Как держать форму. Массаж. Здоровье. Уход за волосами

Кометы давление света солнечный ветер. Солнечный ветер

Представьте, что вы услышали слова диктора в прогнозе погоды: «Завтра ветер резко усилится. В связи с этим возможны перебои в работе радио, мобильной связи и интернета. В США отложена отправка космической миссии. На севере России ожидаются интенсивные полярные сияния…».


Вы удивитесь: какая ерунда, при чём тут ветер? А дело в том, что вы пропустили начало прогноза: «Вчера ночью произошла вспышка на Солнце. Мощный поток солнечного ветра движется к Земле…».

Обычный ветер – это движение частиц воздуха (молекул кислорода, азота и других газов). От Солнца тоже несётся поток частиц. Его и называют солнечным ветром. Если не вникать в сотни громоздких формул, вычислений и жарких научных споров, то, в общем, картина представляется такой.

Внутри нашего светила идут термоядерные реакции, раскаляющие этот огромный шар газов. Температура внешнего слоя – солнечной короны достигает миллиона градусов. Это заставляет атомы двигаться с такой скоростью, что, сталкиваясь, они разбивают друг друга вдребезги. Известно, что разогретый газ стремится расшириться, занять больший объём. Нечто подобное происходит и здесь. Частицы водорода, гелия, кремния, серы, железа и других веществ разлетаются во все стороны.

Они набирают всё бóльшую скорость и примерно за шесть суток долетают до околоземных рубежей. Даже если светило спокойно, скорость солнечного ветра доходит здесь до 450 километров в секунду. Ну, а когда вспышка Солнца извергает огромный огненный пузырь частиц, их скорость может достигать 1200 километров в секунду! Да и освежающим «ветерок» не назовёшь – около 200 тысяч градусов.

Чувствует ли человек солнечный ветер?

Действительно, раз поток горячих частиц несётся постоянно, почему мы не ощущаем, как он «обдувает» нас? Допустим, частицы так малы, что кожа не чувствует их касаний. Но их не замечают и земные приборы. Почему?

Потому, что от солнечных вихрей Землю защищает её магнитное поле. Поток частиц как бы обтекает его и несётся дальше. Только в дни, когда выбросы на солнце особенно мощные, нашему магнитному щиту приходится туго. Солнечный ураган пробивает его и врывается в верхние слои атмосферы. Частицы-пришельцы вызывают . Магнитное поле резко деформируется, синоптики говорят про «магнитные бури».


Из-за них выходят из-под контроля космические спутники. Исчезают с радарных экранов самолёты. Создаются помехи радиоволнам, и нарушается связь. В такие дни отключают спутниковые антенны, отменяют авиарейсы, прерывают «общение» с космическими аппаратами. В электросетях, железнодорожных рельсах, трубопроводах внезапно рождается электрический ток. От этого сигналы светофоров сами собой переключаются, ржавеют газопроводы, сгорают отключённые электроприборы. Плюс к тому, тысячи людей чувствуют дискомфорт и недомогания.

Космические эффекты солнечного ветра можно обнаружить не только во время вспышек на Солнце: он-то, пускай послабее, но веет постоянно.

Давно замечено, что хвост кометы вырастает по мере приближения её к Солнцу. Оно заставляет испаряться замерзшие газы, образующие кометное ядро. А солнечный ветер сносит эти газы в виде шлейфа, всегда направленного в противоположную от Солнца сторону. Так земной ветер разворачивает дым из трубы и придаёт ему ту или иную форму.

В годы повышенной активности резко падает облучение Земли галактическими космическими лучами. Солнечный ветер набирает такую силу, что просто выметает их на окраины планетной системы.

Есть планеты, у которых магнитное поле очень слабое, а то и вовсе отсутствует (например, на Марсе). Тут уж солнечному ветру ничто не мешает разгуляться. Учёные полагают, что это он за сотни миллионов лет почти «выдул» с Марса его атмосферу. Из-за этого оранжевая планета лишилась потом и воды и, возможно, живых организмов.

Где стихает солнечный ветер?

Точного ответа не знает пока никто. До окрестностей Земли частицы летят, набирая скорость. Потом она постепенно падает, но, похоже, ветер достигает самых дальних уголков Солнечной системы. Где-то там он ослабевает и тормозится разрежённым межзвездным веществом.

Пока что астрономы не могут точно сказать, насколько далеко это происходит. Для ответа нужно ловить частицы, улетая всё дальше от Солнца, пока они не перестанут попадаться. Кстати, тот предел, где это произойдёт, как раз и можно считать границей Солнечной системы.


Ловушками для солнечного ветра оборудованы космические аппараты, которые периодически запускают с нашей планеты. В 2016 году потоки солнечного ветра удалось заснять на видео. Кто знает, не станет ли он таким же привычным «персонажем» сводок погоды, как наш давний знакомый – ветер земной?

В 1957 профессор Чикагского университета Е.Паркер теоретически предсказал явление, которое и получило наименование «солнечный ветер». Понадобилось два года, чтобы это предсказание было подтверждено экспериментально при помощи приборов, установленных на советских космических аппаратах «Луна-2» и «Луна-3» группой К.И.Грингауза. Что же представляет собой это явление?

Солнечный ветер – это поток полностью ионизованного водородного газа, называемого обычно полностью ионизованной водородной плазмой в силу примерно одинаковой плотности электронов и протонов (условие квазинейтральности), который с ускорением движется от Солнца. В районе орбиты Земли (на одной астрономической единице или, на 1 АЕ от Солнца) его скорость достигает среднего значения V E » 400–500 км/сек при температуре протонов T E » 100 000К и несколько большей температуре электронов (индекс «Е» здесь и в дальнейшем относится к орбите Земли). При таких температурах скорость на 1 АЕ существенно превосходит скорость звука, т.е. поток солнечного ветра в районе орбиты Земли является сверхзвуковым (или гиперзвуковым). Измеренная концентрация протонов (или электронов) достаточно мала и составляет величину n E » 10–20 частиц в кубическом сантиметре. Кроме протонов и электронов, в межпланетном космическом пространстве были обнаружены альфа-частицы (порядка нескольких процентов от концентрации протонов), небольшое количество более тяжелых частиц, а также межпланетное магнитное поле, средняя величина индукции которого оказалась на орбите Земли порядка нескольких гамм (1g = 10 –5 гаусс).

Крах представления о статической солнечной короне.

В течение достаточно длительного времени считалось, что все атмосферы звезд находятся в состоянии гидростатического равновесия, т.е. в состоянии, когда сила гравитационного притяжения данной звезды уравновешивается силой, связанной с градиентом давления (изменением давления в атмосфере звезды на расстоянии r от центра звезды. Математически это равновесие выражается в виде обыкновенного дифференциального уравнения,

где G – гравитационная постоянная, M * – масса звезды, p и r – давление и массовая плотность на некотором расстоянии r от звезды. Выражая массовую плотность из уравнения состояния для идеального газа

р = rRT

через давление и температуру и интегрируя полученное уравнение, получаем так называемую барометрическую формулу (R – газовая постоянная), которая в частном случае постоянной температуры Т имеет вид

где p 0 – представляет собой давление у основания атмосферы звезды (при r = r 0). Поскольку до работы Паркера считалось, что солнечная атмосфера, так же как и атмосферы других звезд, находится в состоянии гидростатического равновесия, то ее состояние определялось аналогичными формулами. Учитывая необычное и не до конца еще понятое явление резкого возрастания температуры примерно от 10 000 К на поверхности Солнца до 1 000 000 К в солнечной короне, С.Чепмен развил теорию статической солнечной короны, которая должна была плавно переходить в локальную межзвездную среду, окружающую Солнечную систему. Отсюда следовало, что, согласно представлениям С.Чепмена, Земля, совершающая свои обороты вокруг Солнца, погружена в статическую солнечную корону. Эта точка зрения в течение длительного времени разделялась астрофизиками.

Удар по этим уже установившимся представлениям был нанесен Паркером. Он обратил внимание на то, что давление на бесконечности (при r ® Ґ), которое получается из барометрической формулы, по величине почти в 10 раз превосходит давление, которое было принято в то время для локальной межзвездной среды. Чтобы устранить это расхождение Е.Паркер предположил, что солнечная корона не может находиться в гидростатическом равновесии, а должна непрерывно расширяться в окружающую Солнце межпланетную среду, т.е. радиальная скорость V солнечной короны не равна нулю. При этом вместо уравнения гидростатического равновесия он предложил использовать гидродинамическое уравнение движения вида, где М Е – масса Солнца.

При заданном распределении температуры Т , как функции расстояния от Солнца, решение этого уравнения с использованием барометрической формулы для давления и уравнение сохранения массы в виде

можно трактовать как солнечный ветер и именно при помощи этого решения с переходом от дозвукового течения (при r r *) к сверхзвуковому (при r > r *) можно согласовать давление р с давлением в локальной межзвездной среде, а, следовательно, именно это решение, названное солнечным ветром, осуществляется в природе.

Первые прямые измерения параметров межпланетной плазмы, которые проводились на первых космических аппаратах, выходивших в межпланетное космическое пространство, подтвердили правильность идеи Паркера о наличии сверхзвукового солнечного ветра, причем оказалось, что уже в районе орбиты Земли скорость солнечного ветра намного превосходит скорость звука. С тех пор нет сомнения, что представление Чепмена о гидростатическом равновесии солнечной атмосферы ошибочно, а солнечная корона непрерывно расширяется со сверхзвуковой скоростью в межпланетное космическое пространство. Несколько позже астрономические наблюдения показали, что и многие другие звезды обладают «звездными ветрами», аналогичными солнечному ветру.

Несмотря на то, что солнечный ветер предсказан теоретически на основе сферически-симметричной гидродинамической модели, само явление оказалось значительно сложнее.

Какова реальная картина движения солнечного ветра? В течение длительного времени солнечный ветер считался сферически-симметричным, т.е. независимым от солнечных широты и долготы. Поскольку космические аппараты до 1990, когда был запущен космический аппарат «Улисс» (Ulysses), в основном, летали в плоскости эклиптики, то измерения на таких космических аппаратах давали распределения параметров солнечного ветра только в этой плоскости. Расчеты, проводимые по наблюдениям отклонения хвостов комет, указывали на приблизительную независимость параметров солнечного ветра от солнечной широты, однако, этот вывод на основании кометных наблюдений не был достаточно надежен из-за сложностей интерпретации этих наблюдений. Хотя долготная зависимость параметров солнечного ветра измерялась приборами, установленными на космических аппаратах, тем не менее, она была либо незначительной и связывалась с межпланетным магнитным полем солнечного происхождения, либо с кратковременными нестационарными процессами на Солнце (главным образом, с солнечными вспышками).

Измерения параметров плазмы и магнитного поля в плоскости эклиптики показали, что в межпланетном пространстве могут существовать так называемые секторные структуры с различными параметрами солнечного ветра и различным направлением магнитного поля. Такие структуры вращаются вместе с Солнцем и явно указывают на то, что они являются следствием аналогичной структуры в солнечной атмосфере, параметры которой зависят, таким образом, от солнечной долготы. Качественно четырехсекторная структура показана на рис. 1.

При этом наземные телескопы обнаруживают общее магнитное поле на поверхности Солнца. Его средняя величина оценивается в 1 Гс, хотя в отдельных фотосферных образованиях, например, в солнечных пятнах магнитное поле может быть на порядки величины больше. Поскольку плазма является хорошим проводником электричества, то солнечные магнитные поля так или иначе взаимодействуют с солнечным ветром вследствие появления пондеромоторной силы j ґ B . Эта сила мала в радиальном направлении, т.е. она практически не влияет на распределение радиальной компоненты солнечного ветра, однако ее проекция на перпендикулярное к радиальному направление приводит к появлению у солнечного ветра тангенциальной компоненты скорости. Хотя эта компонента почти на два порядка меньше радиальной, она играет существенную роль в выносе из Солнца момента количества движения. Астрофизики предполагают, что последнее обстоятельство может играть существенную роль в эволюции не только Солнца, но и у других звезд, у которых обнаружен звездный ветер. В частности, для объяснения резкого уменьшения угловой скорости звезд позднего спектрального класса часто привлекается гипотеза о передаче ими вращательного момента образующимся вокруг них планетам. Рассмотренный механизм потери углового момента Солнца путем истечения из него плазмы в присутствии магнитного поля открывает возможность пересмотра этой гипотезы.

Измерения среднего магнитного поля не только в районе орбиты Земли, но и на больших гелиоцентрических расстояниях (например, на космических аппаратах «Вояджер 1 и 2» и «Пионер 10 и 11») показали, что в плоскости эклиптики, почти совпадающей с плоскостью солнечного экватора, его величина и направление хорошо описывается формулами

полученными Паркером. В этих формулах, описывающих так называемую паркеровскую спираль Архимеда, величины B r , B j – радиальная и азимутальная компоненты вектора магнитной индукции соответственно, W – угловая скорость вращения Солнца, V – радиальная компонента солнечного ветра, индекс «0» относится к точке солнечной короны, в которой величина магнитного поля известна.

Запуск Европейским космическим агентством в октябре 1990 космического аппарата «Улисс», траектория которого была рассчитана таким образом, что в настоящее время он вращается вокруг Солнца в плоскости, перпендикулярной плоскости эклиптики, полностью изменил представления о том, что солнечный ветер сферически симметричен. На рис. 2 представлены измеренные на аппарате «Улисс» распределения радиальной скорости и плотности протонов солнечного ветра как функции солнечной широты.

Из этого рисунка видна сильная широтная зависимость параметров солнечного ветра. Оказалось, что скорость солнечного ветра возрастает, а плотность протонов уменьшается с гелиографической широтой. И если в плоскости эклиптики радиальная скорость в среднем ~ 450 км/cек, а плотность протонов ~15 см –3 , то, например, на 75° солнечной широты эти величины ~700км/сек и ~5 см –3 соответственно. Зависимость параметров солнечного ветра от широты менее выражена в периоды минимума солнечной активности.

Нестационарные процессы в солнечном ветре.

Модель, предложенная Паркером, предполагает сферическую симметрию солнечного ветра и независимость его параметров от времени (стационарность рассматриваемого явления). Однако процессы, происходящие на Солнце, вообще говоря, не являются стационарными, а следовательно, и солнечный ветер не является стационарным. Характерные времена изменения параметров имеют самые различные масштабы. В частности, имеют место изменения параметров солнечного ветра, связанные с 11-летним циклом солнечной активности. На рис. 3 показано измеренное при помощи космических аппаратов IMP-8 и Voyager-2 среднее (за 300 дней) динамическое давление солнечного ветра (r V 2) в районе орбиты Земли (на 1 АЕ) в течение одного 11-летнего солнечного цикла солнечной активности (верхняя часть рисунка). На нижней части рис. 3 изображено изменение числа солнечных пятен за время с 1978 по 1991 (максимальное число соответствует максимуму солнечной активности). Видно, что параметры солнечного ветра существенно меняются за характерное время порядка 11-лет. При этом измерения на космическом аппарате «Улисс» показали, что такие изменения происходят не только в плоскости эклиптики, но и на других гелиографических широтах (на полюсах динамическое давление солнечного ветра несколько выше, чем на экваторе).

Изменения параметров солнечного ветра могут происходить и на гораздо меньших временных масштабах. Так, например, вспышки на Солнце и разные скорости истечения плазмы из разных областей солнечной короны приводят к тому, что в межпланетном пространстве образуются межпланетные ударные волны, которые характеризуются резким скачком скорости, плотности, давления, температуры. Качественно механизм их образования показан на рис. 4. Когда быстрый поток какого-либо газа (например, солнечной плазмы) догоняет более медленный, то в месте их соприкосновения возникает произвольный разрыв параметров газа, на котором не выполняются законы сохранения массы, импульса и энергии. Такой разрыв не может существовать в природе и распадается, в частности, на две ударные волны (на них законы сохранения массы импульса и энергии приводят к так называемым соотношениям Гюгонио) и тангенциальный разрыв (те же законы сохранения приводят к тому, что на нем давление и нормальная компонента скорости должны быть непрерывны). На рис. 4 этот процесс показан в упрощенной форме сферически симметричной вспышки. Здесь надо отметить, что такие структуры, состоящие из впереди идущей ударной волны (forward shock), тангенциального разрыва и второй ударной волны (reverse shock) движутся от Солнца таким образом, что forward shock движется со скоростью, большей скорости солнечного ветра, reverse shock движется от Солнца со скоростью несколько меньшей скорости солнечного ветра, а скорость тангенциального разрыва равна скорости солнечного ветра. Такие структуры регулярно регистрируются приборами, установленными на космических аппаратах.

Об изменении параметров солнечного ветра с расстоянием от солнца.

Изменение скорости солнечного ветра с расстоянием от Солнца определяется двумя силами: силой солнечной гравитации и силой, связанной с изменением давления (градиентом давления). Поскольку сила гравитации убывает как квадрат расстояния от Солнца, то на больших гелиоцентрических расстояниях ее влияние несущественно. Расчеты показывают, что уже на орбите Земли ее влиянием, также как и влиянием градиента давления, можно пренебречь. Следовательно, скорость солнечного ветра можно считать почти постоянной. При этом она существенно превосходит скорость звука (течение гиперзвуковое). Тогда из приведенного выше гидродинамического уравнения для солнечной короны следует, что плотность r убывает как 1/r 2 . Американские космические аппараты «Вояджер 1 и 2», «Пионер 10 и 11», запущенные в середине 1970-ых и сейчас находящиеся на расстояниях от Солнца в несколько десятков астрономических единиц, подтвердили эти представления о параметрах солнечного ветра. Они подтвердили также и предсказанную теоретически паркеровскую спираль Архимеда для межпланетного магнитного поля. Однако температура не следует адиабатическому закону охлаждения при расширении солнечной короны. На очень больших расстояниях от Солнца солнечный ветер имеет даже тенденцию к разогреву. Такой разогрев может быть обусловлен двумя причинами: диссипацией энергии, связанной с плазменной турбулентностью, и влиянием нейтральных атомов водорода, проникающих в солнечный ветер из межзвездной среды, окружающей солнечную систему. Вторая причина приводит и к некоторому торможению солнечного ветра на больших гелиоцентрических расстояниях, обнаруженная на вышеупомянутых космических аппаратах.

Заключение.

Таким образом, солнечный ветер – это физическое явление, которое представляет не только чисто академический интерес, связанный с изучением процессов в плазме, находящейся в естественных условиях космического пространства, но и фактор, который необходимо учитывать при изучении процессов, происходящих в окрестности Земли, поскольку эти процессы в той или иной степени оказывают влияние на нашу жизнь. В частности, высокоскоростные потоки солнечного ветра, обтекая магнитосферу Земли, влияют на ее строение, а нестационарные процессы на Солнце (например, вспышки) могут приводить к магнитным бурям, нарушающим радиосвязь и влияющим на самочувствие метеочувствительных людей. Поскольку солнечный ветер зарождается в солнечной короне, то его свойства в районе орбиты Земли являются хорошим индикатором для изучения важных для практической деятельности человека солнечно-земных связей. Однако это уже другая область научных исследований, которой мы не будем касаться в настоящей статье.

Владимир Баранов

Понятие солнечный ветер было введено в астрономию в конце 40-х годов 20–го ст., когда американский астроном С. Форбуш, измеряя интенсивность космических лучей, заметил, что она значительно снижается при возрастании солнечной активности и совсем резко падает во время .

Это представлялось довольно странным. Скорее, можно было ожидать обратного. Ведь Солнце само является поставщиком космических лучей. Поэтому, казалось бы, чем выше, активность нашего дневного светила, тем больше частиц оно должно выбрасывать в окружающее пространство.

Оставалось предположить, что возрастание солнечной активности влияет на таким образом, что оно начинает отклонять частицы космических лучей – отбрасывать их.

Тогда-то и возникло предположение, что виновниками загадочного эффекта являются потоки заряженных частиц, вырывающиеся с поверхности Солнца и пронизывающие пространство солнечной системы. Этот своеобразный солнечный ветер и очищает межпланетную среду, "выметая" из нее частицы космических лучей.

В пользу подобной гипотезы говорили также явления, наблюдающиеся в . Как известно, кометные хвосты всегда направлены от Солнца. Вначале это обстоятельство связывали со световым давлением солнечных лучей. Однако было установлено, что лишь световое давление не может вызывать всех явлений, происходящих в кометах. Расчеты показали, что для образования и наблюдаемого отклонения кометных хвостов необходимо воздействие не только фотонов, но и частиц вещества.

Собственно говоря, о том, что Солнце выбрасывает потоки заряженных частиц – корпускул, было известно и до этого. Однако предполагалось, что такие потоки носят эпизодический характер. Но кометные хвосты направлены в противоположную от Солнца сторону всегда, а не только в периоды усиления . Значит, и корпускулярная радиация, заполняющая пространство солнечной системы, должна существовать постоянно. Она усиливается с возрастанием солнечной активности, но существует всегда.

Таким образом, солнечный ветер непрерывно обдувает околосолнечное пространство. Из чего же состоит этот солнечный ветер, и при каких условиях он возникает?

Самый внешний слой солнечной атмосферы – "корона". Эта часть, атмосферы нашего дневного светила необычайно разрежена. Но так называемая "кинетическая температура" короны, определяемая по скорости движения частиц, весьма велика. Она достигает миллиона градусов. Поэтому корональвый газ полностью ионизован и представляет собой смесь протонов, ионов различных элементов и свободных электронов.

Недавно появилось сообщение о том, что солнечный ветер имеет в своем составе ионы гелия. Это обстоятельство проливает свет на тот механизм, с помощью которого происходит выброс заряженных частиц с поверхности Солнца. Если бы солнечный ветер состоял только из электронов и протонов, то еще можно было бы предполагать, что он образуется за счет чисто тепловых процессов и представляет собой нечто вроде пара, образующегося над поверхностью кипящей воды. Однако ядра атомов гелия в четыре раза тяжелее протонов и поэтому маловероятно, чтобы они могли выбрасываться вследствие испарения. Скорее всего, образование солнечного ветра связано с действием магнитных сил. Улетая от Солнца, облака плазмы как бы уносят с собой и магнитные поля. Именно эти поля и служат тем своеобразным "цементом", который "скрепляет" воедино частицы с различными массами и зарядами.

Наблюдения и вычисления, проведенные астрономами, показали, что по мере удаления от Солнца плотность короны постепенно уменьшается. Но, оказывается, в районе орбиты Земли она еще заметно отличается от нуля. Другими словами, наша планета находится внутри солнечной атмосферы.

Если вблизи Солнца корона более или менее стабильна, то по мере увеличения расстояния она стремится расшириться в пространство. И чем дальше от Солнца, тем выше скорость этого расширения. Согласно расчетам американского астронома Э. Паркера, уже на расстоянии 10 млн. км корональные частицы движутся со скоростями, превосходящими скорость .

Таким образом, напрашивается вывод о том, что солнечная корона – это и есть солнечный ветер, обдувающий пространство нашей планетной системы.

Эти теоретические выводы были полностью подтверждены измерениями на космических ракетах и искусственных спутниках Земли. Оказалось, что солнечный ветер существует всегда и вблизи Земли – "дует" со скоростью около 400 км/сек.

Как далеко дует солнечный ветер? При теоретических соображениях в одном случае получается, что солнечный ветер затихает уже в районе орбиты , в другом, – что он существует еще на очень большом расстоянии за орбитой последней планеты Плутона. Но это лишь теоретически крайние пределы возможного распространения солнечного ветра. Указать точную границу могут лишь наблюдения.

СОЛНЕЧНЫЙ ВЕТЕР - непрерывный поток плазмы солнечного происхождения, распространяющийся приблизительно радиально от Солнца и заполняющий Солнечную систему до гелиоцентрич. расстояний R ~ 100 а. е. С. в. образуется при газодинамич. расширении солнечной короны (см. Солнце )в межпланетное пространство. При высоких темп-pax, к-рые существуют в солнечной короне (1,5*10 9 К), давление вышележащих слоев не может уравновесить газовое давление вещества короны, и корона расширяется.

Первые свидетельства существования пост. потока плазмы от Солнца получены Л. Бирманом (L. Biermann) в 1950-х гг. по анализу сил, действующих на плазменные хвосты комет. В 1957 Ю. Паркер (Е. Parker), анализируя условия равновесия вещества короны, показал, что корона не может находиться в условиях гидростатич. равновесия, как это раньше предполагалось, а должна расширяться, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей (см. ниже). Впервые поток плазмы солнечного происхождения был зарегистрирован на советском космич. аппарате «Луна-2» в 1959. Существование пост. истечения плазмы из Солнца было доказано в результате многомесячных измерений на амер. космич. аппарате «Маринер-2» в 1962.

Ср. характеристики С. в. приведены в табл. 1. Потоки С. в. можно разделить на два класса: медленные - со скоростью 300 км/с и быстрые - со скоростью 600-700 км/с. Быстрые потоки исходят из областей солнечной короны, где структура магн. поля близка к радиальной. Часть этих областей являются корональными дырами . Медленные потоки С. в. связаны, по-видимому, с областями короны, в к-рых имеется значит, тангенциальный компонент магн. поля.

Табл. 1.- Средние характеристики солнечного ветра на орбите Земли

Скорость

Концентрация протонов

Температура протонов

Температура электронов

Напряжённость магнитного поля

Плотность потока питонов....

2,4*10 8 см -2 *c -1

Плотность потока кинетической энергии

0,3 эрг*см -2 *с -1

Табл. 2.-Относительный химический состав солнечного ветра

Относительное содержание

Относительное содержание

Помимо осн. составляющих С. в.- протонов и электронов, в его составе также обнаружены-частицы, высокоионизов. ионы кислорода, кремния, серы, железа (рис. 1). При анализе газов, захваченных в экспонированных на Луне фольгах, найдены атомы Ne и Аг. Ср. относительный хим. состав С. в. приведён в табл. 2. Ионизац. состояние вещества С. в. соответствует тому уровню в короне, где время рекомбинации мало по сравнению со временем расширения Измерения ионизац. темп-ры ионов С. в. позволяют определять электронную темп-ру солнечной короны.

В С. в. наблюдаются разл. типы волн: ленгмюровские, вистлеры, ионно-звуковые, магнитозвуковые, альвеновские и др. (см. Волны в плазме ).Часть волн альвеновского типа генерируется на Солнце, часть - возбуждается в межпланетной среде. Генерация волн сглаживает отклонения ф-ции распределения частиц от максвелловской и в совокупности с воздействием магн. поля на плазму приводит к тому, что С. в. ведёт себя как сплошная среда. Волны альвеновского типа играют большую роль в ускорении малых составляющих С. в. и в формировании ф-ции распределения протонов. В С. в. наблюдаются также контактные и вращательные разрывы, характерные для замагниченной плазмы.

Рис. 1. Массовый спектр солнечного ветра. По горизонтальной оси - отношение массы частицы к её заряду, по вертикальной - число частиц, зарегистрированных в энергетическом окне прибора за 10 с. Цифры со значком «+» обозначают заряд иона .

Поток С. в. является сверхзвуковым по отношению к скоростям тех типов волн, к-рые обеспечивают эфф. передачу энергии в С. в. (альвеновские, звуковые и магнитозвуковые волны). Альвеновское и звуковое Маха число С .в. на орбите Земли 7. При обтекании С. в. препятствий, способных эффективно отклонять его (магн. поля Меркурия, Земли, Юпитера, Сатурна или проводящие ионосферы Венеры и, по-видимому, Марса), образуется отошедшая головная ударная волна. С. в. тормозится и разогревается на фронте ударной волны, что позволяет ему обтекать препятствие. При этом в С. в. формируется полость - магнитосфера (собственная или индуцированная), форма и размеры к-рой определяются балансом давления магн. поля планеты и давления обтекающего потока плазмы (см. Магнитосфера Земли, Магнитосферы планет) . В случае взаимодействия С. в. с непроводящим телом (напр., Луна) ударная волна не возникает. Поток плазмы поглощается поверхностью, а за телом образуется полость, постепенно заполняемая плазмой С. в.

На стационарный процесс истечения плазмы короны накладываются нестационарные процессы, связанные со вспышками на Солнце . При сильных вспышках происходит выброс вещества из ниж. областей короны в межпланетную среду. При этом также образуется ударная волна (рис. 2), к-рая постепенно замедляется, распространяясь в плазме С. в. Приход ударной волны к Земле вызывает сжатие магнитосферы, после к-рого обычно начинается развитие магн. бури (см. Магнитные вариации) .

Рис. 2. Распространение межпланетной ударней волны и выброса от солнечной вспышки. Стрелками показано направление движения плазмы солнечного ветра, линии без подписи - силовые линии магнитного поля .

Рис. 3. Типы решений уравнения расширения короны. Скорость и расстояние нормированы на критическую скорость v к и критическое расстояние R к. Решение 2 соответствует солнечному ветру .

Расширение солнечной короны описывается системой ур-ний сохранения массы, момента кол-ва движения и уравнения энергии. Решения, отвечающие разл. характеру изменения скорости с расстоянием, показаны на рис. 3. Решения 1 и 2 соответствуют малым скоростям в основании короны. Выбор между этими двумя решениями определяется условиями на бесконечности. Решение 1 соответствует малым скоростям расширения короны и даёт большие значения давления на бесконечности, т. е. встречается с теми же трудностями, что и модель статич. короны. Решение 2 соответствует переходу скорости расширения через значения скорости звука (v к )на нек-ром критич. расстоянии R к и последующему расширению со сверхзвуковой скоростью. Это решение даёт исчезающе малое значение давления на бесконечности, что позволяет согласовать его с малым давлением межзвёздной среды. Течение этого типа Ю. Паркер назвал С. в. Критич. точка находится над поверхностью Солнца, если темп-ра короны меньше нек-рого критич. значения , где m - масса протона, - показатель адиабаты, - масса Солнца. На рис. 4 показано изменение скорости расширения с гелиоцентрич. расстоянием в зависимости от темп-ры изотермич. изотропной короны. Последующие модели С. в. учитывают вариации корональной темп-ры с расстоянием, двухжидкостный характер среды (электронный и протонный газы), теплопроводность, вязкость, несферич. характер расширения.

Рис. 4. Профили скорости солнечного ветра для модели изотер» мической короны при различных значениях корональной температуры .

С. в. обеспечивает осн. отток тепловой энергии короны, т. к. теплопередача в хромосферу, эл--магн. излучение короны и электронная теплопроводность С. в. недостаточны для установления теплового баланса короны. Электронная теплопроводность обеспечивает медленное убывание темп-ры С. в. с расстоянием. С. в. не играет сколько-нибудь заметной роли в энергетике Солнца в целом, т. к. поток энергии, уносимый им, составляет ~10 -7 светимости Солнца.

С. в. уносит с собой в межпланетную среду корональное магн. поле. Вмороженные в плазму силовые линии этого поля образуют межпланетное магн. поле (ММП). Хотя напряжённость ММП невелика и плотность его энергии составляет ок. 1% от плотности кинетич. энергии С. в., оно играет большую роль в термодинамике С. в. и в динамике взаимодействий С. в. с телами Солнечной системы, а также потоков С. в. между собой. Комбинация расширения С. в. с вращением Солнца приводит к тому, что магн. силовые линии, вмороженные в С. в., имеют форму, близкую к спирали Архимеда (рис. 5). Радиальная B R и азимутальная компоненты магн. поля по-разному изменяются с расстоянием вблизи плоскости эклиптики:

где - угл. скорость вращения Солнца, и - радиальная компонента скорости С. в., индекс 0 соответствует исходному уровню. На расстоянии орбиты Земли угол между направлением магн. поля и R порядка 45°. При больших Л магн. поле почти перпендикулярно R.

Рис. 5. Форма силовой линии межпланетного магнитного поля. - угловая скорость вращения Солнца, и - радиальная компонента скорости плазмы, R - гелиоцентрическое расстояние .

С. в., возникающий над областями Солнца с разл. ориентацией магн. поля, образует потоки с различно ориентированным ММП. Разделение наблюдаемой крупномасштабной структуры С. в. на чётное число секторов с разл. направлением радиального компонента ММП наз. межпланетной секторной структурой. Характеристики С. в. (скорость, темп-pa, концентрация частиц и др.) также в ср. закономерно изменяются в сечении каждого сектора, что связано с существованием внутри сектора быстрого потока С. в. Границы секторов обычно располагаются внутри медленного потока С. в. Чаще всего наблюдаются 2 или 4 сектора, вращающихся вместе с Солнцем. Эта структура, образующаяся при вытягивании С. в. крупномасштабного магн. поля короны, может наблюдаться в течение неск. оборотов Солнца. Секторная структура ММП - следствие существования токового слоя (ТС) в межпланетной среде, к-рый вращается вместе с Солнцем. ТС создаёт скачок магн. поля - радиальные компоненты ММП имеют разные знаки по разные стороны ТС. Этот ТС, предсказанный X. Альвеном (Н. Alfven), проходит через те участки солнечной короны, к-рые связаны с активными областями на Солнце, и разделяет указанные области с разл. знаками радиальной компоненты солнечного магн. поля. ТС располагается приблизительно в плоскости солнечного экватора и имеет складчатую структуру. Вращение Солнца приводит к закручиванию складок ТС в спирали (рис. 6). Находясь вблизи плоскости эклиптики, наблюдатель оказывается то выше, то ниже ТС, благодаря чему попадает в секторы с разными знаками радиальной компоненты ММП.

Вблизи Солнца в С. в. существуют долготные и широтные градиенты скорости, обусловленные разностью скоростей быстрых и медленных потоков. По мере удаления от Солнца и укручения границы между потоками в С. в. возникают радиальные градиенты скорости, к-рые приводят к образованию бесстолкновителъных ударных волн (рис. 7). Сначала образуется ударная волна, распространяющаяся вперёд от границы секторов (прямая ударная волна), а затем образуется обратная ударная волна, распространяющаяся к Солнцу.

Рис. 6. Форма гелио-сферного токового слоя. Пересечение его с плоскостью эклиптики (наклонённой к экватору Солнца под углом ~ 7°) даёт наблюдаемую секторную структуру межпланетного магнитного поля .

Рис. 7. Структура сектора межпланетного магнитного поля. Короткие стрелки показывают направление течения плазмы солнечного ветра, линии со стрелками - силовые линии магнитного поля, штрихпунктир - границы сектора (пересечение плоскости рисунка с токовым слоем) .

Т. к. скорость ударной волны меньше скорости С. в., плазма увлекает обратную ударную волну в направлении от Солнца. Ударные волны вблизи границ секторов образуются на расстояниях ~1 а. е. и прослеживаются до расстояний в неск. а. е. Эти ударные волны, так же как и межпланетные ударные волны от вспышек на Солнце и околопланетные ударные волны, ускоряют частицы и являются, т. о., источником энергичных частиц.

С. в. простирается до расстояний ~100 а. е., где давление межзвёздной среды уравновешивает динамич. давление С. в. Полость, заметаемая С. в. в межзвёздной среде, образует гелиосферу (см. Межпланетная среда ).Расширяющийся С. в. вместе с вмороженным в него магн. полем препятствует проникновению в Солнечную систему галактич. космич. лучей малых энергий и приводит к вариациям космич. лучей больших энергий. Явление, аналогичное С. в., обнаружено и у нек-рых др. звёзд (см. Звёздный ветер ).

Лит.: Паркер Е. Н., Динамические процессы в межпланетной среде, пер. с англ., М., 1965; Б р а н д т Д ж., Солнечный ветер, пер. с англ., М., 1973; Хундхаузен А., Расширение короны и солнечный ветер, пер. с англ., М., 1976. О. Л. Вайсберг .