Как держать форму. Массаж. Здоровье. Уход за волосами

Приведем каждую дробей знаменателю. Сложение и вычитание обыкновенных дробей

В данной статье рассказывается, как привести дроби к общему знаменателю и как найти наименьший общий знаменатель. Приведены определения, дано правило приведения дробей к общему знаменателю и рассмотрены практические примеры.

Что такое приведение дроби к общему знаменателю?

Обыкновенные дроби состоят из числителя - верхней части, и знаменателя - нижней части. Если дроби имеют одинаковый знаменатель, говорят, что они приведены к общему знаменателю. Например, дроби 11 14 , 17 14 , 9 14 имеют одинаковый знаменатель 14 . Другими словами, они приведены к общему знаменателю.

Если же дроби имеют разные знаменатели, то их всегда можно привести к общему знаменателю при помощи нехитрых действий. Чтобы сделать это, нужно числитель и знаменатель умножить на определенные дополнительные множители.

Очевидно, что дроби 4 5 и 3 4 не приведены к общему знаменателю. Чтобы это сделать, нужно с использованием дополнительных множителей 5 и 4 привести их к знаменателю 20. Как именно сделать это? Умножим числитель и знаменатель дроби 4 5 на 4 , а числитель и знаменатель дроби 3 4 умножим на 5 . Вместо дробей 4 5 и 3 4 получим соответственно 16 20 и 15 20 .

Приведение дробей к общему знаменателю

Приведение дробей к общему знаменателю - это умножение числителей и знаменателей дробей на такие множители, что в результате получаются идентичные дроби с одинаковым знаменателем.

Общий знаменатель: определение, примеры

Что такое общий знаменатель?

Общий знаменатель

Общий знаменатель дробей - это любое положительное число, которое является общим кратным всех данных дробей.

Другими словами, общим знаменателем какого-то набора дробей будет такое натуральное число, которое без остатка делится на все знаменатели этих дробей.

Ряд натуральных чисел бесконечен, и поэтому, согласно определению, каждый набор обыкновенных дробей имеет бесконечное множество общих знаменателей. Иначе говоря, существует бесконечно много общих кратных для всех знаменателей исходного набора дробей.

Общий знаменатель для нескольких дробей легко найти, пользуясь определением. Пусть есть дроби 1 6 и 3 5 . Общим знаменателем дробей будет любое положительное общее кратное для чисел 6 и 5 . Такими положительными общими кратными являются числа 30, 60, 90, 120, 150, 180, 210 и так далее.

Рассмотрим пример.

Пример 1. Общий знаменатель

Можно ди дроби 1 3 , 21 6 , 5 12 привести к общему знаменателю, который равен 150 ?

Чтобы выяснить, так ли это, нужно проверить, является ли 150 общим кратным для знаменателей дробей, то есть для чисел 3 , 6 , 12 . Другими словами, число 150 должно без остатка делиться на 3 , 6 , 12 . Проверим:

150 ÷ 3 = 50 , 150 ÷ 6 = 25 , 150 ÷ 12 = 12 , 5

Значит, 150 не является общим знаменателем указанных дробей.

Наименьший общий знаменатель

Наименьшее натуральное число из множества общих знаменателей какого-то набора дробей называется наименьшим общим знаменателем.

Наименьший общий знаменатель

Наименьший общий знаменатель дробей - это наименьшее число среди всех общих знаменателей этих дробей.

Наименьший общий делитель данного набора чисел - это наименьшее общее кратное (НОК). НОК всех знаменателей дробей является наименьшим общим знаменателем этих дробей.

Как найти наименьший общий знаменатель? Его нахождение сводится к нахождению наименьшего общего кратного дробей. Обратимся к примеру:

Пример 2. Найти наименьший общий знаменатель

Нужно найти наименьший общий знаменатель для дробей 1 10 и 127 28 .

Ищем НОК чисел 10 и 28 . Разложим их на простые множители и получим:

10 = 2 · 5 28 = 2 · 2 · 7 Н О К (15 , 28) = 2 · 2 · 5 · 7 = 140

Как привести дроби к наименьшему общему знаменателю

Существует правило, которое объясняет, как привести дроби к общему знаменателю. Правило состоит из трех пунктов.

Правило приведения дробей к общему знаменателю

  1. Найти наименьший общий знаменатель дробей.
  2. Для каждой дроби найти дополнительный множитель. Чтобы найти множитель нужно наименьший общий знаменатель разделить на знаменатель каждой дроби.
  3. Умножить числитель и знаменатель на найденный дополнительный множитель.

Рассмотрим применение этого правила на конкретном примере.

Пример 3. Приведение дробей к общему знаменателю

Есть дроби 3 14 и 5 18 . Приведем их к наименьшему общему знаменателю.

По правилу, сначала найдем НОК знаменателей дробей.

14 = 2 · 7 18 = 2 · 3 · 3 Н О К (14 , 18) = 2 · 3 · 3 · 7 = 126

Вычисляем дополнительные множители для каждой дроби. Для 3 14 дополнительный множитель находится как 126 ÷ 14 = 9 , а для дроби 5 18 дополнительный множитель будет равен 126 ÷ 18 = 7 .

Умножаем числитель и знаменатель дробей на дополнительные множители и получаем:

3 · 9 14 · 9 = 27 126 , 5 · 7 18 · 7 = 35 126 .

Приведение нескольких дробей к наименьшему общему знаменателю

По рассмотренному правилу к общему знаменателю можно приводить не только пары дробей, но и большее их количество.

Приведем еще один пример.

Пример 4. Приведение дробей к общему знаменателю

Привести дроби 3 2 , 5 6 , 3 8 и 17 18 к наименьшему общему знаменателю.

Вычислим НОК знаменателей. Находим НОК трех и большего количества чисел:

Н О К (2 , 6) = 6 Н О К (6 , 8) = 24 Н О К (24 , 18) = 72 Н О К (2 , 6 , 8 , 18) = 72

Для 3 2 дополнительный множитель равен 72 ÷ 2 =   36 , для 5 6 дополнительный множитель равен 72 ÷ 6 =   12 , для 3 8 дополнительный множитель равен 72 ÷ 8 =   9 , наконец, для 17 18 дополнительный множитель равен 72 ÷ 18 =   4 .

Умножаем дроби на дополнительные множители и переходим к наименьшему общему знаменателю:

3 2 · 36 = 108 72 5 6 · 12 = 60 72 3 8 · 9 = 27 72 17 18 · 4 = 68 72

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Как приводить дроби к общему знаменателю

Если у обыкновенных дробей одинаковые знаменатели, то говорят, что эти дроби приведены к общему знаменателю .

Пример 1

Например, дроби $\frac{3}{18}$ и $\frac{20}{18}$ имеют одинаковые знаменатели. Говорят, что они имеют общий знаменатель $18$. Дроби $\frac{1}{29}$, $\frac{7}{29}$ и $\frac{100}{29}$ имеют также одинаковые знаменатели. Говорят, что они имеют общий знаменатель $29$.

Если у дробей знаменатели не одинаковые, то их можно свести к общему знаменателю. Для этого необходимо умножить их числители и знаменатели на определенные дополнительные множители.

Пример 2

Как привести две дроби $\frac{6}{11}$ и $\frac{2}{7}$ к общему знаменателю.

Решение.

Умножим дроби $\frac{6}{11}$ и $\frac{2}{7}$ на дополнительные множители $7$ и $11$ соответственно и приведем их к общему знаменателю $77$:

$\frac{6\cdot 7}{11\cdot 7}=\frac{42}{77}$

$\frac{2\cdot 11}{7\cdot 11}=\frac{22}{77}$

Таким образом, приведением дробей к общему знаменателю называют умножение числителя и знаменателя данных дробей на дополнительные множители, которые в результате позволяют получить дроби с одинаковыми знаменателями.

Общий знаменатель

Определение 1

Любое положительное общее кратное всех знаменателей некоторого набора дробей называют общим знаменателем .

Другими словами, общий знаменатель заданных обыкновенных дробей – любое натуральное число, которое можно разделить на все знаменатели заданных дробей.

Из определения вытекает бесконечное множество общих знаменателей данного набора дробей.

Пример 3

Найти общие знаменатели дробей $\frac{3}{7}$ и $\frac{2}{13}$.

Решение .

Данные дроби имеют знаменатели, равные $7$ и $13$ соответственно. Положительные общие кратные чисел $2$ и $5$ равны $91, 182, 273, 364$ и т.д.

Любое из этих чисел можно использовать в качестве общего знаменателя дробей $\frac{3}{7}$ и $\frac{2}{13}$.

Пример 4

Определить, можно ли дроби $\frac{1}{2}$, $\frac{16}{7}$ и $\frac{11}{9}$ привести к общему знаменателю $252$.

Решение.

Чтобы определить, как привести дробь к общему знаменателю $252$, необходимо проверить является ли число $252$ общим кратным знаменателей $2, 7$ и $9$. Для этого разделим число $252$ на каждый из знаменателей:

$\frac{252}{2}=126,$ $\frac{252}{7}=36$, $\frac{252}{9}=28$.

Число $252$ делится нацело на все знаменатели, т.е. является общим кратным чисел $2, 7$ и $9$. Значит, данные дроби $\frac{1}{2}$, $\frac{16}{7}$ и $\frac{11}{9}$ можно свести к общему знаменателю $252$.

Ответ: можно.

Наименьший общий знаменатель

Определение 2

Среди всех общих знаменателей заданных дробей можно выделить наименьшее натуральное число, которое называют наименьшим общим знаменателем .

Т.к. НОК – наименьший положительный общий делитель данного набора чисел, то НОК знаменателей заданных дробей является наименьшим общим знаменателем данных дробей.

Следовательно, чтобы найти наименьший общий знаменатель дробей, нужно найти НОК знаменателей этих дробей.

Пример 5

Заданы дроби $\frac{4}{15}$ и $\frac{37}{18}$. Найти их наименьший общий знаменатель.

Решение .

Знаменатели данных дробей равны $15$ и $18$. Найдем наименьший общий знаменатель как НОК чисел $15$ и $18$. Используем для этого разложение чисел на простые множители:

$15=3\cdot 5$, $18=2\cdot 3\cdot 3$

$НОК(15, 18)=2\cdot 3\cdot 3\cdot 5=90$.

Ответ: $90$.

Правило приведения дробей к наименьшему общему знаменателю

Чаще всего при решении задач алгебры, геометрии, физики и т.п. принято обыкновенные дроби приводить к наименьшему общему знаменателю, а не к любому общему знаменателю.

Алгоритм :

  1. С помощью НОК знаменателей заданных дробей найти наименьший общий знаменатель.
  2. 2.Вычислить дополнительный множитель для заданных дробей. Для этого найденный наименьший общий знаменатель необходимо разделить на знаменатель каждой дроби. Полученное число и будет дополнительным множителем данной дроби.
  3. Умножить на найденный дополнительный множитель числитель и знаменатель каждой дроби.

Пример 6

Найти наименьший общий знаменатель дробей $\frac{4}{16}$ и $\frac{3}{22}$ и привести к нему обе дроби.

Решение.

Воспользуемся алгоритмом приведения дробей к наименьшему общему знаменателю.

    Вычислим наименьшее общее кратное чисел $16$ и $22$:

    Разложим знаменатели на простые множители: $16=2\cdot 2\cdot 2\cdot 2$, $22=2\cdot 11$.

    $НОК(16, 22)=2\cdot 2\cdot 2\cdot 2\cdot 11=176$.

    Вычислим дополнительные множители для каждой дроби:

    $176\div 16=11$ – для дроби $\frac{4}{16}$;

    $176\div 22=8$ – для дроби $\frac{3}{22}$.

    Умножим числители и знаменатели дробей $\frac{4}{16}$ и $\frac{3}{22}$ на дополнительные множители $11$ и $8$ соответственно. Получим:

    $\frac{4}{16}=\frac{4\cdot 11}{16\cdot 11}=\frac{44}{176}$

    $\frac{3}{22}=\frac{3\cdot 8}{22\cdot 8}=\frac{24}{176}$

    Обе дроби приведены к наименьшему общему знаменателю $176$.

Ответ: $\frac{4}{16}=\frac{44}{176}$, $\frac{3}{22}=\frac{24}{176}$.

Иногда для того, чтобы находить наименьший общий знаменатель, нужно провести ряд трудоемких вычислений, что может не оправдывать цель решения задачи. В таком случае можно воспользоваться наиболее простым способ – свести дроби к общему знаменателю, который представляет собой произведение знаменателей данных дробей.

В данном материале мы разберем, как правильно приводить дроби к новому знаменателю, что такое дополнительный множитель и как его найти. После этого сформулируем основное правило приведения дробей к новым знаменателям и проиллюстрируем его примерами задач.

Понятие приведения дроби к другому знаменателю

Вспомним основное свойство дроби. Согласно ему, обыкновенная дробь a b (где a и b – любые числа) имеет бесконечное количество дробей, которые равны ей. Такие дроби можно получить, умножив числитель и знаменатель на одинаковое число m (натуральное). Иными словами, все обыкновенные дроби могут быть заменены другими вида a · m b · m . Это и есть приведение исходного значения к дроби с нужным знаменателем.

Привести дробь к другому знаменателю можно, умножив ее числитель и знаменатель на любое натуральное число. Главное условие – множитель должен быть одинаков для обоих частей дроби. В итоге получится дробь, равная исходной.

Проиллюстрируем это примером.

Пример 1

Привести дробь 11 25 к новому знаменателю.

Решение

Возьмем произвольное натуральное число 4 и умножим обе части исходной дроби на него. Считаем: 11 · 4 = 44 и 25 · 4 = 100 . В итоге получилась дробь 44 100 .

Все подсчеты можно записать в таком виде: 11 25 = 11 · 4 25 · 4 = 44 100

Выходит, любую дробь можно привести к огромному количеству разных знаменателей. Вместо четверки мы могли бы взять другое натуральное число и получить еще одну дробь, эквивалентную исходной.

Но не любое число может стать знаменателем новой дроби. Так, для a b в знаменателе могут стоять только числа b · m , кратные числу b . Вспомните основные понятия деления – кратные числа и делители. Если число не кратно b , но делителем новой дроби оно быть не может. Поясним нашу мысль примером решения задачи.

Пример 2

Вычислить, возможно ли приведение дроби 5 9 к знаменателям 54 и 21 .

Решение

54 кратно девятке, которая стоит в знаменателе новой дроби (т.е. 54 можно разделить на 9). Значит, такое приведение возможно. А 21 мы разделить на 9 не можем, поэтому такое действие для данной дроби выполнить нельзя.

Понятие дополнительного множителя

Сформулируем, что такое дополнительный множитель.

Определение 1

Дополнительный множитель представляет собой такое натуральное число, на которое умножают обе части дроби для приведения ее к новому знаменателю.

Т.е. когда мы выполняем это действие с дробью, мы берем для нее дополнительный множитель. Например, для приведения дроби 7 10 к виду 21 30 нам потребуется дополнительный множитель 3 . А получить дробь 15 40 из 3 8 можно с помощью множителя 5 .

Соответственно, если мы знаем знаменатель, к которому необходимо привести дробь, то мы можем вычислить для нее и дополнительный множитель. Разберем, как это сделать.

У нас есть дробь a b , которую можно привести к некоторому знаменателю c ; вычислим дополнительный множитель m . Нам надо произвести умножение знаменателя исходной дроби на m . У нас получится b · m , а по условию задачи b · m = c . Вспомним, как связаны между собой умножение и деление. Эта связь подскажет нам следующий вывод: дополнительный множитель есть не что иное, как частное от деления c на b , иначе говоря, m = c: b .

Таким образом, для нахождения дополнительного множителя нам нужно разделить требуемый знаменатель на исходный.

Пример 3

Найдите дополнительный множитель, с помощью которого дробь 17 4 была приведена к знаменателю 124 .

Решение

Используя правило выше, мы просто разделим 124 на знаменатель первоначальной дроби – четверку.

Считаем: 124: 4 = 31 .

Выполнять расчеты такого типа часто требуется при приведении дробей к общему знаменателю.

Правило приведения дробей к указанному знаменателю

Перейдем к определению основного правила, с помощью которого можно привести дроби к указанному знаменателю. Итак,

Определение 2

Для приведения дроби к указанному знаменателю нужно:

  1. определить дополнительный множитель;
  2. умножить на него и числитель, и знаменатель исходной дроби.

Как применить это правило на практике? Приведем пример решения задачи.

Пример 4

Выполните приведение дроби 7 16 к знаменателю 336 .

Решение

Начнем с вычисления дополнительного множителя. Разделим: 336: 16 = 21 .

Полученный ответ умножаем на обе части исходной дроби: 7 16 = 7 · 21 16 · 21 = 147 336 . Так мы привели исходную дробь к нужному знаменателю 336 .

Ответ: 7 16 = 147 336 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Изначально я хотел включить методы приведения к общему знаменателю в параграф «Сложение и вычитание дробей». Но информации оказалось так много, а важность ее столь велика (ведь общие знаменатели бывают не только у числовых дробей), что лучше изучить этот вопрос отдельно.

Итак, пусть у нас есть две дроби с разными знаменателями. А мы хотим сделать так, чтобы знаменатели стали одинаковыми. На помощь приходит основное свойство дроби, которое, напомню, звучит следующим образом:

Дробь не изменится, если ее числитель и знаменатель умножить на одно и то же число, отличное от нуля.

Таким образом, если правильно подобрать множители, знаменатели у дробей сравняются - этот процесс называется приведением к общему знаменателю. А искомые числа, «выравнивающие» знаменатели, называются дополнительными множителями.

Для чего вообще надо приводить дроби к общему знаменателю? Вот лишь несколько причин:

  1. Сложение и вычитание дробей с разными знаменателями. По-другому эту операцию никак не выполнить;
  2. Сравнение дробей. Иногда приведение к общему знаменателю значительно упрощает эту задачу;
  3. Решение задач на доли и проценты. Процентные соотношения являются, по сути, обыкновенными выражениями, которые содержат дроби.

Есть много способов найти числа, при умножении на которые знаменатели дробей станут равными. Мы рассмотрим лишь три из них - в порядке возрастания сложности и, в некотором смысле, эффективности.

Умножение «крест-накрест»

Самый простой и надежный способ, который гарантированно выравнивает знаменатели. Будем действовать «напролом»: умножаем первую дробь на знаменатель второй дроби, а вторую - на знаменатель первой. В результате знаменатели обеих дробей станут равными произведению исходных знаменателей. Взгляните:

В качестве дополнительных множителей рассмотрим знаменатели соседних дробей. Получим:

Да, вот так все просто. Если вы только начинаете изучать дроби, лучше работайте именно этим методом - так вы застрахуете себя от множества ошибок и гарантированно получите результат.

Единственный недостаток данного метода - приходится много считать, ведь знаменатели умножаются «напролом», и в результате могут получиться очень большие числа. Такова расплата за надежность.

Метод общих делителей

Этот прием помогает намного сократить вычисления, но, к сожалению, применяется он достаточно редко. Метод заключается в следующем:

  1. Прежде, чем действовать «напролом» (т.е. методом «крест-накрест»), взгляните на знаменатели. Возможно, один из них (тот, который больше), делится на другой.
  2. Число, полученное в результате такого деления, будет дополнительным множителем для дроби с меньшим знаменателем.
  3. При этом дробь с большим знаменателем вообще не надо ни на что умножать - в этом и заключается экономия. Заодно резко снижается вероятность ошибки.

Задача. Найдите значения выражений:

Заметим, что 84: 21 = 4; 72: 12 = 6 . Поскольку в обоих случаях один знаменатель делится без остатка на другой, применяем метод общих множителей. Имеем:

Заметим, что вторая дробь вообще нигде ни на что не умножалась. Фактически, мы сократили объем вычислений в два раза!

Кстати, дроби в этом примере я взял не случайно. Если интересно, попробуйте сосчитать их методом «крест-накрест». После сокращения ответы получатся такими же, но работы будет намного больше.

В этом и состоит сила метода общих делителей, но, повторюсь, применять его можно лишь в том случае, когда один из знаменателей делится на другой без остатка. Что бывает достаточно редко.

Метод наименьшего общего кратного

Когда мы приводим дроби к общему знаменателю, мы по сути пытаемся найти такое число, которое делится на каждый из знаменателей. Затем приводим к этому числу знаменатели обеих дробей.

Таких чисел очень много, и наименьшее из них совсем не обязательно будет равняться прямому произведению знаменателей исходных дробей, как это предполагается в методе «крест-накрест».

Например, для знаменателей 8 и 12 вполне подойдет число 24, поскольку 24: 8 = 3; 24: 12 = 2 . Это число намного меньше произведения 8 · 12 = 96 .

Наименьшее число, которое делится на каждый из знаменателей, называется их наименьшим общим кратным (НОК).

Обозначение: наименьшее общее кратное чисел a и b обозначается НОК(a ; b ) . Например, НОК(16; 24) = 48 ; НОК(8; 12) = 24 .

Если вам удастся найти такое число, итоговый объем вычислений будет минимальным. Посмотрите на примеры:

Задача. Найдите значения выражений:

Заметим, что 234 = 117 · 2; 351 = 117 · 3 . Множители 2 и 3 взаимно просты (не имеют общих делителей, кроме 1), а множитель 117 - общий. Поэтому НОК(234; 351) = 117 · 2 · 3 = 702.

Аналогично, 15 = 5 · 3; 20 = 5 · 4 . Множители 3 и 4 взаимно просты, а множитель 5 - общий. Поэтому НОК(15; 20) = 5 · 3 · 4 = 60.

Теперь приведем дроби к общим знаменателям:

Обратите внимание, насколько полезным оказалось разложение исходных знаменателей на множители:

  1. Обнаружив одинаковые множители, мы сразу вышли на наименьшее общее кратное, что, вообще говоря, является нетривиальной задачей;
  2. Из полученного разложения можно узнать, каких множителей «не хватает» каждой из дробей. Например, 234 · 3 = 702 , следовательно, для первой дроби дополнительный множитель равен 3.

Чтобы оценить, насколько колоссальный выигрыш дает метод наименьшего общего кратного, попробуйте вычислить эти же примеры методом «крест-накрест». Разумеется, без калькулятора. Думаю, после этого комментарии будут излишними.

Не думайте, что таких сложных дробей в настоящих примерах не будет. Они встречаются постоянно, и приведенные выше задачи - не предел!

Единственная проблема - как найти этот самый НОК. Иногда все находится за несколько секунд, буквально «на глаз», но в целом это сложная вычислительная задача, требующая отдельного рассмотрения. Здесь мы не будем этого касаться.

На этом уроке мы рассмотрим приведение дробей к общему знаменателю и решим задачи по этой теме. Дадим определение понятию общего знаменателя и дополнительного множителя, вспомним о взаимно простых числах. Дадим определение понятию наименьший общий знаменатель (НОЗ) и решим ряд задач на его нахождение.

Тема: Сложение и вычитание дробей с разными знаменателями

Урок: Приведение дробей к общему знаменателю

Повторение. Основное свойство дроби.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Например, числитель и знаменатель дроби можно разделить на 2. Получим дробь . Эту операцию называют сокращением дроби. Можно выполнить и обратное преобразование, умножив числитель и знаменатель дроби на 2. В этом случае говорят, что мы привели дробь к новому знаменателю. Число 2 называют дополнительным множителем.

Вывод. Дробь можно привести к любому знаменателю кратному знаменателю данной дроби. Для того чтобы привести дробь к новому знаменателю, ее числитель и знаменатель умножают на дополнительный множитель.

1. Приведите дробь к знаменателю 35.

Число 35 кратно 7, то есть 35 делится на 7 без остатка. Значит, это преобразование возможно. Найдем дополнительный множитель. Для этого разделим 35 на 7. Получим 5. Умножим на 5 числитель и знаменатель исходной дроби.

2. Приведите дробь к знаменателю 18.

Найдем дополнительный множитель. Для этого разделим новый знаменатель на исходный. Получим 3. Умножим на 3 числитель и знаменатель данной дроби.

3. Приведите дробь к знаменателю 60.

Разделив 60 на 15, получим дополнительный множитель. Он равен 4. Умножим числитель и знаменатель на 4.

4. Приведите дробь к знаменателю 24

В несложных случаях приведение к новому знаменателю выполняют в уме. Принято только указывать дополнительный множитель за скобочкой чуть правее и выше исходной дроби.

Дробь можно привести к знаменателю 15 и дробь можно привести к знаменателю 15. У дробей и общий знаменатель 15.

Общим знаменателем дробей может быть любое общее кратное их знаменателей. Для простоты дроби приводят к наименьшему общему знаменателю. Он равен наименьшему общему кратному знаменателей данных дробей.

Пример. Привести к наименьшему общему знаменателю дроби и .

Сначала найдем наименьшее общее кратное знаменателей данных дробей. Это число 12. Найдем дополнительный множитель для первой и для второй дроби. Для этого 12 разделим на 4 и на 6. Три - это дополнительный множитель для первой дроби, а два - для второй. Приведем дроби к знаменателю 12.

Мы привели дроби и к общему знаменателю, то есть мы нашли равные им дроби, у которых один и тот же знаменатель.

Правило. Чтобы привести дроби к наименьшему общему знаменателю, надо

Во-первых, найти наименьшее общее кратное знаменателей этих дробей, оно и будет их наименьшим общим знаменателем;

Во-вторых, разделить наименьший общий знаменатель на знаменатели данных дробей, т. е. найти для каждой дроби дополнительный множитель.

В-третьих, умножить числитель и знаменатель каждой дроби на ее дополнительный множитель.

а) Привести к общему знаменателю дроби и .

Наименьший общий знаменатель равен 12. Дополнительный множитель для первой дроби - 4, для второй - 3. Приводим дроби к знаменателю 24.

б) Привести к общему знаменателю дроби и .

Наименьший общий знаменатель равен 45. Разделив 45 на 9 на 15, получим, соответственно, 5 и 3. Приводим дроби к знаменателю 45.

в) Привести к общему знаменателю дроби и .

Общий знаменатель - 24. Дополнительные множители, соответственно, - 2 и 3.

Иногда бывает трудно подобрать устно наименьшее общее кратное для знаменателей данных дробей. Тогда общий знаменатель и дополнительные множители находят с помощью разложения на простые множители.

Привести к общему знаменателю дроби и .

Разложим числа 60 и 168 на простые множители. Выпишем разложение числа 60 и добавим недостающие множители 2 и 7 из второго разложения. Умножим 60 на 14 и получим общий знаменатель 840. Дополнительный множитель для первой дроби - это 14. Дополнительный множитель для второй дроби - 5. Приведем дроби к общему знаменателю 840.

Список литературы

1. Виленкин Н.Я., Жохов В.И., Чесноков А.С. и др. Математика 6. - М.: Мнемозина, 2012.

2. Мерзляк А.Г., Полонский В.В., Якир М.С. Математика 6 класс. - Гимназия, 2006.

3. Депман И.Я., Виленкин Н.Я. За страницами учебника математики. - Просвещение, 1989.

4. Рурукин А.Н., Чайковский И.В. Задания по курсу математика 5-6 класс. - ЗШ МИФИ, 2011.

5. Рурукин А.Н., Сочилов С.В., Чайковский К.Г. Математика 5-6. Пособие для учащихся 6-х классов заочной школы МИФИ. - ЗШ МИФИ, 2011.

6. Шеврин Л.Н., Гейн А.Г., Коряков И.О. и др. Математика: Учебник-собеседник для 5-6 классов средней школы. Библиотека учителя математики. - Просвещение, 1989.

Можно скачать книги, указанные в п.1.2. данного урока.

Домашнее задание

Виленкин Н.Я., Жохов В.И., Чесноков А.С. и др. Математика 6. - М.: Мнемозина, 2012. (ссылка см. 1.2)

Домашнее задание: №297, №298, №300.

Другие задания: №270, №290