумали конструкторы, как сделать, что

бы корабль встречался с поверхностью Земли мягко, совсем без удара (без толчка). Для этого с нижней стороны из аппарата выпускается штырь длиной примерно в один метр. Когда этот штырь втыкается в поверхность Земли, он автоматически включает твердотопливные двигатели мягкой посадки, сопла которых направлены вниз. В результате гасятся остатки скорости.

Почему же применяется такая сложная система спуска и посадки? Почему не тормозить спускаемый аппарат с начала и до конца с помощью ракетного двигателя? Ответ простой: это невыгодно, а для достаточно тяжелого спускаемого аппарата и просто невозможно.

Дело вот в чем. Для запуска спутника, то есть для разгона его до первой космической скорости, требуется ракета-носитель, вес которой на старте должен быть больше веса спутника примерно в 50 раз. Если мы захотим запустить спутник весом 5 тонн, то потребуется ракета весом 250 тонн. Если мы захотим вернуть спутник на Землю, мы должны затормозить его от первой космической скорости до нулевой — чтобы обеспечить мягкую посадку. А для этого потребуется такая же ракета — весом 200 тонн. Ее мы должны захватить с собой при старте корабля с Земли. Но тогда мы должны вывести на орбиту не 5 тонн груза, а уже 255 тонн. А чтобы это сделать, нужно взять ракету весом 12 700 тонн. Чтобы оторвать ракету от поверхности Земли, тяга ее на старте должна быть хотя бы немного больше ее стартового веса, то есть в данном случае примерно 13 000 тонн. А таких ракет пока нет — самая мощная современная ракета пока имеет тягу примерно 3500 тонн.

Понятно также, что и стоимость такого полета возрастает во много раз.

Таким образом, гораздо выгоднее использовать для основного торможения при посадке на Землю сопротивление воздуха. Это относится к посадке и на другие планеты, обладающие атмосферой,— такие, как Венера, Марс, Юпитер и т. п. Другое дело—посадка на небесные тела, лишенные атмосферы, — например, на Луну. Здесь уж ничего не поделаешь— тормозить можно только двигателями.

Вернемся к спуску корабля на Землю (или на другую планету, обладающую атмосферой), а именно, к моменту, когда спускаемый аппарат только что сошел с орбиты и пошел к Земле. Очень важно, насколько крутой будет траектория его полета. Даже самые тренированные космонавты погибнут, если вес их тела станет в десять—тринадцать раз больше, чем на Земле. Действительно, представьте себе, что на вас взгромоздили груз в десять раз больше вашего собственного веса, — вы будете раздавлены им. Вот в таком же положении окажутся и космонавты.

Но и чересчур пологой траектория тоже не должна быть. Иначе корабль очень долго будет лететь к Земле, в результате чего он будет слишком нагреваться и температура внутри него станет больше, чем могут выдержать космонавты.

От чего зависит крутизна траектории? Если тормозной двигатель будет включен дольше, чем нужно, — спускаемый аппарат пойдет слишком круто. Точно такой же результат получится, если сила тяги окажется больше, чем нужно. Крутизна траектории зависит также и от направления сопла двигателя во время торможения.

Особенно большое значение это имеет в случае неуправляемого — баллистического—спуска. Если спускаемый аппарат имеет форму шара, то такой корабль не обладает аэродинамическим качеством (подемкой силой). Это значит, что во время его спуска даже в плотных слоях атмосферы космонавты не имеют никакой возможности изменить траекторию. Спуск происходит по так называемой баллистической траектории (по такой траектории будет падать камень, если вы бросите его с вершины горы в горизонтальном направлении) и называется баллистическим, или неуправляемым, спуском. Вся траектория такого спуска, в том числе и место посадки, определяется уже в момент окончания работы тормозного двигателя, когда корабль только-только сошел с орбиты. Если крутизна будет задана неправильно (например, вследствие того, что тормозной двигатель проработал на несколько секунд больше или меньше, чем требовалось), спускаемый аппарат приземлится на несколько десятков и даже сотен километров ближе или дальше, чем предполагалось. А это значит, что корабль может приземлиться в горах, в тайге или в море, а не в ровной степи. Конечно, спускаемый аппарат не утонет и космонавты не погибнут, даже если корабль опустится в воду или в тайге, — у космонавтов есть с собой и рация, и сигнальные ракеты, запасы пищи и т. д., — однако это все-таки связано и с риском, и с дополнительными трудностями. Представьте, например, что будет, если они приземлятся на склон высокой и крутой горы.

Избежать этих трудностей и неприятностей можно, если придать спускаемому аппарату такую форму, которая обладает подъемной силой. Для этого форма аппарата должна быть несимметричной относительно направления полета. Именно такую форму, получившую название сегментально-конической, имеют современные спускаемые аппараты.

Когда ось спускаемого аппарата совпадает с направлением полета (угол атаки равен нулю), подъемная сила равна нулю. Изменяя угол атаки, то есть наклон спускаемого аппарата относительно оси полета, космонавты увеличивают или уменьшают тем самым подъемную силу и за счет этого могут изменять траекторию спуска и выбирать место посадки. Кроме того, таким образом можно регулировать и перегрузки.

Летит такой спускаемый аппарат сегментальной частью вперед. В этом положении сопротивление воздуха значительно больше, чем если бы он летел конической частью вперед. А чем больше сопротивление, тем быстрее тормозится корабль. Если бы аппарат летел конической частью вперед, он подошел бы к поверхности Земли со слишком большой скоростью.

Сегментально-конические спускаемые аппараты с высоты 20—30 километров опускаются на парашюте— так же, как и шарообразные.


15 июля исполнилось 40 лет миссии "Союз-Аполлон", историческому полету, который часто считают окончанием космической гонки. Впервые два корабля, построенные на противоположных полушариях, встретились и состыковались в космосе. "Союз" и "Аполлон" были уже третьим поколением космических аппаратов. К этому моменту конструкторские коллективы уже "набили шишки" на первых экспериментах, и новые корабли должны были находиться в космосе долго и выполнять новые сложные задачи. Думаю, будет интересно посмотреть, к каким техническим решениям пришли коллективы конструкторов.

Введение

Любопытно, но в изначальных планах и "Союзы" и "Аполлоны" должны были стать аппаратами второго поколения. Но в США достаточно быстро осознали, что между последним полетом "Меркурия" и первым полетом "Аполлона" пройдет несколько лет, и для того, чтобы это время не пропало зря, была запущена программа "Джемини". А СССР ответил на "Джемини" своими "Восходами" .

Также, для обоих аппаратов главной целью была Луна. США не жалели денег на лунную гонку, потому что до 1966 года СССР имел приоритет во всех значимых космических достижениях. Первый спутник, первые лунные станции, первый человек на орбите и первый человек в открытом космосе - все эти достижения были советскими. Американцы изо всех сил стремились "догнать и перегнать" Советский Союз. А в СССР задача пилотируемой лунной программы на фоне космических побед затмевалась другими насущными задачами, например, надо было догонять США по количеству баллистических ракет. Пилотируемые лунные программы - это отдельный большой разговор, а здесь мы поговорим про аппараты в орбитальной конфигурации, такой, в какой они встретились на орбите 17 июля 1975 года. Также, поскольку корабль "Союз" летает много лет и претерпел множество модификаций, говоря о "Союзе", мы будем иметь в виду версии близкие по времени к полету "Союз-Аполлона".

Средства выведения

Ракета-носитель, про которую обычно редко вспоминают, выводит космический корабль на орбиту и определяет многие его параметры, главными из которых будут максимальный вес и максимальный возможный диаметр.

В СССР для вывода нового корабля на околоземную орбиту решили использовать новую модификацию ракеты семейства "Р-7". На РН "Восход" заменили двигатель третьей ступени на более мощный, что увеличило грузоподъемность с 6 до 7 тонн. Корабль не мог иметь диаметр больше 3 метров, потому что в 60-х годах аналоговые системы управления не могли стабилизировать надкалиберные обтекатели.


Слева схема РН "Союз", справа - старт корабля "Союз-19" миссии "Союз-Аполлон"

В США для орбитальных полетов использовалась специально разработанная для "Аполлонов" РН "Saturn-I" В модификации -I она могла вывести на орбиту 18 тонн, а в модификации -IB - 21 тонну. Диаметр "Сатурна" превышал 6 метров, поэтому ограничения на размер космического корабля были минимальными.


Слева Saturn-IB в разрезе, справа - старт корабля "Apollo" миссии "Союз-Аполлон"

По размерам и весу "Союз" легче, тоньше и меньше "Аполлона". "Союз" весил 6,5-6,8 т. и имел максимальный диаметр 2,72 м. "Аполлон" имел максимальную массу 28 т (в лунном варианте, для околоземных миссий топливные баки были не полностью залиты) и максимальный диаметр 3,9 м.

Внешний вид


"Союз" и "Аполлон" реализовывали ставшую уже стандартной схему деления корабля на отсеки. Оба корабля имели приборно-агрегатный отсек (в США он называется сервисным модулем), спускаемый аппарат (командный модуль). Спускаемый аппарат "Союза" получился очень тесным, поэтому на корабль был добавлен бытовой отсек, который также мог использоваться как шлюзовая камера для выхода в открытый космос. В миссии "Союз-Аполлон" американский корабль также имел третий модуль, специальную шлюзовую камеру для перехода между кораблями.

"Союз" по советской традиции запускался целиком под обтекателем. Это позволяло не заботиться об аэродинамике корабля на выведении и располагать на наружной поверхности хрупкие антенны, датчики, солнечные батареи и прочие элементы. Также, бытовой отсек и спускаемый аппарат покрыты слоем космической теплоизоляции. "Аполлоны" продолжали американскую традицию - аппарат на выведении был закрыт лишь частично, носовую часть прикрывала баллистическая крышка, выполненная конструктивно вместе с системой спасения, а с хвостовой части корабль был закрыт переходником-обтекателем.


"Союз-19" в полете, съемка с борта "Аполлона". Темно-зеленое покрытие - теплоизоляция


"Аполлон", съемка с борта "Союза". На маршевом двигателе, похоже, местами вспучилась краска


"Союз" более поздней модификации в разрезе


"Аполлон" в разрезе

Форма спускаемого аппарата и теплозащита



Спуск корабля "Союз" в атмосфере, вид с земли

Спускаемые аппараты "Союза" и "Аполлона" похожи друг на друга больше, чем это было в предыдущих поколениях космических кораблей. В СССР конструкторы отказались от сферического спускаемого аппарата - при возвращении с Луны он потребовал бы очень узкого коридора входа (максимальная и минимальная высота, между которыми нужно попасть для успешной посадки), создал бы перегрузку свыше 12 g, а район посадки измерялся бы десятками, если не сотнями, километров. Конический спускаемый аппарат создавал подъемную силу при торможении в атмосфере и, поворачиваясь, менял ее направление, управляя полетом. При возвращении с земной орбиты перегрузка снижалась с 9 до 3-5 g, а при возвращении с Луны - с 12 до 7-8 g. Управляемый спуск серьезно расширял коридор входа, повышая надежность посадки, и очень серьезно уменьшал размеры района посадки, облегчая поиск и эвакуацию космонавтов.


Расчет несимметричного обтекания конуса при торможении в атмосфере


Спускаемые аппараты "Союза" и "Аполлона"

Диаметр 4 м, выбранный для "Аполлона", позволил сделать конус с углом полураствора 33°. Такой спускаемый аппарат имеет аэродинамическое качество порядка 0,45, а его боковые стенки практически не нагреваются при торможении. Но его недостатком были две точки устойчивого равновесия - "Аполлон" должен был входить в атмосферу ориентированным дном по направлению полета, потому что в случае входа в атмосферу боком, он мог перевернуться в положение "носом вперед" и погубить астронавтов. Диаметр 2,7 м для "Союза" делал такой конус нерациональным - слишком много места пропадало впустую. Поэтому был создан спускаемый аппарат типа "фара" с углом полураствора всего 7°. Он эффективно использует пространство, имеет только одну точку устойчивого равновесия, но его аэродинамическое качество ниже, порядка 0,3, а для боковых стенок требуется теплозащита.

В качестве теплозащитного покрытия использовались уже освоенные материалы. В СССР применяли фенол-формальдегидные смолы на тканевой основе, а в США - эпоксидную смолу на матрице из стеклопластика. Механизм работы был одинаковый - теплозащита обгорала и разрушалась, создавая дополнительный слой между кораблем и атмосферой, а сгоревшие частицы принимали на себя и уносили тепловую энергию.


Материал теплозащиты "Аполлона" до и после полета

Двигательная система

И "Аполлоны" и "Союзы" имели маршевые двигатели для коррекции орбиты и двигатели ориентации для изменения положения корабля в пространстве и выполнения точных маневров по стыковке. На "Союзе" система орбитального маневрирования была установлена впервые для советских космических кораблей. По каким-то причинам конструкторы выбрали не очень удачную компоновку, когда маршевый двигатель работал от одного топлива (НДМГ+АТ), а двигатели причаливания и ориентации - от другого (перекись водорода). В сочетании с тем, что на "Союзе" баки вмещали 500 кг топлива, а на "Аполлоне" 18 тонн, это привело к разнице запаса характеристической скорости на порядок - "Аполлон" мог изменить свою скорость на 2800 м/с, а "Союз" только на 215 м/с. Больший запас характеристической скорости даже недозаправленного "Аполлона" делал его очевидным кандидатом на активную роль при сближении и стыковке.


Корма "Союза-19", хорошо видны сопла двигателей


Двигатели ориентации "Аполлона" крупным планом

Система посадки

Системы посадки развивали наработки и традиции соответствующих стран. США продолжали сажать корабли на воду. После экспериментов с системами посадки "Меркуриев" и "Джемини" был выбран простой и надежный вариант - на корабле стояли два тормозных и три основных парашюта. Основные парашюты были резервированы, и безопасная посадка обеспечивалась при отказе одного из них. Такой отказ произошел при посадке "Аполлона-15", и ничего страшного не случилось. Резервирование парашютов позволило отказаться от индивидуальных парашютов астронавтов "Меркурия" и катапультных кресел "Джемини".


Схема посадки "Аполлона"

В СССР традиционно сажали корабль на сушу. Идеологически система посадки развивает парашютно-реактивную посадку "Восходов". После сброса крышки парашютного контейнера срабатывают последовательно вытяжной, тормозной и основной парашюты (на случай отказа системы установлен запасной). Корабль спускается на одном парашюте, на высоте 5,8 км сбрасывается теплозащитный экран, а на высоте ~1 м срабатывают реактивные двигатели мягкой посадки (ДМП). Система получилась интересная - работа ДМП создает эффектные кадры, но комфортность посадки изменяется в очень широком диапазоне. Если космонавтам везет, то удар о землю практически неощутим. Если нет, то корабль может чувствительно удариться о землю, а если совсем не повезет, то еще и опрокинется на бок.


Схема посадки


Совершенно нормальная работа ДМП


Дно спускаемого аппарата. Три круга сверху - ДМП, еще три - с противоположной стороны

Система аварийного спасения

Любопытно, но, идя разными путями, СССР и США пришли к одинаковой системе спасения. В случае аварии специальный твердотопливный двигатель, стоявший на самом верху ракеты-носителя, отрывал спускаемый аппарат с космонавтами и уносил его в сторону. Посадка производилась штатными средствами спускаемого аппарата. Такая система спасения оказалась самой хорошей из всех использованных вариантов - она простая, надежная и обеспечивает спасение космонавтов на всех этапах выведения. В реальной аварии она применялась один раз и спасла жизни Владимира Титова и Геннадия Стрекалова, унеся спускаемый аппарат от горящей в стартовом сооружении ракеты.


Слева направо САС "Аполлона", САС "Союза", различные версии САС "Союза"

Система терморегуляции

В обоих кораблях использовалась система терморегуляции с теплоносителем и радиаторами. Покрашенные в белый цвет для лучшего излучения тепла радиаторы стояли на сервисных модулях и даже выглядели одинаково:

Средства обеспечения ВКД

И "Аполлоны" и "Союзы" проектировали с учетом возможной необходимости внекорабельной деятельности (выхода в открытый космос). Конструкторские решения также были традиционными для стран - США разгерметизировали весь командный модуль и выходили наружу через стандартный люк, а СССР использовал бытовой отсек в качестве шлюзовой камеры.


ВКД "Аполлона-9"

Система стыковки

И "Союз" и "Аполлон" использовали стыковочное устройство типа "штырь-конус". Поскольку при стыковке активно маневрировал корабль, и на "Союзе" и на "Аполлоне" были установлены штыри. А для программы "Союз-Аполлон", чтобы никому не было обидно, разработали универсальный андрогинный стыковочный агрегат. Андрогинность означала, что могли состыковаться любые два корабля с такими узлами (а не только парные, один со штырем, другой с конусом).


Стыковочный механизм "Аполлона". Он, кстати, использовался и в программе "Союз-Аполлон", с его помощью командный модуль стыковался со шлюзовой камерой


Схема стыковочного механизма "Союза", первая версия


"Союз-19", вид спереди. Хорошо виден стыковочный узел

Кабина и оборудование

По составу оборудования "Аполлон" заметно превосходил "Союз". Прежде всего, в состав оборудования "Аполлона" конструкторы сумели добавить полноценную гиростабилизированную платформу, которая с высокой точностью хранила данные о положении и скорости корабля. Далее, командный модуль имел мощный и гибкий для своего времени компьютер, который при необходимости можно было бы перепрограммировать прямо в полете (и такие случаи известны). Интересной особенностью "Аполлона" было также отдельное рабочее место для астронавигации. Оно использовалось только в космосе и было расположено под ногами астронавтов.


Панель управления, вид с левого кресла


Панель управления. Слева расположены органы управления полетом, по центру - двигателями ориентации, сверху аварийные индикаторы, снизу связь. В правой части индикаторы топлива, водорода и кислорода и управление электропитанием

Несмотря на то, что оборудование "Союза" было проще, оно было самым продвинутым для советских кораблей. На корабле впервые появился бортовой цифровой компьютер, а в состав систем корабля входило оборудование для автоматической стыковки. Впервые в космосе использовались многофункциональные индикаторы на электронно-лучевой трубке.


Панель управления кораблей "Союз"

Система электропитания

"Аполлоны" использовали очень удобную для полетов длительностью 2-3 недели систему - топливные элементы. Водород и кислород, соединяясь, вырабатывали энергию, а полученная вода использовалась экипажем. На "Союзах" в разных версиях стояли разные источники энергии. Были варианты с топливными элементами, а для полета "Союз-Аполлон" на корабле установили солнечные батареи.

Заключение

И "Союзы" и "Аполлоны" оказались по-своему очень удачными кораблями. "Аполлоны" успешно слетали к Луне и станции "Скайлэб". А "Союзы" получили крайне долгую и успешную жизнь, став основным кораблем для полетов к орбитальным станциям, с 2011 года они возят на МКС и американских астронавтов, и будут возить их, как минимум, до 2018 года.

Но за этот успех была заплачена очень дорогая цена. И "Союз" и "Аполлон" стали первыми кораблями, в которых погибли люди. Что еще печальнее, если бы конструкторы, инженеры и рабочие меньше спешили и после первых успехов не перестали бы бояться космоса, то Комаров, Добровольский, Волков, Пацаев, Гриссом, Уайт и Чеффи

Команда «Атланты»


Вопрос 1. Почему конструкторы предлагают покрывать спускаемые отсеки космического корабля слоем легкоплавкого материала?

Спускаемый аппарат – это устройство, предназначенное для осуществления мягкой посадки на Землю или другое тело Солнечной системы, чтобы предохранить человека или научную аппаратуру от больших перегрузок и тепловых потоков при прохождении атмосферного торможения.

Спускаемые аппараты космических кораблей по своей конструкции образуют две большие группы. Это спускаемые аппараты для посадки на планеты, имеющие атмосферу типа земной и плотнее, и спускаемые аппараты, предназначенные для посадки на тела Солнечной системы, не имеющие атмосферы. В состав первых в качестве обязательного условия входит теплозащитное покрытие для сохранения спускаемого аппарата от перегрева при торможении в верхних слоях атмосферы. На конечном участке торможения для осуществления мягкой посадки спускаемого аппарата, как правило, используется парашютная система.

Помимо разрушения спускаемого аппарата, происходит разогрев падающего тела до чудовищных температур вследствие превращения огромной кинетической энергии в тепло. Кинетическая энергия движущегося тела возрастает от увеличения скорости не линейно, а пропорционально квадрату скорости. Например, при нагреве металлов до плавления с последующим их кипением до полного испарения на каждый килограмм массы потребуется 8 МДж для железа, 6,5 МДж - для меди, 7,16 МДж - для магния, 11,6 МДж - для алюминия.

Конструкторы космических кораблей столкнулись с задачей обеспечения безопасного возвращения космонавтов на Землю. Один из путей решения: торможение космического аппарата, затрачивая немалую энергию, и обеспечение достаточно эффективной теплозащиты космического корабля от его нагрева при торможении в атмосфере планеты. Естественным желанием здесь было уменьшить количество затрачиваемой энергии на торможение или же в связи с большими потоками энергии сделать теплозащиту сравнительно небольшой массы, однако, естественно, не за счет снижения безопасности полета космонавтов при спуске на Землю.

Эта проблема легко разрешается, если ограничиться задачей спасти не весь космический аппарат, а только его часть, которая получила название спускаемого аппарата. В этом отдельном отсеке вполне можно разместить необходимую аппаратуру для исследования других планет, а также космонавтов и материалы, доставляемые на Землю после пилотируемого полета.

Большая часть кинетической энергии спускаемого аппарата, перешедшей в тепловую при торможении в атмосфере, должна рассеиваться во внешней среде, и лишь небольшая часть ее может быть поглощена массой конструкции или воспринята теплозащитными системами аппарата. При пологих траекториях спуска в атмосфере уровень перегрузок и интенсивность нагрева ниже, однако, из-за увеличения длительности снижения возрастает общая доля тепловой энергии, подводимой к поверхности аппарата.

Тепловая энергия при торможении космического аппарата поступает в атмосферу с его поверхности двумя основными путями - за счет конвекции в пограничном слое и за счет излучения фронта ударной волны. Лобовые наружные слои теплозащиты сублимируют, т.е. испаряются, и потоком воздуха уносятся, создавая светящийся след в атмосфере. Высокая температура в ударной волне ионизирует молекулы воздуха в атмосфере - возникает плазма. Плазменное покрывало охватывает большую часть спускаемого аппарата и как экраном закрывает несущийся в атмосфере спускаемый аппарат и тем самым лишает связи с космонавтами или с радиокомплексом автоматического аппарата при посадке. Причем в земных условиях ионизация образуется, как правило, на высотах 120–15 км при максимуме в интервале 80–40 км.

Почти вся энергия, сообщенная ракетой-носителем космическому аппарату, должна рассеяться в атмосфере при его торможении. Однако определенная часть этой энергии ведет к нагреву спускаемого аппарата при его движении в атмосфере. Без достаточной защиты металлическая его конструкция сгорает при входе в атмосферу и аппарат прекращает свое существование. Тепловая защита должна быть хорошим изолятором тепловой энергии, т.е. обладать малой способностью к теплопередаче и быть жаростойкой. Таким требованиям отвечают отдельные сорта искусственных материалов - пластмасс. Спускаемый аппарат покрывают теплозащитным экраном, как правило, из этих искусственных материалов, состоящим из нескольких слоев. Причем внешний слой состоит обычно из относительно прочных пластмасс с графитовым заполнением как наиболее тугоплавким материалом, а следующий термоизоляционный слой - чаще всего из пластика со стекловолокнистым наполнением. Для уменьшения массы теплоизоляции, как правило, отдельные ее слои делают сотовыми, пористыми, но обладающими достаточно высокой прочностью.

Теплозащитное покрытие должно иметь достаточно значительную толщину, чтобы сохранить металлическую конструкцию спускаемого аппарата. А это уже составляет значительный процент массы от допустимой величины для спускаемого аппарата. Так, для спускаемого аппарата корабля «Восток», имевшего массу 2460 кг, масса теплозащиты составляла 800 кг, его корпус имел форму шара диаметром 2,3 м и изготовлялся из алюминиевых сплавов. Снаружи весь корпус, кроме иллюминаторов, покрывался теплозащитным экраном, поверх которого был нанесен слой теплоизоляции, необходимый для нормального функционирования корабля в период орбитального полета.

Существует абляционная защита (от англ. ablation - абляция; унос массы) - технология защиты космических кораблей, теплозащита на основе сублимации легкоплавкого материала. Часть обшивки ракет иногда делают из пористого материала, к которому подводят под давлением легко испаряющуюся жидкость. В качестве покрытий применяются различные смолы с тугоплавкими наполнителями, пористые тугоплавкие металлы с легкоплавкими наполнителями, графит.

Легкоплавкие сплавы - металлические сплавы, имеющие низкую температуру плавления, не превышающую температуру плавления олова. Для получения легкоплавких сплавов используются свинец, висмут, олово, кадмий, таллий, ртуть, индий, галлий и иногда цинк. При покрытии спускаемого аппарата легкоплавкими материалами тепло расходуется на нагревание твердого материала, плавление, нагревание жидкости, парообразование. Таким образом, тепло отводится от аппарата.


Вопрос 2. Можно ли пользоваться на космической станции маятниковыми часами?
Пружинный маятник в наручных часах будет работать без изменений. Физический и математический маятники вместо колебаний будут вращаться вокруг точки подвеса.

Явление невесомости возникает в любой локальной (т.е. имеющей небольшие пространственные размеры) системе отсчета при ее свободном падении (движении только под действием гравитационных сил). Примером такой системы является орбитальная станция: влияние на ее движение трения о верхние слои атмосферы мало, а размеры станции малы по сравнению с расстояниями, на которых гравитационное поле Земли изменяется заметным образом.

Внутри станции возникает невесомость и могут быть легко воспроизведены эксперименты с падающим маятником. Это объясняет удивительные явления, наблюдаемые на орбитальной станции. Маятниковые часы замирают, капли воды не падают, а медленно «плавают» внутри кабины, карандаш, закрученный рукой космонавта, продолжает вертеться на месте «в воздухе». Вообще исчезают понятия пола и потолка, «верха» и «низа».

В невесомости пропадают лишь силы давления тел друг на друга, но притяжение Земли продолжает действовать на все тела. В невесомости следует использовать пружинные часы, так как маятниковые и песочные не будут работать при нулевом весе.

Маятниковые часы получили такое название потому, что регулятором в них является маятник. Их изготовляют напольные, настенные и специальные (астрономические и электропервичные).

В зависимости от вида двигателя маятниковые часы бывают гиревые и пружинные. Гиревой двигатель применяется в напольных и настенных, а пружинный двигатель - в настенных и настольных часах. Маятниковые часы выпускаются разных размеров и конструкций, простые и сложные, например, с такими дополнительными устройствами, как бой, календарь. Самой простой конструкцией маятниковых часов являются ходики.

Механизм маятниковых часов-ходиков является одним широко известным примером механической автоколебательной системы. В этом устройстве колебания маятника поддерживается периодическим подталкиванием с помощью зубцов храпового колеса, соединенного с висящей гирей. Принцип работы этого механизма типичен для автоколебательных систем − работа постоянной внешней силы (силы тяжести, действующей на гирю) периодически компенсирует потери механической энергии маятника.

Первые упоминания о башенных колесных часах в Европе приходятся на границу XIII и XIV веков. Первые часовые механизмы приводились в движение энергией опускающегося груза. Приводной механизм состоял из гладкого деревянного вала и намотанного на него пенькового каната с каменной, а позднее металлической гирей на конце. Благодаря силе тяжести гири, канат начинал разматываться и вращал вал. На вал было насажено большое или главное зубчатое колесо, находившееся в сцеплении с зубчатыми колесами передаточного механизма. Таким образом, вращение от вала передавалось механизму часов.

Ко второй половине XV века относятся самые первые упоминания об изготовлении часов с пружинным двигателем, который открыл путь к созданию миниатюрных часов. Источником движущей энергии в пружинных часах служила заведенная и стремящаяся развернуться пружина, которая представляла собой эластичную, тщательным образом закаленную стальную ленту, свернутую вокруг вала внутри барабана. Внешний конец пружины закреплялся за крючок в стенке барабана, внутренний − соединялся с валом барабана. Стремясь развернуться, пружина приводила во вращение барабан и связанное с ним зубчатое колесо, которое в свою очередь передавало это движение системе зубчатых колес до регулятора включительно.

Впервые мысль применить маятник в простейших приборах для измерения времени пришла великому итальянскому ученому Галилео Галилею. Сохранилось предание, что в 1583 году девятнадцатилетний Галилей, находясь в Пизанском соборе, обратил внимание на раскачивание люстры. Он заметил, отсчитывая удары пульса, что время одного колебания люстры остается постоянным, хотя размах делается все меньше и меньше.


Вопрос 3. Можно ли в невесомости пить воду из стакана?

До первых полетов в космос ученым было во многом загадкой, как организовать в состоянии невесомости прием пищи. Было известно, что жидкость либо соберется в шар, либо растечется по стенкам, смачивая их. Было предложено готовить пищу в виде питательной пасты-паштета, помещать ее в тюбики, из которых космонавт должен выдавливать ее прямо в рот. Воду предлагалось космонавту высасывать из сосуда.

Жидкости в условиях невесомости «не хотят» заполнять стаканы, кастрюли и другую посуду. Они «не желают» покорно принимать форму сосуда, в который налиты. Нет, жидкости порхают в воздухе, собравшись в аккуратные шаровые капли! Вот почему космонавтам нельзя пить из стаканов и есть суп из тарелок. Им приходится выдавливать жидкость прямо себе в рот из тубы, похожей на тюбик с зубной пастой, только побольше.

Практика в основном подтвердила эти предположения, но и внесла некоторые существенные поправки. Питаться из тюбиков оказалось удобно, но, соблюдая аккуратность, можно есть пищу и в ее земном виде. Космонавты брали с собой жареное мясо, ломти хлеба. На корабле «Восход» было организовано для экипажа четырехразовое питание. А при полете Быковского телезрители видели, как он ел зеленый лук, пил воду из пластмассового флакончика и с особым удовольствием ел воблу. К тому же вода ведет себя странно в космосе, все время разделяясь на капли величиной с грецкий орех, которые прилипали к коже.

Пить воду в космосе – задача не из простых. Так как вода не вытекает в условиях микрогравитации, всю жидкость из контейнеров пьют через трубочку. Без нее космонавтам пришлось бы "откусывать" небольшие кусочки пузыря плавающей воды.

Но на МКС создали чашку, позволяющую пить в невесомости. Американский астронавт, который находился на МКС, создал чашку, позволяющую пить в условиях невесомости. Автор изобретения Дональд Петит сообщил, что похожая технология используется при создании топливных баков для космических аппаратов, летающих в невесомости: в сечении чашка напоминает каплю - наличие острого ребра и позволяет человеку из нее пить.

Устройство работает на основе явления взаимодействия жидкости с поверхностью, которое на Земле отвечает за промокание, растекание жидкости по поверхности, а также за ее движение по капиллярам. В невесомости этот эффект позволяет кофе и другим напиткам не только оставаться в чашке, но и подниматься жидкости по желобу вверх к потребителю. Петит надеется, что его изобретение внесет разнообразие в быт космонавтов.
4 вопрос. Кто из космонавтов первым побывал в открытом космосе?

Первым в открытое космическое пространство 18 марта 1965 г. из космического корабля «Восход 2» вышел подполковник ВВС СССР (ныне генерал майор, летчик космонавт СССР) Алексей Архипович Леонов (род. 20 мая 1934 г.) Он удалился от корабля на расстояние до 5 м и провел в открытом космосе вне шлюзовой камеры 12 мин 9 с. Тем самым была открыта новая эра покорения пространства.

Скафандр «Беркут», использованный для первого выхода, был вентиляционного типа и расходовал около 30 л кислорода в минуту при общем запасе в 1666 л, рассчитанном на 30 минут пребывания космонавта в открытом космосе. Из-за разности давлений скафандр раздувался и сильно мешал движениям космонавта, что, в частности, сильно затруднило Леонову возвращение на «Восход-2».

Общее время первого выхода составило 23 минуты 41 секунд (из них вне корабля 12 минут 9 секунд), и по его итогам был сделан вывод о возможности человека выполнять различные работы в открытом космосе.

Первым американским астронавтом, вышедшим в открытый космос, стал Эдвард Уайт, выполнивший выход во время полёта на корабле «Джемини IV» 3 июня 1965 года. Поскольку корабли серии «Джемини» не имели шлюзовой камеры, для выхода экипажу пришлось полностью разгерметизировать кабину корабля. Общее время первого выхода составило 36 минут.

Первой женщиной, вышедшей в космос, была Светлана Евгеньевна Савицкая. Выход состоялся 25 июля 1984 года с борта орбитальной космической станции «Салют-7».

Первой американкой, побывавшей в открытом космосе, стала Кэтрин Салливэн, совершившая выход в космос 11 октября 1984 года во время полёта STS-41G на корабле «Челленджер».

Выход в открытый космос европейского космонавта состоялся 9 декабря 1988 года. Его совершил француз Жан-Лу Кретьен во время своего трёхнедельного пребывания на советской космической станции «Мир».

Первый выход в открытый космос без страховочного фала выполнил астронавт США Брюс МакКэндлесс 7 февраля 1984 года во время полёта «Челленджера» STS-41B.

Самым длительным выходом в открытый космос стал выход американки Сьюзан Хелмс 11 марта 2001, длившийся 8 часов 53 минуты.

Рекорд по количеству выходов (16) и по общей продолжительности пребывания (82 часа 22 минуты) в открытом космическом пространстве принадлежит российскому космонавту Анатолию Соловьёву.

Первым китайским тайконавтом, вышедшим в открытый космос, стал Чжай Чжиган, выполнивший выход во время полёта на корабле «Шэньчжоу-7» 27 сентября 2008 года. Общее время первого выхода составило 21 минуту.