Как держать форму. Массаж. Здоровье. Уход за волосами

Гиппокамп находится в промежуточном мозге. Что такое склероз гиппокампа и как успешно его лечить

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Нейропсихологический подход в изучении эмоциональных нарушений. Нарушения эмоций при поражении лобных, височных и гипофизарно-диэнцефального отделов мозга. Роль гиппокампа в осуществлении эмоций. Межполушарная организация мозга и эмоциональная сфера.

    реферат , добавлен 24.06.2010

    Анатомо-физиологические особенности лимбической системы и базальных ядер. Общий план строения и функции органов пищеварительной системы. Механизмы функционирования гиппокампа. Возрастные морфофизиологические особенности органов системы пищеварения.

    реферат , добавлен 04.07.2015

    Особенности участия составляющих лимбической системы - гиппокампа и орбитофронтальной коры в приспособительных реакциях центральной нервной системы при остром стволовом повреждении мозга крыс. Анализ эмоциональных реакций прооперированных животных.

    диссертация , добавлен 22.01.2015

    Понятие, строение, организованные функции ассоциативной коры головного мозга. Центры памяти, понимания слов, восприятия пространства. Профилактика нарушений зрения. Типичное шестислойное строение мозгового вещества, последствия нарушения строения.

    контрольная работа , добавлен 16.02.2011

    Строение и функции лимбической системы как области мозга человека. Интегративная деятельность лимбической системы. Строение и функции ретикулярной формации. Значение лимбической системы и ретикулярной формации для формирования структуры эмоций человека.

    контрольная работа , добавлен 18.02.2012

    Описание расположения глаза, защита от окружающей среды. Особенности его функций, строения и передачи изображения на зрительный нерв. Обобщенное описание строения различных частей глаза, функции и строение роговицы, радужки, зрачка, стекловидного тела.

    реферат , добавлен 05.06.2010

    Спинной мозг человека, его описание, расположение и характеристика. Оболочка спинного мозга, ее особенности и разновидности. Строение и основные функции спинного мозга, схематическое изображение и детальное описание особенностей каждой части мозга.

    Склероз гиппокампа – это одна из форм эпилепсии, причиной которой является патология отделов лимбической системы головного мозга. Основным генератором эпилептической активности считается глиоз в сочетании с атрофией кортикальной пластинки подлежащего белого вещества. Для диагностики заболевания неврологи Юсуповской больницы применяют современные методы инструментального исследования, выполняют лабораторные анализы и малоинвазивные диагностические процедуры.

    Склероз гиппокампа сопровождается потерей нейронов и рубцеванием самой глубокой части височной доли. Часто обусловлено серьезными травмами головного мозга. Бывает левосторонним и правосторонним. Повреждение головного мозга вследствие травмы, новообразования, инфекции, недостатка кислорода или неконтролируемых спонтанных припадков приводит к образованию рубцовой ткани гиппокампа. Он начинает атрофироваться, нейроны отмирают и формируют рубцовую ткань.

    На основании структурных изменений выделяют два основных вида эпилепсии височной доли:

    • с наличием объёмного процесса (опухоли, врождённой патологии, аневризмы кровеносного сосуда, кровоизлияния), затрагивающего лимбическую систему;
    • без наличия четко верифицированных объёмных изменений в области медиальной височной доли.

    Причины двухстороннего склероза гиппокампа

    Известны следующие причины склероза гиппокампа:

    • наследственная предрасположенность;
    • гипоксия мозговых тканей;
    • травмы мозга;
    • инфекции.

    Сегодня основными считаются следующие теории развития склероза гиппокампа:

    • влияние фебрильных судорог, приводящих к регионарным нарушениям метаболизма и отёку коры височной доли. Происходит гибель нейронов, развивается локальный глиоз и атрофия, вследствие чего уменьшается объём гиппокампа, реактивное расширение борозды и нижнего рога бокового желудочка.
    • острые нарушения кровообращения в бассейне конечных и боковых ветвей задней мозговой артерии вызывают базальную ишемию височной доли, происходит вторичное диапедезное пропотевание, гибель нейронов, глиоз и атрофия.
    • нарушение развития височной доли во время эмбриогенеза.

    Симптомы склероза гиппокампа

    Склероз гиппокампа обычно приводит к очаговой эпилепсии. Эпилептические припадки появляются в группах или по отдельности. Они бывают комплексными, начинающимися со странных неописуемых ощущений, галлюцинаций или иллюзий с последующим оцепенением взгляда, пищевыми и ротаторными автоматизмами. Продолжаются около двух минут. При прогрессировании могут отмечаться генерализованные тонико-клонические судороги.

    Приступы при склерозе гиппокампа могут сопровождаться различными симптомами:

    • изменением поведения;
    • потерей памяти;
    • головными болями;
    • повышенной тревожностью;
    • проблемами со сном;
    • паническими атаками.

    У пациентов развивается нарушение когнитивных способностей (памяти, мышления, способности сконцентрироваться). Припадки, вследствие которых нарушается деятельность мозга, могут приводить к внезапной потере сознания, а также к вегетативной сердечной дисфункции. У пациентов с левосторонним склерозом гиппокампа более серьёзная парасимпатическая дисфункция по сравнению с пациентами, страдающими правосторонним мезиальным склерозом.

    Приступы эпилепсии сопровождаются слуховыми или вестибулярными галлюцинациями, отрыжкой или вегетативными проявлениями, парестезиями и односторонними подергиваниями лица. Пациенты отмечают трудность обучения, нарушения памяти. Они конфликтны, эмоционально лабильны, обладают повышенным чувством долга.

    Для диагностики заболевания врачи Юсуповской больницы применяют следующие методы обследования:

    • нейрорадиологическую диагностику;
    • компьютерную томографию;
    • ядерно-магниторезонансную спектроскопию;
    • ангиографию;
    • электроэнцефалографию.

    Исследование выполняют на современной аппаратуре ведущих мировых производителей.

    Лечение склероза гиппокампа

    Для уменьшения симптомов заболевания неврологи Юсуповской больницы назначают противоэпилептические препараты. Средством первого выбора является Карбамазепин. К препаратам второго выбора относятся Вальпроат, Дифенин и Гексамидин. После лечения у части пациентов прекращаются приступы, наступает продолжительная ремиссия.

    При устойчивости к проводимой терапии и прогрессировании склероза гиппокампа хирургическое лечение проводится в клиниках-партнёрах. Оно заключается в удалении височной доли мозга (лобэктомии). После операции в 70-95% случаев уменьшается количество приступов. Если вы столкнулись с проблемой склероза гиппокампа и желаете получить квалифицированную специализированную медицинскую помощь, позвоните по телефону. Вас запишут на консультацию невролога Юсуповской больницы.

    Список литературы

    • МКБ-10 (Международная классификация болезней)
    • Юсуповская больница
    • Гусев Е.И., Демина Т.Л. Рассеянный склероз // Consilium Medicum: 2000. - № 2.
    • Джереми Тейлор. Здоровье по Дарвину: Почему мы болеем и как это связано с эволюцией = Jeremy Taylor “Body by Darwin: How Evolution Shapes Our Health and Transforms Medicine”. - М.: Альпина Паблишер, 2016. - 333 p.
    • A.Н.Бойко, О.О.Фаворова // Молекуляр. биология. 1995. - Т.29, №4. -С.727-749.

    Наши специалисты

    Цены на диагностику причин склероза гиппокампа

    *Информация на сайте носит исключительно ознакомительный характер. Все материалы и цены, размещенные на сайте, не являются публичной офертой, определяемой положениями ст. 437 ГК РФ. Для получения точной информации обратитесь к сотрудникам клиники или посетите нашу клинику. Перечень оказываемых платных услуг указан в прайсе Юсуповской больницы.

    *Информация на сайте носит исключительно ознакомительный характер. Все материалы и цены, размещенные на сайте, не являются публичной офертой, определяемой положениями ст. 437 ГК РФ. Для получения точной информации обратитесь к сотрудникам клиники или посетите нашу клинику.

    ГИППОКАМП (hippocampus ; греч, hippokampos морское чудовище с телом коня и рыбьим хвостом; син.: аммонов рог, cornu Ammonis ) - парное образование - часть старой коры большого мозга; располагается на медиальной стенке нижних рогов боковых желудочков. Г. является центральной структурой лимбической системы (см.).

    Вопрос о функциях Г. весьма сложен и до конца не решен. Прежние представления об участии Г. в функции обоняния как части «обонятельного мозга» (rhinencephalon) отвергнуты. На основании последствий удаления и стимуляции Г. у животных были высказаны предположения, что Г. участвует в организации ориентировочного рефлекса и внимания, регуляции вегетативных реакций, мотиваций (см.) и эмоций (см.), управлении произвольными движениями, механизмах памяти (см.) и обучения. Вместе с тем у животных после удаления Г. сохраняются выработанные до разрушения Г. условные связи и возможность выработки новых простых условных рефлексов. Однако формирование более сложных форм поведения (цепные, отставленные условные рефлексы, условные рефлексы на время, сложные дифференцировки, лабиринтные навыки) резко затрудняется. Особенно страдают формы поведения, связанные с необходимостью активного торможения - угасание ориентировочного рефлекса, неподкрепляемых условных рефлексов. Переделка ранее выработанных систем условных связей становится невозможной. В целом поведение становится значительно менее гибким, стереотипным, трудно перестраивающимся в соответствии с меняющимися условиями окружающей среды.

    При стимуляции Г. электрическим током с физиологически адекватной частотой и силой он остается так наз. немой структурой. Интенсивности тока, которые при действии на гипоталамус вызывают развернутые комплексы соматических и висцеральных реакций, в Г. не вызывают никаких внешних эффектов, кроме реакции «успокоения» животного. При повышении частоты и силы тока, раздражающего Г., можно получить широкий спектр различных соматических и вегетативных проявлений, что, по-видимому, является следствием распространения судорожных разрядов по системе структур, связанных с Г. или лежащих вблизи от него, а также патол, состояния самого Г. Установлено, что Г. имеет наиболее низкий порог возникновения эпилептических разрядов в электрической активности, хотя внешние проявления развернутых судорожных припадков с клонической и тонической фазами возникают лишь при значительном увеличении параметров электрической стимуляции. Нанесение умеренной (не вызывающей двигательных судорог) стимуляции Г. сразу после выработки условного рефлекса приводит к исчезновению следов обучения. Аналогичный эффект дает введение в Г. ряда фармакол, веществ, в частности холинолитиков.

    Т. о., наиболее вероятной функцией Г. является участие в регистрации новой информации. При этом уже сформировавшиеся следы памяти не хранятся в Г., но запись новых следов существенно зависит от его нормального функционирования. Ряд исследователей полагает, что Г. осуществляет сравнение вновь поступающей информации с уже имеющимися следами, на основании чего происходит выявление сигналов, подлежащих записи, и обеспечиваются условия, необходимые для формирования долговременной памяти.

    В филогенезе истинный, относительно дифференцированный Г. впервые появляется у рептилий. Первоначально Г. располагается на медиодорсальной поверхности полушарий, но при последующем развитии неокортекса и его комиссуры (мозолистого тела Г.) оказывается оттесненным в глубь полушария. Часть Г. подвергается редукции, превращаясь в рудимент Г. (indusium griseum). У грызунов и хищных Г. занимает дорсовентральное положение и соответственно делится на дорсальный и вентральный отделы. При дальнейшем росте неокортекса дорсальная часть Г. редуцируется. Однако сохраняющаяся часть Г. является прогрессивно развивающейся структурой. В ходе эволюции происходит качественная дифференцировка и количественный рост числа нервных элементов и волокон Г. и непосредственно связанных с ним структур (в сравнении с ядрами таламуса и гипоталамуса). Наибольшее увеличение числа клеточных элементов Г. (в 5 раз) произошло у человека. У человека Г. занимает положение в глубине височной доли, где он образует медиальную стенку нижних рогов боковых (латеральных) желудочков (рис. 1). Развитие г. идет в тесной связи с ростом неокортекса (новой коры), и на каждом этапе филогенетического развития Г. получает проекции от высших для данного уровня эволюции областей коры» в частности у приматов и человека связи идут от лобных долей и нижнетеменной дольки.

    Эмбриология

    Эмбриол, исследование показывает, что основные структурные черты Г. выявляются довольно рано (у кролика - к концу 4-й нед., а у человека - к 4-му мес. внутриутробного развития). Однако основная масса нейронов Г. и особенно зубчатой фасции формируется постнатально. У крысы выход и пролиферация нейробластов в Г. продолжаются в течение двух недель постнатального развития, а в зубчатой фасции этот процесс не заканчивается м в 3 недели, когда в неокортексе формирование клеточных слоев уже завершено. Окончательная дифференциация клеточных элементов и прекращение роста Г. у грызунов происходит одновременно с неокортексом, в 40 дней. У человека наиболее интенсивное нарастание массы волокон свода Г., составленного аксонами его клеток, происходит в 3-7 лет, но увеличение идет и после 12 лет.

    Морфология

    Г. животных и человека входит в состав более обширной области - гиппокамповой формации. К ней относятся: энторинальная область (area entorhinalis), образующая парагиппокамповую извилину приматов (gyrus parahippocampalis), ряд сложно организованных переходных областей (parasubiculum, presubiculum и subiculum), а также зубчатая фасция (fascia dentata; ее свободная часть, обращенная в полость желудочка, образует gyrus dentatus). Энторинальная область у животных (поле 28) имеет сложную шестислойную структуру и рассматривается как переходная область между неокортексом и более примитивно организованным палеокортексом (древняя кора) грушевидной доли (gyrus piriformis). Она делится на медиальную часть, наиболее характерной особенностью к-рой является наличие крупных клеток во II слое, и латеральную, где клетки II слоя малы. В parasubiculum (поле 49) клеточные слои, представленные в энторинальной области, расширяются и сливаются. Граница с presubiculum (поле 27) является очень резкой, здесь исчезают пирамидальные нейроциты (пирамидные нейроны), которые сменяются зерновидными нейроцитами (зернистыми клетками). Между para- и presubiculum вклинивается небольшая дополнительная зона (поле 29 е, area retrosplenialis e). В subiculum вновь появляются крупные, рыхло расположенные пирамидальные нейроциты, которые при переходе к Г. собираются в узкий компактный слой.

    По гистол, критериям Г. делится на ряд полей. С. Рамон-и-Кахаль делил Г. на два отдела: regio superior (прилежит к subiculum) и regio inferior (прилежит к fimbria hippocampi). Эта классификация применяется преимущественно в нейрохим. исследованиях. Розе (М. Rose) и И. Н. Филимонов делят Г. на пять полей (hi-h5, начиная от subiculum). Наиболее часто (рис. 2) употребляется деление Г, на четыре поля (CA1-СА4), введенное Лоренте де Но (R. Lorente de No). Поле CA1(h1) в клин, исследованиях иногда называют сектором Зоммера, а остальные поля - резистентным сектором. Правильность деления Г. на поля по гистол, критериям подтверждается различием афферентных и эфферентных связей, биохим, и физиол, характеристик и различной чувствительностью к ряду фармакол, веществ и патол, факторов. Так, в поле CA1 в первую очередь обнаруживаются патол. изменения при аноксии, а также при болезни Альцгеймера (см. Альцгеймера болезнь). Другие поля вместе с зубчатой фасцией дегенерируют при амавротической идиотии (см.), хотя сектор Зоммера остается почти интактным.

    Основным клеточным элементом Г. являются крупные пирамидальные нейроциты, тела которых образуют единый плотный слой. Отростки этих клеток строго ориентированы перпендикулярно к продольной оси Г. Вследствие этого в Г. четко выделяются следующие слои, соответствующие различным уровням ветвления их дендритной системы (а не расположению разных типов клеток, как в неокортексе): alveus, содержащий в основном миелинизированные аксоны пирамид (пирамидальных нейроцитов); stratum oriens, где находятся ветвящиеся базальные дендриты; stratum pyramidale, содержащий тела пирамидальных нейроцитов; stratum radiatum, где проходят неветвящиеся стволы апикальных дендритов; stratum molecularelacunosum - область претерминальных и терминальных ветвлений апикальных дендритов. В regio inferior выделяется дополнительный слой - stratum lucidum, где на проксимальных сегментах апикальных дендритов заканчиваются аксоны зубчатой фасции. Остальные афферентные волокна, входящие в Г., также заканчиваются на определенных уровнях дендритов пирамидных клеток (пирамидальных Нейроцитов), в результате чего синапсы одного происхождения концентрируются в узких зонах.

    Прилежащая к Г. зубчатая фасция у животных состоит из плотного слоя зернистых клеток (зерновидных нейроцитов). Их аксоны (мшистые волокна) заканчиваются гигантскими синапсами на пирамидальных клетках полей СА3-СА4, не выходя за пределы своей стороны. Т. о., зубчатая фасция, к к-рой подходят афференты (в основном от энторинальной коры), является внутренней релейной структурой гиппокамповой формации. В зубчатой фасции выделяют 3 слоя: stratum moleculare, содержащий дендриты зерновидных нейроцитов; stratum granulosum, содержащий их тела, и stratum polymorphe, где находятся полиморфные клетки и проходят аксоны зерновидных клеток.

    Аксоны пирамидальных нейроцитов Г. выходят из него, образуя бахромку (fimbria hippocampi) и дорсальный свод (fornix dorsalis). В составе бахромки проходят комиссуральные волокна Г., образующие вентральную комиссуру Г. (psalterium ventrale, commissura fornicis, commissura hippocampi, давидова лира). Эфферентные нисходящие волокна Г. образуют компактный пучок - посткомиссуральный свод (fornix postcommissuralis) и более диффузный прекомиссуральный свод (fornix precommissuralis). Составляющие их волокна частично переключаются в ядрах перегородки (septum, у человека - septum pellucidum). Посткомиссуральный свод в основном заканчивается в медиальных ядрах сосцевидных, или мамиллярных, тел (corpora mamillaria). Последующие звенья этой системы [мамиллоталамический тракт - передние ядра зрительного бугра (таламуса) - поясной пучок - поясная и энторинальная кора] образуют основной лимбический круг, или так наз. круг Пейпса. Остальные нисходящие волокна Г., частично переключаясь в латеральной преоптической области и латеральном гипоталамусе, идут к неспецифическим (ретикулярным) структурам среднего мозга. Афферентные связи к Г. восходят от этих же отделов мозга гл. обр. в составе медиального переднемозгового пучка. Перед вступлением в Г. большинство этих волокон переключается на медиальном ядре перегородки (nucleus medialis septi). Вторым источником афферентных связей является энторинальная область коры.

    Физиология

    Рис. 3. Электроэнцефалограмма (ЭЭГ) различных полей гиппокампа у кролика: при первых применениях звукового раздражителя (тон) нерегулярные высокоамплитудные волны, регистрируемые в гиппокампе, сменяются регулярным низкоамплитудным синусоидальным ритмом с частотой 3-6 гц («тэта-ритм»); при повторении раздражителя реакция угасает: 1-отметка действия раздражителя; 2-5-ЭЭГ полей CA1, CA2, CA3, СА4 гиппокампа; I-ЭЭГ при первом применении звукового раздражителя; II-ЭЭГ при пятом применении звукового раздражителя; III-ЭЭГ при пятнадцатом применении звукового раздражителя.

    При записи суммарной электрической активности Г. у животных в состоянии покоя регистрируются нерегулярные высоко-амплитудные волны, которые при действии сенсорных раздражителей сменяются особым регулярным синусоидальным ритмом с частотой 3-6 гц (тэта-ритм). Этот ритм наиболее четко выражен у низших млекопитающих (грызунов). На более высоких ступенях эволюции выраженность тэта-ритма в Г. снижается, но и у приматов его можно выделить методом частотного анализа. Тэта-ритм можно вызвать электрической стимуляцией ретикулярной формации среднего мозга, а также гипоталамуса. Постепенное повышение частоты или силы стимуляции сначала вызывает нарастание частоты тэта-ритма (до 8-10 гц), а затем приводит к десинхронизации активности Г. Появление тэта-ритма в Г. зависит от ритмических залповых разрядов клеток медиального ядра перегородки (пейсмекера тэта-ритма). Тэта-ритм в Г. возникает как при действии любых новых сенсорных раздражителей, так и при выработке различных условных связей (независимо от качества подкрепления и характера ответной реакции). Угасание ориентировочного рефлекса и автоматизации условных связей сопровождается снижением частоты, ограничением и подавлением тэта-ритма (рис. 3). По-видимому, тэта-ритм представляет собой особое проявление общей реакции активации, организуемой через восходящую ретикулярную формацию й отражающей повышение функционального состояния мозга, необходимого для анализа новой информации и выработки новых условных связей.

    Регистрация активности одиночных нейронов Г. выявляет высокую реактивность пирамидальных нейроцитов полей СА3-СА4 к различным сенсорным раздражителям. На все раздражители эти клетки отвечают длительными тоническими реакциями. При повторных раздражениях ответные реакции нейронов уменьшаются и даже прекращаются, но вновь восстанавливаются при изменении параметров раздражителя. Клетки поля САХ более избирательны в отношении действующих раздражителей, и их ответы на различные раздражители различны. Электрическая стимуляция систем связей Г. при регистрации активности его нейронов выявляет особенности возбуждения этой структуры. При низкочастотной (до 8 гц) и высокочастотной (св. 30-40 гц) стимуляции нейроны Г. преимущественно тормозятся. Активное возбуждение нейронов Г. возникает лишь в узком частотном диапазоне стимуляции (приблизительно 8-30 гц). За этими пределами стимуляция Г. может быть эквивалентной его функциональному выключению. Это явление называется частотной, или ритмической, потенциацией.

    Нарушения функций гиппокампа

    В клинике последствия двустороннего поражения Г. (при опухолях, инсультах, «лимбическом» энцефалите, вызываемом вирусом herpes simplex), а также его хирургического удаления (при иссечении очага эпилептической активности в случаях височной эпилепсии) выражаются в нарушениях памяти. Если повреждения гиппокампа не сопровождаются обще-мозговыми нарушениями и не затрагивают соседних структур, наблюдается полная сохранность сенсорных процессов, двигательной и эмоциональной сферы, интеллекта и речи. Навыки и знания, приобретенные больными до поражения Г., остаются сохранными. Однако исчезает способность к запоминанию любой новой информации (антероградная амнезия) и проявляется ретроградная амнезия (см.), при к-рой объем кратковременной памяти может оставаться нормальным, но перехода ее в долговременную не происходит. Наблюдающиеся нарушения не зависят от сенсорной модальности вводимой информации (зрительная, слуховая) или от ее характера (слова, рисунки, двигательные навыки). Т. о., страдает так наз. общий фактор памяти - возможность перехода кратковременной памяти в долговременную. Аналогичные явления - нарушение запоминания предъявляемого материала и забывание предшествующих событий - наблюдаются у человека при электрической стимуляции Г. Одностороннее повреждение Г. не влечет явных последствий.

    При необходимости удаления эпилептического очага, захватывающего один Г., предварительно проводят амиталовую пробу, чтобы выяснить, не изменен ли противоположный Г. патол, процессом настолько, что в нем не выявляются судорожные разряды. При этом в Г., подлежащий резекции, вводят амитал натрия, временно выключающий его, и дают тест на запоминание; если запоминание не нарушается, контралатеральный Г. сохранен и операция возможна. Есть указания, что и одностороннее повреждение Г. у человека оказывает влияние на память, хотя более ограниченное и специфическое, - при повреждении Г. доминантного (левого) полушария несколько ухудшается запоминание словесного материала, а при повреждении Г. правого полушария снижается способность запоминать неречевой материал (лица, сочетания линий и т. п.).

    Библиография: Виноградова О. С. Гиппокамп и память, М., 1975, библиогр.; Серков Ф. Н. К физиологии гиппокампа, Ф1зюлогичн. журн., т. 14, № 6, с. 830, 1968, библиогр.; Филимон о в И. Н. Сравнительная анатомия коры большого мозга млекопитающих, Палеокортекс, архикортекс и межуточная кора, М., 1949, библиогр.; Douglas R. J. The hippocampus and behavior, Psychol. Bull., v. 67, p. 416, 1967, bibliogr.; The hippocampus, ed. by R. L. Isaacson а. K. H. Prilram, v. 1-2, N.Y., 1975; KimbleD.P. Hippocampus and internal inhibition, Psychol. Bull., v. 70, p. 285, 1968, bibliogr.; Lorente de No R. Studies on structure of cerebral cortex, continuation of study of ammo-nic system, J. Psychol. Neurol. (Lpz.), v. 46, p. 113, 1934; Milner B. Disorders of learning and memory after temporal lobe lesions in man, Clin. Neurosurg., v. 19, p. 421, 1972, bibliogr.; Ramon у Caja 1 S. Studies on the cerebral cortex, L., 1955; o h же, The structure of Ammon’s horn, Springfield, 1968, bibliogr.

    О. С. Виноградова.

    Гиппокамп головного мозга, назван так потому, что его форма отдаленно напоминает форму морского конька, отвечает за кодирование долговременных воспоминаний и помогает в пространственной навигации. Это одна из филогенетически старейших частей мозга, и первая часть выбрана искусственно воспроизведенной в качестве протеза мозга. Известно, что гиппокамп связан с консолидацией эпизодических воспоминаний, которые являются воспоминаниями о пережитых личностью событиях и связанных с ними эмоциях. В отличие от семантических воспоминаний об абстрактных фактах и их ассоциациях, эпизодические воспоминания могут быть представлены в виде историй. Повреждение гиппокампа приводит к неспособности формировать новые долговременные эпизодические воспоминания, хотя новые процедурные воспоминания, такие как моторные последовательности для повседневных задач, все еще могут быть изучены.

    При шизофрении и некоторых типах тяжелой депрессии гиппокамп сжимается. Гиппокамп также известен как одна из наиболее структурированных и изученных частей мозга, поэтому он был выбран для эмуляции протеза. Хотя точные нейронные алгоритмы не известны, они были смоделированы полностью. Поскольку гиппокамп очень старый, он был значительно оптимизирован эволюцией и в основном одинаков для всех видов млекопитающих. Вот почему удалось спроектировать протез гиппокампа с помощью исчерпывающего исследования гиппокампа крысы, суспендированного в спинномозговой жидкости.

    Для навигации гиппокамп содержит «клетки места», которые активируются в зависимости от предполагаемого местоположения животного. Можно привести веские аргументы в пользу того, что эти клетки существуют в гиппокампе, поскольку необходимо использовать память для определения текущего местоположения по более фундаментальным переменным, таким как ориентация и скорость. Активация этих мест наблюдалась у людей, путешествующих по городам виртуальной реальности. Неповрежденный гиппокамп требуется для многих задач пространственной навигации. Первоначально гиппокамп был неправильно связан с обонянием, которое фактически обрабатывается обонятельной корой.

    Какова роль гиппокампа головного мозга?

    Гиппокамп - это область мозга только под медиальными височными долями и по обе стороны от мозга выше ушей. По форме она похожа на морского конька.

    Гиппокамп головного мозга помогает нам развить новые воспоминания. Иногда его рассматривают как шлюз для воспоминаний, как будто воспоминания должны проходить через гиппокамп, чтобы можно было хранить их в долгосрочном банке памяти.

    Некоторые исследования также показали, что гиппокамп важен не только для формирования новых воспоминаний, но и для извлечения старых воспоминаний.

    Интересно, что гиппокамп на левой стороне часто имеет большую функцию в памяти и языке, чем тот, что находится на правой стороне.

    Как болезнь Альцгеймера влияет на гиппокамп головного мозга?

    Исследование показало, что одной из первых областей в мозге, пораженной , является гиппокамп. Ученые коррелировали атрофию (усадку) областей гиппокампа с наличием болезни Альцгеймера. Атрофия в этой области мозга помогает объяснить, почему одним из ранних симптомов болезни Альцгеймера часто является нарушение памяти, особенно формирование новых воспоминаний.

    Атрофия гиппокампа также коррелирует с наличием белка тау, который накапливается по мере прогрессирования болезни Альцгеймера.

    Мягкие когнитивные нарушения и гиппокамп

    Таким образом, размер и объем гиппокампа явно зависит от болезни Альцгеймера.

    Но, что относительно мягкого когнитивного нарушения, условие, которое иногда, но не всегда, прогрессирует с болезнью Альцгеймера?

    Исследования показали, что атрофия гиппокампа также коррелирует со слабым когнитивным нарушением. На самом деле, размер гиппокампа и скорость его усадки, как было показано, позволяют прогнозировать, прогрессирует ли MCI до болезни Альцгеймера или нет.

    Меньший объем гиппокампа и более высокая скорость или усадка коррелируют с развитием деменции.

    Объем гиппокампа может различаться между различными типами слабоумия?

    В нескольких исследованиях был измерен объем гиппокампа и проанализировано, как он относится к другим типам деменции. Одна из возможностей заключалась в том, что врачи могли использовать степень атрофии в области гиппокампа, чтобы четко определить, какой тип деменции присутствует.

    Например, если болезнь Альцгеймера была единственным типом деменции, которая существенно повлияла на размер гиппокампа, это могло бы использоваться для положительной диагностики болезни Альцгеймера. Тем не менее, многочисленные исследования показали, что эта мера часто не помогает выявить большинство типов деменции.

    Второе исследование показало, что уменьшение размера гиппокампа также коррелирует с лобно-височной деменцией.

    Однако ученые обнаружили существенную разницу при сравнении деменции тела Леви с болезнью Альцгеймера. Леви деменция показывает гораздо меньшую атрофию областей гиппокампа в головном мозге, которая также совпадает с менее значительным воздействием на память, особенно на ранних стадиях деменции Леви.

    Можете ли вы предотвратить ваш гиппокамп от сокращения?

    Пластичность (термин для способности мозга расти и изменяться с течением времени) гиппокампа неоднократно демонстрировалась в исследованиях. Исследования показали, что, хотя гиппокамп имеет тенденцию атрофироваться по мере старения, как физические упражнения, так и когнитивная стимуляция (умственное упражнение) могут замедлять эту усадку, а иногда и даже отменять ее.



    Анатомия

    Расположение гиппокампа (вид с нижней стороны мозга), передняя часть мозга соответствует верхней части рисунка. Красные пятна показывают примерное положение гиппокампа в височной доле мозга.

    Гиппокамп - парная структура, расположенная в медиальных височных отделах полушарий. Правый и левый гиппокампы связаны комиссуральными нервными волокнами, проходящими в спайке свода (commissura fornicis) головного мозга.

    Гиппокампы образуют медиальные стенки нижних рогов боковых желудочков (лат. ventriculus lateralis ), расположенных в толще полушарий большого мозга , простираются до самых передних отделов нижних рогов бокового желудочка и заканчиваются утолщениями, разделёнными мелкими бороздками на отдельные бугорки - пальцы ног морского конька (лат. digitationes hippocampi ). С медиальной стороны с гиппокампом сращена бахромка гиппокампа (лат. fimbria hippocampi ), являющаяся продолжением ножки свода конечного мозга . К бахромкам гиппокампа прилегают сосудистые сплетения боковых желудочков.

    Функции

    Гиппокамп принадлежит к одной из филогенетически наиболее старых систем мозга - обонятельному мозгу, чем обусловливается значительная функциональная полимодальность гиппокампа (то есть он выполняет много разных функций). При поражении гиппокампа возникает синдром Корсакова - заболевание, при котором больной при сравнительной сохранности следов долговременной памяти утрачивает память на текущие события. Гипотетически гиппокамп способствует устранению интерферирующего влияния фоновой информации на поведенчески значимый в настоящий момент стимул. В связи с чем он активируется всякий раз, когда необходимо удержать в фокусе внимания внешние ориентиры, определяющие вектор поведения.

    Уменьшение объёма гиппокампа является одним из ранних диагностических признаков при болезни Альцгеймера .

    Роль в пространственной памяти и при ориентации

    Имеющиеся факты свидетельствуют, что гиппокамп используется для хранения и обработки пространственной информации. Исследования на крысах показали, что нейроны гиппокампа имеют области, чувствительные к положению в пространстве. Эти нейроны называются пространственные клетки (place cells). Некоторые из этих клеток возбуждаются, когда животное обнаруживает себя в определенном месте, вне зависимости от направления движения, большинство же - по меньшей мере частично чувствительны к направлению движения и положению головы.

    У крыс некоторые клетки, называемые контекстно-зависимые клетки, могут возбуждаться в зависимости от прошлого животного (ретроспективы) или ожидаемого будущего (перспективы). Разные клетки возбуждаются от разного местоположения животного, так что наблюдая за потенциалом отдельных клеток, можно сказать, где животное находится (или думает, что находится там). Как оказалось, те же пространственные клетки у человека задействованы в поиске пути во время навигации по виртуальным городам. Такие результаты были получены посредством исследования людей с имплантированными в мозг электродами, использованными в диагностических целях для хирургического лечения серьёзных приступов эпилепсии.

    Открытие пространственных клеток привело к возникновению идеи, что гиппокамп может играть роль карты - нейронного представления окружающей обстановки и местоположения в ней животного. Исследования показали, что гиппокамп необходим для решения даже простейших задач, требующих пространственной памяти (например, поиск пути к спрятанной цели). Без полностью функционирующего гиппокампа, люди могут не вспомнить, где они были и как добраться до места назначения; потеря ориентации в местности - это один из самых распространенных симптомов амнезии. Томография мозга показывает, что гиппокамп наиболее активен у людей во время успешного перемещения в пространстве, как в примере с виртуальной реальностью.

    Также имеются доказательства, что гиппокамп играет роль в поиске кратчайших путей между уже хорошо известными местами. К примеру, таксистам из Лондона необходимо знать большое количество мест и наиболее коротких путей между ними. Исследования одного из университетов Лондона в 2003 году показало, что гиппокамп у таксистов больше, чем у большинства людей, и что наиболее опытные таксисты имеют больший гиппокамп. Помогает ли изначально больший гиппокамп стать таксистом, либо постоянный поиск кратчайшего пути приводит к его росту - ещё не выяснено. Как бы то ни было, во время исследования корреляции между размером серого вещества и временем работы таксистом обнаружилось, что чем больше человек работает таксистом, тем больше у него объём правой части гиппокампа. Было установлено, что общий объём гиппокампа остается неизменным и у контрольной группы, и таксистов. Короче говоря, задняя часть гиппокампа таксистов действительно увеличилась, но за счет передней части. Эти исследования наводят на мысль, что гиппокамп со временем увеличивается в размерах по мере роста его использования.

    Искусственный гиппокамп

    Примечания

    Литература

    Ссылки

    • Физиология человека под редакцией В.М.Покровского, Г.Ф.Коротько. Гиппокамп

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Гиппокамп (часть мозга)" в других словарях:

      У этого термина существуют и другие значения, см. гиппокампус. Мозг: Гиппокамп … Википедия

      Аммонов рог (hippocampus, cornus Ammonis), парное образование в головном мозге позвоночных, осн. часть архикортекса. Впервые появляется у двоякодышащих рыб и безногих земноводных (примордиальный Г. с выраженными соматич. и зрительными проекциями) … Биологический энциклопедический словарь

      ГИППОКАМП - Часть гиппокампальной формации. Клетки гиппокампа непосредственно соединяются с кортикальными областями мозга через эн торинальную кору и с подкорковыми областями через бахромку гиппокампа. Также называется аммоновым рогом и рогом аммона … Толковый словарь по психологии

      Гиппокамп - (греч. hyppos лошадь) часть гиппокампальной формации или аммонов рог. Нейроны гиппокампа непосредственно соединяются с кортикальными областями коры большого мозга через энторинальную кору и с подкорковыми областями через бахромку гиппокампа … Энциклопедический словарь по психологии и педагогике - 1. Полушарие большого мозга (Конечный мозг) 2. Таламус (… Википедия

      Центральная нервная система (ЦНС) I. Шейные нервы. II. Грудные нервы. III. Поясничные нервы. IV. Крестцовые нервы. V. Копчиковые нервы. / 1. Головной мозг. 2. Промежуточный мозг. 3. Средний мозг. 4. Мост. 5. Мозжечок. 6. Продолговатый мозг. 7.… … Википедия

      Лауреаты Нобелевской премии по физиологии и медицине в 2014 году - Джон О Киф Американский ученый Джон О Киф (John O Keefe) родился в 1939 году в Нью Йорке (США). В 1967 году получил докторскую степень в Университете Макгилла (McGill University) в Канаде. После этого он переехал в Великобританию и стал работать… … Энциклопедия ньюсмейкеров