Как держать форму. Массаж. Здоровье. Уход за волосами

Почему лёд не тонет в воде. Почему лед плавает в воде? Различие в замерзании воска и воды

В океане дрейфуют полярные ледяные глыбы и айсберги, и даже в напитках лед никогда не опускается на дно. Можно сделать вывод, что лед не тонет в воде. Почему? Если подумать об этом, то этот вопрос может показаться немного странным, потому что лед твердый и — интуитивно — должен быть тяжелее жидкости. Хотя это утверждение справедливо для большинства веществ, вода является исключением из правила. Воду и лед отличают водородные связи, которые в твердом состоянии делают лед легче, чем когда он находится в жидком состоянии.

Вопрос научный: почему лед не тонет в воде

Представим, что мы находимся на уроке под названием «Окружающий мир» в 3 классе. «Почему лед не тонет в воде?», — спрашивает учительница у детей. И малыши, не имея глубоких познаний в физике, начинают рассуждать. «Возможно, это магия?» — заявляет один из детей.

Действительно, лед крайне необычен. Практически нет никаких других естественных веществ, которые в твердом состоянии могли бы плавать на поверхности жидкости. Это одно из свойств, которое делает воду таким необычным веществом и, если признаться, именно оно изменяет пути эволюции планет.

Существуют некоторые планеты, которые содержат огромное количество таких жидких углеводородов, как, например, аммиак — тем не менее, при замерзании этот материал опускается на дно. Причина того, почему лед не тонет в воде, заключается в том, что при замерзании вода расширяется, и вместе с этим понижается ее плотность. Интересно, расширение льда может разбить камни — настолько необычен процесс оледенения воды.

Говоря научным языком, в процессе замерзания устанавливаются быстрые циклы выветривания и определенные химические вещества, выделяемые на поверхности способны растворять минералы. В целом, с замерзанием воды связаны такие процессы и возможности, которых физические свойства других жидкостей не предполагают.

Плотность льда и воды

Таким образом, ответ на вопрос о том, почему лед не тонет в воде, а плавает на поверхности, заключается в том, что он имеет более низкую плотность, чем жидкость — но это ответ первого уровня. Для лучшего понимания нужно знать, почему у льда низкая плотность, почему вещи всплывают в первую очередь, как плотность приводит к плаванию.

Вспомним греческого гения Архимеда, который выяснил, что после погружения определенного предмета в воду объем воды увеличивается на число, равное объему погружаемого объекта. Другими словами, если вы положите глубокое блюдо на поверхность воды, а затем поместите в него тяжелый предмет, то объем воды, который нальется в блюдо, будет точно равен объему объекта. Не имеет значения, объект погружается полностью или частично.

Свойства воды

Вода — это удивительное вещество, которое в основном питает жизнь на земле, ведь каждый живой организм нуждается в ней. Одним из наиболее важных свойств воды является то, что она обладает наивысшей плотностью при температуре 4 °C. Так, горячая вода или лед являются менее плотными, чем холодная вода. Менее плотные вещества плавают поверх более плотных веществ.

Например, во время приготовления салата, можно заметить, что масло находится на поверхности уксуса — это можно объяснить тем, что оно обладает меньшей плотностью. Этот же закон действителен и для объяснения того, почему в воде лед не тонет, а в бензине и керосине — тонет. Просто эти два вещества обладают меньшей, чем у льда, плотностью. Так, если вы запустите в бассейн надувной мячик, он будет плавать на поверхности, если же вы бросите в воду камень — он опустится на дно.

Какие изменения происходят с водой при замерзании

Причина того, почему лед не тонет в воде, связана с водородными связями, которые изменяются при замерзании воды. Как известно, вода состоит из одного атома кислорода и двух атомов водорода. Они прикреплены ковалентными связями, которые невероятно сильны. Однако другой тип связи, который образуется между различными молекулами, называемый водородной связью, слабее. Эти связи образуются потому, что положительно заряженные атомы водорода притягиваются отрицательно заряженными атомами кислорода соседних молекул воды.

Когда вода теплая, молекулы очень активны, много перемещаются, быстро образуют и разлагают связи с другими молекулами воды. У них есть энергия, чтобы приближаться друг к другу и двигаться быстро. Итак, почему лед не тонет в воде? Химия скрывает ответ.

Физико-химия льда

По мере того, как температура воды опускается ниже 4 °C, кинетическая энергия жидкости уменьшается, поэтому молекулы больше не перемещаются. У них нет энергии для перемещения и такого же легкого, как при высокой температуре, разрыва и формирования связей. Вместо этого они образуют больше водородных связей с другими молекулами воды с образованием гексагональных структур решетки.

Они образуют эти структуры, чтобы поддерживать отрицательно заряженные молекулы кислорода друг от друга. В середине шестиугольников, образуемых в результате деятельности молекул, много пустоты.

Лед тонет в воде — причины

Лед фактически на 9% менее плотный, чем жидкая вода. Поэтому лед занимает больше места, чем вода. Практически это имеет смысл, потому что лед расширяется. Вот почему не рекомендуют замораживать стеклянную бутылку воды — замороженная вода может создавать большие трещины даже в бетоне. Если у вас есть литровая бутылка льда и литровая бутылка воды, тогда бутылка с ледяной водой будет легче. Молекулы находятся дальше друг от друга в этой точке, чем когда вещество находится в жидком состоянии. Вот почему лед не тонет в воде.

Когда лед тает, стабильная кристаллическая структура разрушается и становится плотнее. Когда вода прогревается до 4 °C, она получает энергию, и молекулы движутся быстрее и дальше. Именно по этой причине горячая вода занимает больше места, чем холодная вода, и плавает поверх холодной воды — она обладает меньшей плотностью. Вспомните, когда вы находитесь на озере, во время купания верхний слой воды всегда приятный и теплый, однако когда вы опускаете свои ноги глубже, ощущаете холод нижнего слоя.

Значение процесса замерзания воды в функционировании планеты

Несмотря на то что вопрос «Почему лед не тонет в воде?» для 3 класса, очень важно понимать, почему этот процесс происходит и какое имеет значение для планеты. Так, плавучесть льда имеет важные последствия для жизни на Земле. Озера замерзают зимой в холодных местах — это позволяет рыбе и другим водным животным выживать под ледяным покрывалом. Если бы замерзло дно, то высока вероятность того, что все озеро могло бы быть заморожено.

В таких условиях в живых не осталось бы ни единого организма.

Если бы плотность льда была выше плотности воды, то в океанах лед бы опустился, и ледяные шапки, которые в таком случае находились бы на дне, не позволили бы кому-либо там жить. На дне океана было бы полно льда — и во что бы это все превратилось? Кроме всего прочего, полярный лед важен, поскольку он отражает свет и предохраняет планету Земля от чрезмерного перегревания.

В том, что лёд плавает на воде, никто не сомневается; каждый это видел сотни раз и на пруду, и на реке.

Но многие ли задумывались над таким вопросом: все ли твёрдые вещества ведут себя так же, как лёд, то есть плавают в жидкостях, образовавшихся при их плавлении?

Расплавьте в банке парафин или воск и бросьте в эту жидкость ещё кусочек того же твёрдого вещества, он тотчас же потонет. То же произойдёт и со свинцом:, и с оловом, и со многими другими веществами. Оказывается, как правило, твёрдые тела всегда тонут в жидкостях, которые образуются при их плавлении.

Обращаясь чаще всего с водой, мы так привыкли к обратному явлению, что нередко забываем это характерное для всех других веществ свойство. Надо помнить, что вода в этом отношении представляет редкое исключение. Только металл висмут и чугун ведут себя так же, как и вода.

Если бы лёд был тяжелее воды и не удерживался бы на её поверхности, а тонул, то даже в глубоких водоёмах вода замерзала бы зимой целиком. В самом: деле, падающий на дно пруда лёд вытеснял бы нижние слои воды вверх, и это происходило бы до тех пор, пока вся вода не превратилась в лёд.

Однако при замерзании воды происходит совсем обратная картина. В тот момент, когда вода превращается в лёд, объём её внезапно увеличивается примерно на 10 процентов, и лёд оказывается менее плотным, чем вода. Поэтому-то он и плавает в воде, как плавает любое тело в жидкости, имеющей большую плотность: железный гвоздь в ртути, пробка в масле и т. д. Если считать плотность воды равной единице, то плотность льда будет составлять только 0,91. Эта цифра позволяет нам узнать толщину плывущей по воде льдины. Если высота льдины над водой равна, например, 2 сантиметрам, то мы можем заключить, что подводный слой льдины в 9 раз толще, то есть равен 18 сантиметрам, а вся льдина имеет 20 сантиметров толщины.

В морях и океанах встречаются иногда огромные ледяные горы - айсберги (рис. 4). Это сползшие с полярных гор и унесённые течением и ветром в открытое море ледники. Высота их может достигать 200 метров, а объём — нескольких миллионов кубических метров. Девять десятых всей массы айсберга спрятаны под водой. Поэтому встреча с ним весьма опасна. Если судно во-время не заметит движущегося ледяного гиганта, оно может при столкновении получить серьёзные повреждения или даже погибнуть.

Внезапное увеличение объёма при переходе жидкой коды в лёд представляет важную особенность воды. С этой особенностью приходится часто считаться в практической жизни. Если оставить бочку с водой на морозе, то вода, замёрзнув, разорвёт бочку. По этой же причине нельзя оставлять воду в радиаторе автомобиля, стоящего в холодном гараже. В сильные морозы нужно опасаться малейшего перерыва в подаче тёплой воды по трубам водяного отопления: вода, остановившаяся в наружной трубе, может быстро замёрзнуть, и тогда труба лопнет.

Замерзая в трещинах скал, вода нередко является причиной горных обвалов.

Рассмотрим теперь один опыт, который имеет прямое отношение к расширению воды при нагревании. Постановка этого опыта требует специального оборудования, и вряд ли кто из читателей может его воспроизвести в домашней обстановке. Да это и не является необходимостью; опыт легко себе представить, а его результаты мы постараемся подтвердить на хорошо знакомых для каждого примерах.

Возьмём очень крепкий металлический, лучше всего стальной цилиндр (рис. 5), насыплем на дно его немного дроби, наполним водой, укрепим крышку болтами и станем поворачивать винт. Так как вода сжимается очень мало, то долго крутить винт не придётся. Уже после нескольких оборотов давление внутри цилиндра поднимается до сотен атмосфер. Если теперь цилиндр охладить даже на 2-3 градуса ниже нуля, то вода в нём не замёрзнет. Но как в этом убедиться? Если открыть цилиндр, то при такой температуре и атмосферном давлении вода моментально превратится в лёд, и мы не будем знать, была ли она жидкой или твёрдой, когда находилась под давлением. Здесь нам помогут насыпанные дробинки. Когда цилиндр остужен, перевернём его вверх дном. Если вода замёрзла, дробь будет лежать на дне, если не замёрзла, дробь соберётся у крышки. Открутим винт. Давление упадёт, и вода обязательно замёрзнет. Сняв крышку, мы убеждаемся, что вся дробь собралась около крышки. Значит, действительно вода, находящаяся под давлением, не замерзала при температуре ниже нуля.

Опыт показывает, что температура замерзания воды с увеличением давления понижается примерно на один градус на каждые 130 атмосфер.

Если бы мы стали строить свои рассуждения на основании наблюдений над множеством других веществ, то должны были бы прийти к обратному выводу. Давление обычно помогает жидкостям затвердевать: под давлением жидкости замерзают при более высокой температуре, и удивляться тут нечему, если вспомнить, что большинство веществ при застывании уменьшается в объёме. Давление вызывает уменьшение объёма и этим облегчает переход жидкости в твёрдое состояние. Вода же при застывании, как мы уже знаем, не уменьшается в объёме, а наоборот, расширяется. Поэтому-то давление, препятствуя расширению воды, понижает температуру её замерзания.

Известно, что в океанах на больших глубинах температура воды ниже нуля градусов, и тем не менее вода на этих глубинах не замерзает. Объясняется это давлением, которое создают верхние слои воды. Слой воды толщиной в один километр давит с силой около ста атмосфер.

Будь вода нормальной жидкостью, мы вряд ли бы испытывали удовольствие от катанья на коньках по льду. Это было бы то же самое, что и катанье по совершенно гладкому стеклу. Коньки не скользят по стеклу. Совсем другое дело на льду. Кататься на коньках по льду очень легко. Почему? Под тяжестью нашего тела тонкое лезвие конька производит на лёд довольно сильное давление, и лёд под коньком тает; образуется тонкая плёнка воды, которая служит превосходной смазкой.

В океане дрейфуют полярные ледяные глыбы и айсберги, и даже в напитках лед никогда не опускается на дно. Можно сделать вывод, что лед не тонет в воде. Почему? Если подумать об этом, то этот вопрос может показаться немного странным, потому что лед твердый и — интуитивно — должен быть тяжелее жидкости. Хотя это утверждение справедливо для большинства веществ, вода является исключением из правила. Воду и лед отличают водородные связи, которые в твердом состоянии делают лед легче, чем когда он находится в жидком состоянии.

Вопрос научный: почему лед не тонет в воде

Представим, что мы находимся на уроке под названием «Окружающий мир» в 3 классе. «Почему лед не тонет в воде?», — спрашивает учительница у детей. И малыши, не имея глубоких познаний в физике, начинают рассуждать. «Возможно, это магия?» — заявляет один из детей.

Действительно, лед крайне необычен. Практически нет никаких других естественных веществ, которые в твердом состоянии могли бы плавать на поверхности жидкости. Это одно из свойств, которое делает воду таким необычным веществом и, если признаться, именно оно изменяет пути эволюции планет.

Существуют некоторые планеты, которые содержат огромное количество таких жидких углеводородов, как, например, аммиак — тем не менее, при замерзании этот материал опускается на дно. Причина того, почему лед не тонет в воде, заключается в том, что при замерзании вода расширяется, и вместе с этим понижается ее плотность. Интересно, расширение льда может разбить камни — настолько необычен процесс оледенения воды.

Говоря научным языком, в процессе замерзания устанавливаются быстрые циклы выветривания и определенные химические вещества, выделяемые на поверхности способны растворять минералы. В целом, с замерзанием воды связаны такие процессы и возможности, которых физические свойства других жидкостей не предполагают.

Плотность льда и воды

Таким образом, ответ на вопрос о том, почему лед не тонет в воде, а плавает на поверхности, заключается в том, что он имеет более низкую плотность, чем жидкость — но это ответ первого уровня. Для лучшего понимания нужно знать, почему у льда низкая плотность, почему вещи всплывают в первую очередь, как плотность приводит к плаванию.

Вспомним греческого гения Архимеда, который выяснил, что после погружения определенного предмета в воду объем воды увеличивается на число, равное объему погружаемого объекта. Другими словами, если вы положите глубокое блюдо на поверхность воды, а затем поместите в него тяжелый предмет, то объем воды, который нальется в блюдо, будет точно равен объему объекта. Не имеет значения, объект погружается полностью или частично.

Свойства воды

Вода — это удивительное вещество, которое в основном питает жизнь на земле, ведь каждый живой организм нуждается в ней. Одним из наиболее важных свойств воды является то, что она обладает наивысшей плотностью при температуре 4 °C. Так, горячая вода или лед являются менее плотными, чем холодная вода. Менее плотные вещества плавают поверх более плотных веществ.

Например, во время приготовления салата, можно заметить, что масло находится на поверхности уксуса — это можно объяснить тем, что оно обладает меньшей плотностью. Этот же закон действителен и для объяснения того, почему в воде лед не тонет, а в бензине и керосине — тонет. Просто эти два вещества обладают меньшей, чем у льда, плотностью. Так, если вы запустите в бассейн надувной мячик, он будет плавать на поверхности, если же вы бросите в воду камень — он опустится на дно.

Какие изменения происходят с водой при замерзании

Причина того, почему лед не тонет в воде, связана с водородными связями, которые изменяются при замерзании воды. Как известно, вода состоит из одного атома кислорода и двух атомов водорода. Они прикреплены ковалентными связями, которые невероятно сильны. Однако другой тип связи, который образуется между различными молекулами, называемый водородной связью, слабее. Эти связи образуются потому, что положительно заряженные атомы водорода притягиваются отрицательно заряженными атомами кислорода соседних молекул воды.

Когда вода теплая, молекулы очень активны, много перемещаются, быстро образуют и разлагают связи с другими молекулами воды. У них есть энергия, чтобы приближаться друг к другу и двигаться быстро. Итак, почему лед не тонет в воде? Химия скрывает ответ.

Физико-химия льда

По мере того, как температура воды опускается ниже 4 °C, кинетическая энергия жидкости уменьшается, поэтому молекулы больше не перемещаются. У них нет энергии для перемещения и такого же легкого, как при высокой температуре, разрыва и формирования связей. Вместо этого они образуют больше водородных связей с другими молекулами воды с образованием гексагональных структур решетки.

Они образуют эти структуры, чтобы поддерживать отрицательно заряженные молекулы кислорода друг от друга. В середине шестиугольников, образуемых в результате деятельности молекул, много пустоты.

Лед тонет в воде — причины

Лед фактически на 9% менее плотный, чем жидкая вода. Поэтому лед занимает больше места, чем вода. Практически это имеет смысл, потому что лед расширяется. Вот почему не рекомендуют замораживать стеклянную бутылку воды — замороженная вода может создавать большие трещины даже в бетоне. Если у вас есть литровая бутылка льда и литровая бутылка воды, тогда бутылка с ледяной водой будет легче. Молекулы находятся дальше друг от друга в этой точке, чем когда вещество находится в жидком состоянии. Вот почему лед не тонет в воде.

Когда лед тает, стабильная кристаллическая структура разрушается и становится плотнее. Когда вода прогревается до 4 °C, она получает энергию, и молекулы движутся быстрее и дальше. Именно по этой причине горячая вода занимает больше места, чем холодная вода, и плавает поверх холодной воды — она обладает меньшей плотностью. Вспомните, когда вы находитесь на озере, во время купания верхний слой воды всегда приятный и теплый, однако когда вы опускаете свои ноги глубже, ощущаете холод нижнего слоя.

Значение процесса в функционировании планеты

Несмотря на то что вопрос «Почему лед не тонет в воде?» для 3 класса, очень важно понимать, почему этот процесс происходит и какое имеет значение для планеты. Так, плавучесть льда имеет важные последствия для жизни на Земле. зимой в холодных местах — это позволяет рыбе и другим водным животным выживать под ледяным покрывалом. Если бы замерзло дно, то высока вероятность того, что все озеро могло бы быть заморожено.

В таких условиях в живых не осталось бы ни единого организма.

Если бы плотность льда была выше плотности воды, то в океанах лед бы опустился, и ледяные шапки, которые в таком случае находились бы на дне, не позволили бы кому-либо там жить. На дне океана было бы полно льда — и во что бы это все превратилось? Кроме всего прочего, полярный лед важен, поскольку он отражает свет и предохраняет планету Земля от чрезмерного перегревания.

Нас совершенно не удивляют плавающие ледяные глыбы в начале весны, когда водоемы начинают освобождаться от зимней «одежды» и открывают человеческому взору красоту пресной воды. Мы настолько привыкли к этому природному явлению, что даже не задумываемся и не задаемся вопросом, почему лед не тает? И если подумать, то не сразу вспоминаешь примеры, когда твердые вещества наподобие льда плавают в жидкостях, которые образуются при их плавлении. Можно расплавить в емкости парафин или воск и в образовавшуюся лужицу бросить кусочек того же вещества, только в твердом состоянии. И что мы видим? Воск и парафин благополучно тонут в жидкости, которая образовалась в результате их же плавления.

Почему лёд не тонет в воде? Дело в том, что вода в этом примере - очень редкое и уникальное по своей сути исключение. В природе только металл и чугун ведут себя аналогично кусочку льда, держащегося на поверхности воды.


ли бы лед был тяжелее воды, то он непременно бы тонул под своей же тяжестью и при этом вытеснял воду, находящуюся в нижней части водоема на поверхность. В результате весь водоем промерзал бы до самого дна! Однако, когда вода замерзает, происходит совершенно иная ситуация. Превращение воды в лед увеличивает ее объем приблизительно на 10% и именно в этот момент лед имеет меньшую плотность, нежели сама вода . Именно по этой причине лед плавает на поверхности воды и не тонет. Тоже самое можно наблюдать, когда на воду опускается бумажный кораблик, плотность которого намного раз меньше плотности воды. Был бы кораблик из дерева или другого материала, то непременно утонул бы. Если сравнивать показатели плотности в цифрах, то, к примеру, если плотность воды составляет единицу, то плотность льда будет равна 0,91.

Увеличение объема воды при переходе ее в состояние льда следует учитывать и в повседневной жизни. Достаточно оставить на морозе бочку, доверху заполненную водой, то жидкость, замерзнув, разорвет емкость. Именно поэтому не рекомендуется оставлять воду в радиаторе автотранспортного средства, которое стоит на морозе. Также в сильные морозы необходимо опасаться перерывов в подаче теплой воды, идущей по трубам отопления. Если в наружной трубе осталась вода, то она моментально замерзает, что неминуемо приведет к повреждению водопровода.

Как известно, в океанах и морях на больших глубинах, где температура ниже нулевой отметки, вода все равно не замерзает и не превращается в глыбу льда . Объяснить это достаточно просто - верхние слои воды создают огромное давление. К примеру, слой воды в один километр давит с силой более ста атмосфер.


Если бы вода была нормальной, а не уникальной жидкостью, мы не получали бы удовольствие от катания на коньках. Мы же не катаемся по стеклу? А ведь оно намного глаже и привлекательнее льда. Но стекло - такой материал, по которому коньки скользить не будут. А вот по льду, даже не очень хорошего качества кататься на коньках одно удовольствие. Вы спросите почему? Дело в том, что тяжесть нашего тела давит на очень тонкое лезвие конька, которое оказывает сильное давление на лед . В результате этого давления от конька лед начинает таять с образованием тонкой пленки воды, по которой конек превосходно скользит.

Как объяснить ребенку сложные физические процессы?

Первое, что приходит на ум, так что плотность. Да, на самом деле, лёд плавает потому, что он менее плотный, чем вода. Но как объяснить ребенку, что такое плотность? Рассказывать ему школьную программу никто не обязан, а вот свести все к тому, что лёд легче, вполне реально. Ведь по факту один и то же объем воды и льда обладает разным весом. Если изучать проблему более подробно, то можно озвучить еще несколько причин, кроме плотности.
Лед в воде не тонет не только потому, что его уменьшенная плотность не дает ему опускаться ниже. Причина еще и в том, что в толще льда заморожены небольшие пузырьки воздуха. Они также уменьшают плотность, а потому в общем получается, что вес пластины из льда становится еще меньше. Когда лед расширяется, он не захватывает больше воздуха, но зато все те пузырьки, которые уже оказались внутри этого пласта, оказываются там до тех пор, пока лед не начнет таять или сублимироваться.

Проводим опыт над силой расширения воды

Но как доказать, что лёд на самом деле расширяется? Ведь вода тоже может расширяться, как же доказать это в искусственных условиях? Можно провести интересный и очень простой опыт. Для этого понадобится пластиковый или картонный стаканчик и вода. Ее количество необязательно должно быть большим, заполнять стаканчик до краев не потребуется. Также в идеале нужна температура около -8 градусов или ниже. Если температура будет слишком высокой, опыт продлится неоправданно долго.
Итак, вода залита внутрь, надо ждать, когда образуется лёд. Поскольку мы выбрали оптимальную температуру, при которой небольшой объем жидкости обратится в лёд в течение двух-трех часов, можно спокойно идти домой и ждать. Ждать нужно до тех пор, пока вся вода не обратится в лед. Спустя некоторое время смотрим на результат. Деформированный или разорванный льдом стаканчик гарантирован. При более низкой температуре последствия выглядят более эффектно, да и сам эксперимент занимает меньше времени.

Негативные последствия

Получается простой опыт подтверждает, что в ледяные глыбы и правда расширяются при уменьшении температуры, а объем воды легко увеличивается при замерзании. Как правило, эта особенность несет немало проблем забывчивым людям: бутылка шампанского, оставленная на балконе под Новый год на большой срок, разрывается из-за воздействия льда. Поскольку сила расширения очень большая, повлиять на нее никак нельзя. Ну а что касается плавучести ледяных глыб, то здесь можно ничего не доказывать. Самые любопытные могут легко провести подобный опыт весной или осенью самостоятельно, пытаясь утопить в большой луже кусочки льда.

В том, что лёд плавает на воде, никто не сомневается; каждый это видел сотни раз и на пруду, и на реке.

Но многие ли задумывались над таким вопросом: все ли твёрдые вещества ведут себя так же, как лёд, то есть плавают в жидкостях, образовавшихся при их плавлении?

Расплавьте в банке парафин или воск и бросьте в эту жидкость ещё кусочек того же твёрдого вещества, он тотчас же потонет. То же произойдёт и со свинцом:, и с оловом, и со многими другими веществами. Оказывается, как правило, твёрдые тела всегда тонут в жидкостях, которые образуются при их плавлении.

Обращаясь чаще всего с водой, мы так привыкли к обратному явлению, что нередко забываем это характерное для всех других веществ свойство. Надо помнить, что вода в этом отношении представляет редкое исключение. Только металл висмут и чугун ведут себя так же, как и вода.


Если бы лёд был тяжелее воды и не удерживался бы на её поверхности, а тонул, то даже в глубоких водоёмах вода замерзала бы зимой целиком. В самом: деле, падающий на дно пруда лёд вытеснял бы нижние слои воды вверх, и это происходило бы до тех пор, пока вся вода не превратилась в лёд.

Однако при замерзании воды происходит совсем обратная картина. В тот момент, когда вода превращается в лёд, объём её внезапно увеличивается примерно на 10 процентов, и лёд оказывается менее плотным, чем вода. Поэтому-то он и плавает в воде, как плавает любое тело в жидкости, имеющей большую плотность: железный гвоздь в ртути, пробка в масле и т. д. Если считать плотность воды равной единице, то плотность льда будет составлять только 0,91. Эта цифра позволяет нам узнать толщину плывущей по воде льдины. Если высота льдины над водой равна, например, 2 сантиметрам, то мы можем заключить, что подводный слой льдины в 9 раз толще, то есть равен 18 сантиметрам, а вся льдина имеет 20 сантиметров толщины.

В морях и океанах встречаются иногда огромные ледяные горы - айсберги (рис. 4). Это сползшие с полярных гор и унесённые течением и ветром в открытое море ледники. Высота их может достигать 200 метров, а объём — нескольких миллионов кубических метров. Девять десятых всей массы айсберга спрятаны под водой. Поэтому встреча с ним весьма опасна. Если судно во-время не заметит движущегося ледяного гиганта, оно может при столкновении получить серьёзные повреждения или даже погибнуть.

Внезапное увеличение объёма при переходе жидкой коды в лёд представляет важную особенность воды. С этой особенностью приходится часто считаться в практической жизни. Если оставить бочку с водой на морозе, то вода, замёрзнув, разорвёт бочку. По этой же причине нельзя оставлять воду в радиаторе автомобиля, стоящего в холодном гараже. В сильные морозы нужно опасаться малейшего перерыва в подаче тёплой воды по трубам водяного отопления: вода, остановившаяся в наружной трубе, может быстро замёрзнуть, и тогда труба лопнет.


Замерзая в трещинах скал, вода нередко является причиной горных обвалов.

Рассмотрим теперь один опыт, который имеет прямое отношение к расширению воды при нагревании. Постановка этого опыта требует специального оборудования, и вряд ли кто из читателей может его воспроизвести в домашней обстановке. Да это и не является необходимостью; опыт легко себе представить, а его результаты мы постараемся подтвердить на хорошо знакомых для каждого примерах.

Возьмём очень крепкий металлический, лучше всего стальной цилиндр (рис. 5), насыплем на дно его немного дроби, наполним водой, укрепим крышку болтами и станем поворачивать винт. Так как вода сжимается очень мало, то долго крутить винт не придётся. Уже после нескольких оборотов давление внутри цилиндра поднимается до сотен атмосфер. Если теперь цилиндр охладить даже на 2-3 градуса ниже нуля, то вода в нём не замёрзнет. Но как в этом убедиться? Если открыть цилиндр, то при такой температуре и атмосферном давлении вода моментально превратится в лёд, и мы не будем знать, была ли она жидкой или твёрдой, когда находилась под давлением. Здесь нам помогут насыпанные дробинки. Когда цилиндр остужен, перевернём его вверх дном. Если вода замёрзла, дробь будет лежать на дне, если не замёрзла, дробь соберётся у крышки. Открутим винт. Давление упадёт, и вода обязательно замёрзнет. Сняв крышку, мы убеждаемся, что вся дробь собралась около крышки. Значит, действительно вода, находящаяся под давлением, не замерзала при температуре ниже нуля.


Опыт показывает, что температура замерзания воды с увеличением давления понижается примерно на один градус на каждые 130 атмосфер.

Если бы мы стали строить свои рассуждения на основании наблюдений над множеством других веществ, то должны были бы прийти к обратному выводу. Давление обычно помогает жидкостям затвердевать: под давлением жидкости замерзают при более высокой температуре, и удивляться тут нечему, если вспомнить, что большинство веществ при застывании уменьшается в объёме. Давление вызывает уменьшение объёма и этим облегчает переход жидкости в твёрдое состояние. Вода же при застывании, как мы уже знаем, не уменьшается в объёме, а наоборот, расширяется. Поэтому-то давление, препятствуя расширению воды, понижает температуру её замерзания.

Известно, что в океанах на больших глубинах температура воды ниже нуля градусов, и тем не менее вода на этих глубинах не замерзает. Объясняется это давлением, которое создают верхние слои воды. Слой воды толщиной в один километр давит с силой около ста атмосфер.

Будь вода нормальной жидкостью, мы вряд ли бы испытывали удовольствие от катанья на коньках по льду. Это было бы то же самое, что и катанье по совершенно гладкому стеклу. Коньки не скользят по стеклу. Совсем другое дело на льду. Кататься на коньках по льду очень легко. Почему? Под тяжестью нашего тела тонкое лезвие конька производит на лёд довольно сильное давление, и лёд под коньком тает; образуется тонкая плёнка воды, которая служит превосходной смазкой.

Почему лед плавает в воде? Почему вода способна растворять так много различных веществ? Почему полотенце способно впитывать воду снизу вверх, вопреки законам тяготения? Если предположить, что вода пришла к нам из иного мира, эти и прочие загадки, окружающие воду, покажутся менее сложными для понимания.

Если бы вода вела себя как все другие вещества на земле, не было бы нас с вами.

Вода — это нечто настолько простое, что мы редко думаем о ней. Однако, нет ничего более загадочного, чем простая вода. Самая большая загадка воды: почему лед плавает. Любое другое вещество, переходя из жидкого состояния в твердое, становится более тяжелым, поскольку плотность вещества возрастает.

Вода, переходя из жидкого состояния в твердое, напротив, становиться более легкой.

В структуре льда частички воды располагаются очень упорядоченно, с большим количеством свободного пространства между частичками. Объем льда больше объема воды, из которого он образовался. Объем больше, плотность меньше — лед легче воды, поэтому в воде он не тонет. Огромные глыбы льда, айсберги — не тонут в воде.

  • Когда лед снова превращается в воду, частички становятся в сотни тысяч раз более активными, а свободное пространство заполняется.

Жидкая форма воды более плотная и тяжелая, чем твердая форма. Самой тяжелой вода становится при температуре + 4°С. По мере повышения температуры, частички воды становятся более активными, что приводит к уменьшению ее плотности.

Какой бы холодной зима не стояла над водоемом, температура воды у дна постоянная: +4°С. Все, что живет на дне, может пережить длинные зимы подо льдом. Лед легче воды. Своим панцирем на поверхности воды, он защищает дно водоема от промерзания.