Как держать форму. Массаж. Здоровье. Уход за волосами

Физические свойства производной. Определение производной функции, ее геометрический и физический смысл

Лекция: Понятие о производной функции, геометрический смысл производной


Понятие о производной функции

Рассмотрим некоторую функцию f(x), которая будет непрерывной на всем промежутке рассмотрения. На рассматриваемом промежутке выберем точку х 0 , а также величину функции в данной точке.


Итак, давайте рассмотрим график, на котором отметим нашу точку х 0 , а также точку (х 0 + ∆х). Напомним, что ∆х – это расстояние (разница) между двумя выбранными точками.


Так же стоит понимать, что каждому х соответствует собственное значение функции у.

Разница значений функции в точке х 0 и (х 0 + ∆х) называется приращением данной функции: ∆у = f(х 0 + ∆х) - f(х 0).


Давайте обратим внимание на дополнительную информацию, которая имеется на графике – это секущая, которая названа КL, а также треугольник, который она образует с интервалами KN и LN.


Угол, под которым находится секущая, называется её углом наклона и обозначается α. Легко можно определить, что градусная мера угла LKN так же равна α.


А теперь давайте вспомним соотношения в прямоугольном треугольнике tgα = LN / KN = ∆у / ∆х.

То есть тангенс угла наклона секущей равен отношению приращения функции к приращению аргумента.


В свое время, производная – это предел отношения приращения функции к приращению аргумента на бесконечно малых интервалах.

Производная определяет скорость, с которой происходит изменение функции на некотором участке.


Геометрический смысл производной


Если найти производную любой функции в некоторой точке, то можно определить угол, под которым будет находится касательная к графику в данной токе, относительно оси ОХ. Обратите внимание на график – угол наклона касательно обозначается буквой φ и определяется коэффициентом k в уравнении прямой: y = kx + b.


То есть можно сделать вывод, что геометрическим смыслом производной является тангенс угла наклона касательной в некоторой точке функции.

Перед прочтением информации на текущей странице советуем посмотреть видео о производной и её геометрическом смысле

Также смотрите пример вычисления производной в точке

Касательной к линии l в точке М0 называется прямая М0Т — предельное положение секущей М0М, когда точка М стремится к М0 вдоль данной линии (т. е. угол устремится к нулю) произвольным образом.

Производной функции у = f{x) в точке x0 называется предел отношения приращения этой функции к приращению аргумента, когда последнее стремится к нулю. Производную функции у = f{x) в точке х0 и учебниках обозначают символом f"(x0). Следовательно, по определению

Термин «производная» (а также «вторая производная») ввел Ж. Лагранж (1797), к тому же он дал обозначения y’, f’(x), f”(x) (1770,1779). Обозначение dy/dx впервые встречается у Лейбница (1675).

Производная функции y = f(х) при х = xо равна угловому коэффициенту касательной к графику данной функции в точке Мо(хо, f(xо)), т. е.

где а - угол наклона касательной к оси Ох прямоугольной декартовой системы координат.

Уравнение касательной к линии у = f(x) в точке Мо(хо, уо) принимает вид

Нормалью к кривой в некоторой ее точке называется перпендикуляр к касательной в той же точке. Если f(x0) не равно 0, то уравнение нормали к линии у = f(x) в точке Мо(хо, уо) запишется так:

Физический смысл производной

Если x = f(t) — закон прямолинейного движения точки, то x’ = f’(t) - скорость этого движения в момент времени t. Быстрота протекания физических, химических и других процессов выражается с помощью производной .

Если отношение dy/dх при х->х0 имеет предел справа (или слева), то он называется производной справа (соответственно производной слева). Такие пределы называются односторонними производными .

Очевидно, функция f{x) определенная в некоторой окрестности точки х0, имеет производную f’{x) тогда и только тогда, когда односторонние производные существуют и равны между собой.

Геометрическое истолкование производной как углового коэффициента касательной к графику распространяется и на этот случай: касательная в данном случае параллельна оси Оу.

Функция, имеющая производную в данной точке, называется дифференцируемой в этой точке. Функция, имеющая производную в каждой точке данного промежутка, называется дифференцируемой в этом промежутке. Если промежуток является замкнутым, то на концах его имеются односторонние производные.

Операция нахождения производной называется .

Производной функции f (x) в точке х0 называется предел (если он существует) отношения приращения функции в точке х0 к приращению аргумента Δх, если прирост аргумента стремится к нулю и обозначается f ‘(x0). Действие нахождения производной функции называется дифференцированием.
Производная функции имеет такой физический смысл: производная функции в заданной точке - скорость изменения функции в заданной точке.

Геометрический смысл производной . Производная в точке x0 равна угловому коэффициенту касательной к графику функции y=f(x) в этой точке.

Физический смысл производной. Если точка движется вдоль оси х и ее координата изменяется по закону x(t), то мгновенная скорость точки:

Понятие дифференциала, его свойства. Правила дифференцирования. Примеры.

Определение. Дифференциалом функции в некоторой точке x называется главная, линейная часть приращения функции.Дифференциал функции y = f(x) равен произведению её производной на приращение независимой переменной x (аргумента).

Это записывается так:

или

Или же


Свойства дифференциала
Дифференциал обладает свойствами, аналогичными свойствам производной:





К основным правилам дифференцирования относят:
1) вынесение постоянного множителя за знак производной
2) производная суммы, производная разности
3) производная произведения функций
4) производная частного двух функций (производная дроби)

Примеры.
Докажем формулу: По определению производной имеем:

Произвольный множитель можно выносить за знак предельного перехода (это известно из свойств предела), поэтому

Например: Найти производную функции
Решение: Воспользуемся правилом вынесения множителя за знак производной:

Достаточно часто приходится сначала упрощать вид дифференцируемой функции, чтобы, воспользоваться таблицей производных и правилами нахождения производных. Следующие примеры это наглядно подтверждают.

Формулы дифференцирования. Применение дифференциала в приближенных вычислениях. Примеры.





Применение дифференциала в приближенных вычислениях позволяет использовать дифференциал для приближенных вычислений значений функции.
Примеры .
С помощью дифференциала вычислить приближенно
Для вычисления данного значения применим формулу из теории
Введем в рассмотрение функцию а заданную величину представим в виде
тогда Вычислим

Подставляя все в формулу, окончательно получим
Ответ:

16. Правило Лопиталя для раскрытия неопределенностей вида 0/0 Или ∞/∞. Примеры.
Предел отношения двух бесконечно малых или двух бесконечно больших величин равен пределу отношения их производных.

1)

17. Возрастание и убывание функции. Экстремум функции. Алгоритм исследования функции на монотонность и экстремум. Примеры .

Функция возрастает на интервале, если для любых двух точек этого интервала, связанных отношением , справедливо неравенство . То есть, большему значению аргумента соответствует большее значение функции, и её график идёт «снизу вверх». Демонстрационная функция растёт на интервале

Аналогично, функция убывает на интервале, если для любых двух точек данного интервала, таких, что , справедливо неравенство . То есть, большему значению аргумента соответствует меньшее значение функции, и её график идёт «сверху вниз». Наша убывает на интервалах убывает на интервалах .

Экстремумы Точку называют точкой максимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке максимума называют максимумом функции и обозначают .
Точку называют точкой минимума функции y=f(x), если для всех x из ее окрестности справедливо неравенство . Значение функции в точке минимума называют минимумом функции и обозначают .
Под окрестностью точки понимают интервал , где - достаточно малое положительное число.
Точки минимума и максимума называют точками экстремума, а значения функции, соответствующие точкам экстремума, называют экстремумами функции .

Чтобы исследовать функцию на монотонность , воспользуйтесь следующей схеме:
- Найдите область определения функции;
- Найдите производную функции и область определения производной;
- Найдите нули производной, т.е. значение аргумента, при которых производная равна нулю;
- На числовом лучи отметьте общую часть области определения функции и области определения ее производной, а на ней - нули производной;
- Определите знаки производной на каждом из полученных промежутков;
- По знакам производной определите, на которых промежутках функция возрастает, а на каких спадает;
- Запишите соответствующие промежутки через точку с запятой.

Алгоритм исследования непрерывной функции y = f(x) на монотонность и экстремумы :
1) Найти производную f ′(x).
2) Найти стационарные (f ′(x) = 0) и критические (f ′(x) не существует) точки функции y = f(x).
3) Отметить стационарные и критические точки на числовой прямой и определить знаки производной на получившихся промежутках.
4) Сделать выводы о монотонности функции и ее точках экстремума.

18. Выпуклость функции. Точки перегиба. Алгоритм исследования функции на выпуклость (Вогнутость) Примеры .

выпуклой вниз на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х.

Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х.


Точка формула называется точкой перегиба графика функции y=f(x), если в данной точке существует касательная к графику функции (она может быть параллельна оси Оу) и существует такая окрестность точки формула, в пределах которой слева и справа от точки М график функции имеет разные направления выпуклости.

Нахождение интервалов на выпуклость:

Если функция y=f(x) имеет конечную вторую производную на интервале Х и если выполняется неравенство (), то график функции имеет выпуклость направленную вниз (вверх) на Х.
Эта теорема позволяет находитьть промежутки вогнутости и выпуклости функции, нужно лишь на области определения исходной функции решить неравенства и соответственно.

Пример : Выяснить промежутки, на которых график функцииВыяснить промежутки, на которых график функции имеет выпуклость направленную вверх и выпуклость направленную вниз. имеет выпуклость направленную вверх и выпуклость направленную вниз.
Решение: Областью определения этой функции является все множество действительных чисел.
Найдем вторую производную.


Область определения второй производной совпадает с областью определения исходной функции, поэтому, чтобы выяснить интервалы вогнутости и выпуклости, достаточно решить и соответственно. Следовательно, функция выпуклая вниз на интервале формула и выпуклая вверх на интервале формула.

19) Асимптоты функции. Примеры.

Прямая называется вертикальной асимптотой графика функции , если хотя бы одно из предельных значений или равно или .

Замечание. Прямая не может быть вертикальной асимптотой, если функция непрерывна в точке . Поэтому вертикальные асимптоты следует искать в точках разрыва функции.

Прямая называется горизонтальной асимптотой графика функции , если хотя бы одно из предельных значений или равно .

Замечание. График функции может иметь только правую горизонтальную асимптоту или только левую.

Прямая называется наклонной асимптотой графика функции , если

ПРИМЕР:

Задание. Найти асимптоты графика функции

Решение. Область определения функции:

а) вертикальные асимптоты: прямая - вертикальная асимптота, так как

б) горизонтальные асимптоты: находим предел функции на бесконечности:

то есть, горизонтальных асимптот нет.

в) наклонные асимптоты :

Таким образом, наклонная асимптота: .

Ответ. Вертикальная асимптота - прямая .

Наклонная асимптота - прямая .

20) Общая схема исследования функции и построение графика. Пример.

a.
Найти ОДЗ и точки разрыва функции.

b. Найти точки пересечения графика функции с осями координат.

2. Провести исследование функции с помощью первой производной, то есть найти точки экстремума функции и интервалы возрастания и убывания.

3. Исследовать функцию с помощью производной второго порядка, то есть найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.

4. Найти асимптоты графика функции: а) вертикальные, b) наклонные.

5. На основании проведенного исследования построить график функции.

Заметим, что перед построением графика полезно установить, не является ли данная функция четной или нечетной.

Вспомним, что функция называется четной, если при изменении знака аргумента значение функции не меняется: f(-x) = f(x) и функция называется нечетной, если f(-x) = -f(x) .

В этом случае достаточно исследовать функцию и построить её график при положительных значениях аргумента, принадлежащих ОДЗ. При отрицательных значениях аргумента график достраивается на том основании, что для четной функции он симметричен относительно оси Oy , а для нечетной относительно начала координат.

Примеры. Исследовать функции и построить их графики.

Область определения функции D(у)= (–∞; +∞). Точек разрыва нет.

Пересечение с осью Ox : x = 0,у= 0.

Функция нечетная, следовательно, можно исследовать ее только на промежутке }