Как держать форму. Массаж. Здоровье. Уход за волосами

Расширенный принцип относительности. Принцип относительности эйнштейна и преобразования лоренца

Основные законы динамики - законы Ньютона - справедливы в инерциальных системах отсчета. Но инерциальных систем много. В какой именно инерциальной системе отсчета рассматривается изучаемое механическое движение - совершенно безразлично. Впервые это обстоятельство было осознано Галилеем.

В своей книге «Диалоги о двух системах мира - птолемеевой и коперниковой», вышедшей в свет в 1632 году, Галилей приводит описание различных механических опытов, производимых в закрытой каюте корабля, из которых следует вывод о том, что все явления происходят одинаково, независимо от того, покоится корабль или движется прямолинейно и равномерно.

Равноправие инерциальных систем. Галилей рассматривал следующие простые опыты. В неподвижном корабле капли воды из подвешенного к потолку ведерка попадают в сосуд с узким горлышком, подставленный внизу. Бросая предмет по направлению к носу корабля, не придется применять большего усилия, чем бросая его на то же расстояние в сторону кормы. Прыгая в длину, вы сделаете прыжок на одно и то же расстояние независимо от его направления. При равномерном движении корабля с какой угодно скоростью в отсутствие качки во всех этих явлениях не удается обнаружить ни малейшего изменения. Например, падающие капли будут по-прежнему попадать в горлышко подставленного сосуда, несмотря на то, что за время падения капли сосуд вместе с кораблем успевает переместиться на значительное расстояние. Ни по одному из этих явлений не удастся установить, движется ли корабль или по-прежнему стоит

на месте. Не помогут тут и самые тонкие механические опыты с точнейшими приборами.

Итак, находясь в закрытой каюте, с помощью механических опытов невозможно определить, стоит ли корабль или движется с постоянной скоростью. Другими словами, механические явления протекают одинаково во всех инерциальных системах отсчета в том смысле, что одинаковы описывающие их законы динамики. Поэтому все инерциальные системы отсчета эквивалентны, т. е. равноправны.

Это утверждение о механической эквивалентности всех инерциальных систем отсчета в механике и составляет содержание принципа относительности Галилея.

Абсолютные и относительные величины. Остановимся на вопросе о равноправии инерциальных систем отсчета несколько подробнее. Вспомним про относительность механического движения, которая проявляется в том, что одно и то же движение с точки зрения разных систем отсчета выглядит по-разному. Траектория мячика, который подбрасывает и ловит находящийся в движущемся вагоне мальчик, представляется ему отрезком прямой линии, в то время как для наблюдателя на платформе станции этот мячик движется по параболе. Утверждая, что движение мячика в любой из этих систем отсчета описывается одними и теми же законами, мы имеем в виду, что уравнение второго закона Ньютона в обеих системах отсчета имеет вид

Получающееся из него выражение для скорости мячика имеет вид

а для его радиуса-вектора

При этом некоторые из входящих в эти формулы величин одинаковы во всех инерциальных системах отсчета, т. е., как говорят, абсолютны. К ним в первую очередь относится время что уже обсуждалось в кинематике. Абсолютна и масса характеризующая инертные свойства тела. В классической механике абсолютна также и сила описывающая взаимодействие тел и поэтому зависящая от их взаимного расположения и, возможно, от их относительной скорости, которые одинаковы в обеих системах. Как мы видели в кинематике, ускорение а также одинаково во всех системах отсчета, движущихся прямолинейно и равномерно одна относительно другой.

Таким образом, уравнение (1), выражающее основной закон механического движения, удовлетворяет принципу относительности, ибо справедливо во всех инерциальных системах отсчета.

Другие величины, входящие в уравнения (2) и (3), - - имеют разные значения для одного и того же движения в зависимости от используемой системы отсчета. Законы их преобразования при переходе от одной системы отсчета к другой были рассмотрены в кинематике.

Движение в разных системах отсчета. В рассматриваемом примере с подбрасыванием мячика единственная действующая сила - это сила тяжести Мячик движется с одинаковым ускорением в обеих системах отсчета. Но начальная скорость мячика будет разной. В системе отсчета, связанной с движущимся вагоном, вектор направлен вертикально вверх. Из (2) при этом следует, что в любой момент времени скорость также направлена по вертикали - вверх или вниз, в зависимости от того, на каком участке траектории находится мячик. А из (3) видно, что относительно вагона траектория мячика представляет собой отрезок прямой. Обратим внимание на то, что в этой системе отсчета движение мячика описывается уравнениями, в которые скорость вагона V вообще не входит. Поэтому мячик будет двигаться одинаково как в неподвижном, так и в равномерно движущемся вагоне.

С точки зрения наблюдателя, стоящего на платформе, начальная скорость подбрасываемого мячика уже не направлена вертикально: она равна векторной сумме вертикальной начальной скорости мячика относительно вагона и горизонтальной скорости вагона. Поэтому в этой системе отсчета начальная скорость мячика направлена под углом к горизонту, и он, естественно, движется по параболе. В зависимости от значения скорости V вагона это будут разные параболы. Учитывая, что сам мальчик в этой системе отсчета движется горизонтально со скоростью вагона V, нетрудно показать, что, проделав свой путь по параболе, мячик опускается точно в руки мальчика. Докажите это самостоятельно и сравните, насколько проще оказывается математическое описание данного движения в одной системе отсчета по сравнению с другой, несмотря на то, что законы этого движения в обеих системах одинаковы.

Подводя итоги, можно сказать, что в разных инерциальных системах отсчета эволюция начального механического состояния происходит одинаково, по одним и тем же законам. Все различие заключается в виде начального механического состояния рассматриваемой физической системы. Именно различие начальных условий и приводит к тому, что одно и то же явление, описываемое одними и теми же законами, выглядит по-разному в разных инерциальных системах отсчета. В тех же случаях, когда в двух системах отсчета рассматриваются опыты, для которых и начальные условия совпадают, вся картина движения выглядит совершенно одинаково.

Принцип относительности на практике. Принцип относительности Галилея на практике можно использовать для упрощения решения многих физических задач. Удачный выбор одной из множества возможных инерциальных систем отсчета часто позволяет превратить сложную на первый взгляд задачу в почти очевидную. Более того, принцип относительности позволяет иногда получить ответ на вопрос о явлениях, для которых нам неизвестны описывающие их конкретные законы.

Задачи

1. Движение по ленте транспортера. Ленга горизонтального транспортера движется с постоянной скоростью V. На ленту влетает шайба со скоростью направленной поперек ленты. При какой ширине ленты шайба достигнет ее противоположного края, если коэффициент трения скольжения шайбы по поверхности ленты равен Какова траектория шайбы относительно земли?

Решение. В системе отсчета, связанной с землей, начальная скорость шайбы направлена поперек ленты, но в дальнейшем скорость не остается постоянной ни по модулю, ни по направлению. Поскольку сила сухого трения направлена противоположно скорости, то может показаться, что ускорение шайбы тоже все время меняется. А тогда уже становится совсем непонятно, как подступиться к этой задаче.

Задача становится совершенно очевидной, если перейти в систему отсчета, связанную с равномерно движущейся лентой транспортера. Такая система также является инерциальной.

Рис. 106. Скорость шайбы относительно ленты транспортера направлена под углом а к краю ленты

Рис. 107. Траектория шайбы в неподвижной системе отсчета

В этой системе отсчета начальная скорость шайбы направлена под углом а к краю ленты, тангенс которого равен отношению (рис. 106), а ее модуль

Сила трения постоянна по модулю и по направлению, так как она направлена противоположно скорости шайбы относительно ленты. Следовательно, в этой системе отсчета шайба движется прямолинейно с постоянным ускорением, модуль которого равен Очевидно, что пройденный шайбой до остановки (относительно ленты) путь дается выражением

2. Скорость струйки воды. Докажите, что скорость истечения воды из отверстия в стенке сосуда, находящегося в вагоне поезда, одинакова независимо от того, стоит поезд на месте или движется равномерно и прямолинейно.

Решение. Для доказательства не требуется умения находить само значение скорости истечения воды. Эта скорость одинакова в обоих рассматриваемых случаях вследствие принципа относительности. Действительно, измеряя эту скорость в неподвижном и в движущемся равномерно и прямолинейно вагоне, мы получим одинаковые значения. Иначе этот опыт позволял бы обнаружить факт равномерного движения поезда, не выглядывая в окно. Однако вследствие принципа относительности это невозможно. Подобные опыты дают возможность обнаружить ускорение вагона, но не его скорость.

Заметим, что скорость истечения одинакова, если в обоих случаях она измеряется в системе отсчета, связанной с вагоном. Скорость истечения воды относительно земли зависит, разумеется, от скорости вагона.

В чем заключается физическое содержание принципа относительности Галилея?

Приведите известные вам примеры явлений, подтверждающих принцип относительности.

Что конкретно имеют в виду, когда говорят, что механические явления описываются одними и теми же законами во всех инерциальных системах отсчета? Ведь для разных наблюдателей одно и то же явление может выглядеть по-разному.

Почему, находясь в закрытом купе поезда и не выглядывая в окно, можно обнаружить ускорение вагона, но не его скорость?

Тема 4. Теория относительности. Принципы и концепции описания природы. Симметрия пространства и времени.

Лекция 4.

1.Принципы относительности.

2.Пространство, время.

1.Принципы относительности.

В общем, философском смысле относительность каких-либо явлений означает отсутствие абсолютных, непреодолимых границ между ними. Различие между относительными системами не абсолютно, включает момент тождества между ними, пред­полагает тождественность их в определенном отношении.

Га­лилей первым установил относительность механического движения в его отношении к механическому же покою, показав, что покой тождествен равномерному (без ускорения) и прямо­линейному перемещению тел относительно друг друга. Тела, находящиеся в таком состоянии, называются инерциальными системами отсчета. Смысл принципа относительности Гали­лея состоит в следующем: законы механики имеют одинаковую форму во всех инерциальных системах, т.е. все механические процессы в инерциальных системах протекают одинаково. В та­ких системах пространственно-временные свойства тел (их раз­меры, расстояния, время их существования, временные промежутки между ними) не зависят от скорости их движения, от того, находятся они в движении или нет. Но скорость их дви­жения для разных систем отсчета выражается по-разному: ско­рость движения внутри системы отсчета алгебраически склады­вается (складывается или вычитается) со скоростью перемещения систем отсчета относительно друг друга. Об этом обычно говорят так: в механике Галилея-Ньютона относительной величиной является только скорость. Здесь относительность означает уже не тождество, а различие сравниваемых величин. Это тоже надо иметь в виду.

Трудами X. Лоренца, А. Пуанкаре, А. Эйнштейна и Г. Минковского создана в 1905-1908 гг.. специальная теория относительности (СТО).

В основе этой теории лежат преобразования Лоренца . По этой теории механический принцип относительности Галилея в применении его к описанию распространения электромагнитных волн преобразуется в общефизический. Это осуществлено путем дополнения принципа относительности принципом постоянства скорости света. Созда­ние СТО - пример перехода к более общей теории не путем абстрагирования и упрощения, а методом конкретизации, обогащения содержания теории.

В механике Галилея-Ньютона скорости движения тел относительно друг друга складываются алгебраически. Точные опыты Майкельсона в 80-х годах XIX в. показали, что при распространении электромагнитных волн скорости не суммируются. Например, если вдоль направления движения поезда, скоростью которого у р послать световой сигнал со скоростью к 2 , близкой к скорости света в вакууме, то скорость перемещения сигнала по отношению к платформе оказывается меньше суммы v, + У 2 и вообще не может превышать скорость света в вакууме. Скорость распространения светового сигнала не зависит от ско­рости движения источника света. Этот факт вступил в проти­воречие с принципом относительности Галилея.

Но авторы СТО не отказались от принципа относительнос­ти, а, напротив, придали ему более общий вид. При этом потребовалось коренным образом преобразовать понимание самих пространства и времени, одним словом, создать принци­пиально новую теорию изменения пространственно-временных отношений между объектами.

В теории относительности применяются лоренцевы преобразования координат:

И

Пространственные и временные координаты в СТО зависят друг от друга. Длина отрезка в направлении движения сокращается:


,

а ход времени замедляется (т.е. дли­тельность процессов в движущейся системе по сравнению с покоящейся системой возрастает:

Один из создателей СТО Г. Минковский углубил понимание неразрывности пространства и времени, показав, что в своем единстве они абсолютны, независимы от системы отсчета. Абсолютный интервал Минковского dS 2 = dx 2 + dy 2 + dz 2 – c 2 t 2 объединяющий три пространственные и одну временною координаты, не зависит от системы отсчета, и в любой из них име­ет одно и то же значение.

Таким образом, если в механике Галилея-Ньютона отно­сительной была только скорость, то в СТО относительными предстали также линейные размеры объектов, длительность и одновременность процессов. Если в классической механике про­странство и время были независимы друг от друга, то в СТО они преобразовались в единое пространство-время. Причем интервал между двумя событиями в этом четырехмерном про­странстве-времени остается неизменным при переходе от од­ной инерциальной системы к другой.

Общая теория относительности (ОТО) была создана через 10 лет после СТО. По существу это - новая теория тяготения, более общая и глубокая, чем ньютоновская. В ОТО установ­лено, что метрические свойства определяются распределением и взаимодействием тяготеющих масс, а силы тяготения зави­сят от свойств пространства. В ОТО поставлены фундамен­тальные проблемы: конечности-бесконечности пространства и времени, соотношения материи, движения, пространства и времени.

Специальная и общая теории относительности первыми оз­наменовали переход от классической физики к неклассической, от веками установившихся представлений о веществе, движении, пространстве и времени к принципиально новым теоретико-методологическим положениям и новой структуре всей физики.

Искривле­ние пространства-времени в общей теории относительности

В специальной теории относительности Эйнштейна принцип относительности формулируется в более общем виде: не только механические, но все физические процессы в инерциальных системах протекают одинаково. В данной теории прин­цип относительности неразрывно связан с другим: принципом постоянства скорости света в вакууме, независимости ее от движения источника света. Подчеркивая момент тождества инерциальных систем, теория Эйнштейна акцентирует внима­ние на зависимости от них фундаментальных свойств пространства и времени, а также их зависимости от скорости движения объектов. Относительными (в смысле изменяющимися, разли­чающимися при переходе от одной системы отсчета к другой) здесь оказываются и размеры тел, и длительность их существования, и одновременность или разновременность событий.

Общая теория относительности утверждает одинаковость законов природы не только в инерциальных, но и в неинерциальных системах отсчета. Но для соблюдения этого потребовалось учесть зависимость свойств пространства и времени не толь­ко от скорости их перемещения, но и от более глубоких материальных взаимодействий, от массы тел и создаваемых ими гравитационных полей. В общей теории относительности ис пользуется уже не привычная нам геометрия Евклида, а другие геометрии с понятиями искривления пространства под действи ем полей тяготения, замедления хода времени в сильных гра­витационных полях. Развитие физики демонстрирует, что бо­лее глубокое понимание единства мира, тождественности его проявлений достигается одновременно с раскрытием их глубочайших, не только количественных, но и самых фундаментальных качественных различий.

2.Пространство, время.

Постулаты специальной теории относительности (СТО) разру­шили представления классической физики. Созданная Ньютоном ме­ханика рассматривала пространство и время как две независимые аб­солютные величины, в которых разыгрываются физические процес­сы. Постулаты СТО вынуждают связать воедино пространство и вре­мя. Именно такая взаимосвязь позволяет получить математическое описание перехода между разными движущимися системами коорди­нат. Так как в теории относительности рассматриваются явления, протекающие с околосветовыми скоростями, то связь пространства и времени становится заметной исключительно при этих скоростях.

В школьном курсе физики использовались преобразования Га­лилея, приводящие к сложению скоростей, в СТО такие преобразова­ния несколько сложнее. Они называются преобразованиями Лоренца, по имени ученого, предложившего их. При скоростях много меньше световых преобразования Лоренца могут быть заменены преобразо­ваниями Галилея (напомним, что это проявление принципа соответ­ствия Бора).

Выше была рассмотрена относительность одновременности со­бытий. Привычные для нас представления о расстояниях и времен­ных промежутках также являются относительными относительно движущихся систем координат. Да простят меня читатели за «двой­ную» относительность. Дело в том, что в широких слоях слово «отно­сительность» стало ординарным. «Все в мире относительно», - слы­шали, наверное? Так вот, относительность может быть только отно-

сительно чего-то, а не сама по себе. Выражение: «Я получаю зарплату больше» - бессмысленно, если не связать его с суммой или челове­ком.

Привычная «экономия слов» порождает путаницу в умах людей, далеких от физики. Вели покоящийся наблюдатель станет измерять размеры тела, двигающегося с околосветовой скоростью, то в на­правлении движения тело получится короче первоначального разме­ра. Данный результат вытекает из математических формул преобра­зований Лоренца. Дело в том, что измерение будет проводиться с по-мощью света. Но свет распространяется с постоянной скоростью не­зависимо от движущихся или покоящихся систем координат (наблю­дателей). Если процессы не будут замедляться, а размеры уменьшать­ся, то скорость света для неподвижного наблюдателя будет склады­ваться со скоростью движущейся системы и в целом превзойдет ско­рость света. Таким образом, будет нарушен второй постулат СТО. Для его сохранения необходимо, чтобы для неподвижного наблюда­теля процессы, происходящие в движущейся системе, происходили медленнее, а сам движущийся объект сокращался в направлении

движения. Но наблюдатель, расположенный в самой движущейся системе, никакого сокращения или замедления не обнаружит. (Отно­сительно неподвижного наблюдателя сокращение и замедление будут происходить, а относительно наблюдателя в этой движущейся систе­ме все останется неизменным.) В противном случае будет нарушен первый постулат Эйнштейна, в соответствии с которым все процессы должны протекать одинаково. Таким образом, время и пространство оказываются взаимосвязанными.

Принцип относительности Галилея был сформулирован для классической механики и заключается в следующем:

Физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Для справки сразу же нужно отметить, что физические величины не изменяющие своих значений при переходе из одной системы координат в другую с использованием какого-либо преобразования называются инвариантами относительно примененного преобразования.

Уравнения, которые остаются неизменными при переходе из одной системы отсчета в другую, называются инвариантными .

Пусть есть инерциальная система S и движущаяся относительно ее с постоянной скоростью система S’. Предположим, что известен закон движения материальной точки в системе S. Задача нахождения движения этой точки в системе S’ решается с помощью преобразования Галилея . В момент времени точки начала координат О и О’ совпадают и оси координат (X,Y,Z и X’,Y’,Z’) параллельны друг другу. Система S’ движется вдоль оси Z. В момент времени t точка М и системы координат S и S’ расположены так, как показано на рисунке.

В проекциях примет вид , , , . В обратной форме . А в проекциях , , — эти формулы и являются преобразованием Галилея .

Преобразование Галилея справедливо в случае, если .

Если продифференцировать уравнение по времени, то можно получить нерелятивистский закон сложения скоростей , который имеет следующий вид:

Ускорение инвариантно относительно преобразования Галилея

Если это уравнение продифференцировать по времени еще раз, то полученный результат покажет, что ускорение инвариантно относительно проеобразования Галилея.

Из чего действительно видно, что , где — ускорение в системе S, а — ускорение в системе S’.

Т.е. при переходе из одной системы отсчета к другой мы использовали преобразование Галилея. Ускорение при этом не измениловь. Значит можно сделать вывод, что ускорение инвариантно относительно примененного преобразования.

Принцип относительности Эйнштейна

Формулировка 1

Законы природы, по которым изменятся состояния физических систем, не зависят от того, к какой из инерциальных систем отсчета относятся эти изменения.

Формулировка 2

Все физические процессы в инерциальных системах отсчёта протекают одинаково, независимо от того, неподвижна ли система или она находится в состоянии равномерного и прямолинейного движения.

Принцип относительности Энштейна представляет собой более общее определение принципа относительности Галилея. Если принцип относительности галилея был сформулирован только для класической механики, то принцип относительности Энштейна касается всех физических процессов происходящих в природе.

Каждому событию соответствует точка пространства Минковского, в лоренцевых (или галилеевых) координатах. Координаты этой точки задаются тремя декартовыми координаты трёхмерного евклидова пространства. — четвертая координата, в которой ― скорость света, а ― время события. Связь между пространственными расстояниями и промежутками времени, разделяющими события, характеризуется квадратом интервала:

Интервал в пространстве Минковского играет роль, аналогичную роли расстояния в геометрии евклидовых пространств. Он инвариантен при замене одной инерциальной системы отсчета на другую, так же, как расстояние инвариантно при поворотах, отражениях и сдвигах начала координат в евклидовом пространстве. Роль, аналогичную роли вращений координат в случае евклидова пространства, играют для пространства Минковского преобразования Лоренца. Квадрат интервала аналогичен квадрату расстояния в евклидовом пространстве. В отличие от последнего квадрат интервала не всегда положителен, также между различными событиями интервал может быть равен нулю.

Инвариантность интервала между событиями.

В дорелятивистской физике пространство и время считались независимыми друг от друга. Расстояние между двумя точками и время между двумя событиями считались постоянными, независимо от системы отсчета, т.е. эти величины были инвариантными при переходе от одной системы к другой. В релятивистской физике появилась зависимость между временем и пространством и остался лишь один пространственно-временной инвариант :

Его можно получиить применив преобразования Лоренца.

Вводим переменную , теперь время как бы имеет те же единицы измерения, что и расстояние и можно записать

Великий ученый эпохи Возрождения, изобретатель первого телескопа, Галилео Галилей за свою жизнь совершил немало научных открытий, как в астрономии, так и физике, математике, других науках. И среди них, в том числе, один из краеугольных камней современной физики – классический принцип относительности Галилея, о нем наша сегодняшняя статья.

В чем состоит принцип относительности Галилея

Попробуем же сформулировать принцип относительности Галилея максимально кратко и доходчиво. Итак, он утверждает, что все механические процессы и явления протекают одинаково в инерциальных системах отсчета. Теперь давайте немножко расшифруем, начнем с инерциальных систем отсчета.

Что такое инерциальная система отсчета? Под ней в классической физике понимается система, где все тела движутся линейно и прямолинейно. Простым примером инерциальной системы может быть поезд, двигающийся по рельсам, или в глобальном масштабе – наша планета, вращающаяся вокруг Солнца. К слову все также относятся к инерциальной системе отсчета.

Для каких физических явлений применим принцип относительности Галилея

Но вернемся к принципу относительности Галилея, а точнее к его практическому применению. Представьте, что Вы едете в поезде или плывете на корабле. Если вы при этом в каюте корабля, либо вагоне поезда будет совершать какие-то простые физические опыты, даже банально подкидывать шарик, вы увидите, что результаты этих действий будут точно такими же как если бы Вы просто стояли на земле (тот же шарик в вагоне поезда будет падать вниз с такой же траекторией как и просто на земле). Иными словами, и каюта корабля и вагон поезда являются закрытыми инерциальными системами отсчета, и механические процессы внутри них протекают по одним и тем же законам.

Как мы уже говорили выше, наша планета Земля также является большой инерциальной системой, она движется вокруг Солнца, так и вращается вокруг своей оси, но мы ведь не ощущаем этого движения. А все потому, что для движения, как нашей Земли, так и других планет действенен принцип относительности Галилея, все механические процессы, несмотря на движение Земли, протекают одинаково.

История открытия принципа относительности Галилея

В далекие времена Галилея когда в науке того времени господствовали ложные идеи Аристотеля, считалось что именно Земля находится в центре Вселенной и пребывает в недвижимом положении. Идея же о том, что это именно Земля движется вокруг Солнца, вызывала у людей того времени смех, так как если она движется то почему мы не ощущаем этого движения, недоумевали они.

Опыты Галилея в области механики привели его к тому, что мы и зовем «принципом относительности», иными словами, главный физический смысл принципа относительности Галилея заключается в том, чтобы объяснить людям средневековья (ну и нам жителям 21-го века заодно) почему, несмотря на движение Земли, мы сами не замечаем и никак не ощущаем этого движения, почему все тела всегда падают перпендикулярно вниз, а не под наклоном и так далее.

Принцип относительности Галилея, видео

И в дополнение полезный видео урок об принципе относительности Галилея.

В первую очередь распространялся на механические системы. Он гласил, что никакие механические опыты не позволяют определить, находится ли система в состоянии покоя или прямолинейно и равномерно движется. Другими словами, при выполнении в различных инерциальных системах координат (с действующими одинаковых механических опытов, результаты будут аналогичными.

Галилей подметил, что механика движений, а точнее столкновений, ударов, полета снарядов и других явлений дает одни и те же результаты: как в равномерно и прямолинейно движущихся лабораториях, так и в находящихся в покое.

Пояснить данный механический принцип относительности можно на следующем примере. Допустим, что один автомобиль проезжает возле другого без всяких толчков, то есть с постоянной скоростью, равномерно. А все вокруг окутано таким густым плотным туманом, что рядом совсем ничего не видно. Вопрос звучит таким образом: могут ли находящиеся в автомобилях пассажиры определить, который из них движется? Можно ли им помочь, производя эксперименты по механике?

Оказывается, что в данном случае пассажиры могут наблюдать лишь относительное движение. что все законы движения и правила разработаны с помощью движущихся лабораторий, они не обнаруживают, «не чувствуют» на себе никакого влияния данного движения. Принцип относительности также указывает на то, что никакие механические опыты не позволят обнаружить прямолинейного системы отсчета относительно звезд и Солнца. Однако при ускоренном движении системы отсчета относительно звезд и Солнца оказывается влияние на результаты опытов.

Галилеевый принцип относительности в механике заслуживает особого внимания. Ни одной из галилеевых систем нельзя отдать предпочтения в принципе, несмотря на то, что с практической точки целесообразно считать ту или иную систему отсчета предпочтительной в зависимости от ситуации.

Так, для едущего в автомобиле пассажира система координат, которая связана с машиной, будет являться системой отсчета более естественной, чем та, которая связана с дорогой. А последняя система, в свою очередь, станет более удобной для человека, наблюдающего за движением автомобиля, стоя возле дороги. Различные галилеевые системы имеют принципиальную равноценность, которая выражена в том, что для перехода между системами существуют одинаковые формулы, а переменной величиной выступает лишь значение относительной скорости.

Данный принцип относительности рассматривается с точки зрения кинематики, однако подобная равноценность различных систем характерна и для динамики. Это и является классическим принципом относительности.

Существует также и специальный принцип, который распространяется на любые а не только на Сущность его заключается в том, что для любых систем координат, которые движутся относительно друг друга равномерно и прямолинейно, любые физические явления протекают одинаково, а любые физические опыты дают аналогичный результат.

Данное положение определяют как специальный принцип относительности, поскольку оно относится к специальным случаям прямолинейного равномерного движения. В подобном случае все законы выглядят одинаково как для систем координат, относящихся к звездам, так и для любых других систем, которые движутся равномерно и прямолинейно относительно звезд.

Существует также и более общий принцип, который охватывает случаи систем координат с ускоренным движением. Он носит название общий принцип относительности.